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ABSTRACT
What do our computer systems do all day? How do we make
sure they continue doing it when failures occur? Traditional
approaches to answering these questions often involve in-
band monitoring agents. However in-band agents suffer from
several drawbacks: they need to be written or customized for
every workload (operating system and possibly also appli-
cation), they comprise potential security liabilities, and are
themselves affected by adverse conditions in the monitored
systems.

Virtualization technology makes it possible to encapsulate
an entire operating system or application instance within a
virtual object that can then be easily monitored and manip-
ulated without any knowledge of the contents or behavior
of that object. This can be done out-of-band, using gen-
eral purpose agents that do not reside inside the object, and
hence are not affected by the behavior of the object.

This paper describes Vigilant, a novel way of monitoring vir-
tual machines for problems. Vigilant requires no specialized
agents inside a virtual object it is monitoring. Instead, it
uses the hypervisor to directly monitor the resource requests
and utilization of an object. Machine learning methods are
then used to analyze the readings. Our experimental results
show that problems can be detected out-of-band with high
accuracy. Using Vigilant we demonstrate that out-of-band
monitoring using virtualization and machine learning can
accurately identify faults in the guest OS, while avoiding
the many pitfalls associated with in-band monitoring.

1. INTRODUCTION
What do our computer systems do all day? How do we make
sure they continue doing it when failures occur? As Ver-
bowski notes in “The Secret Lives of Computers Exposed:
Flight Data Recorder for Windows” [19], these questions are
both important and extremely hard to answer. Being able
to monitor the system, detect anomalies and—if necessary—
respond to them is a requirement for any computer system,
be it an embedded, consumer, server or super-computer sys-
tem.

Traditional approaches for trying to answer these questions
can be roughly divided into the in-band and out-of-band
approaches. In-band approaches require installing one or
more agents that monitor and—if necessary—respond to the
changing conditions of the system. Such agents are typically
specific to a given operating system and application, and are

of limited utility, since they run as part of the workload they
monitor. An operating system under stress may well deprive
an agent running inside it from the resources it needs to be
effective, such as CPU time or memory. An in-band agent is
also susceptible to attacks from within the monitored object.

Out-of-band agents, as exemplified by network-based mon-
itoring solutions such as Network Flight Recorder [15], suf-
fer from reduced visibility into the behavior of the system
being monitored and limited response abilities. Since they
are running on a different machine than the machine being
monitored, they can only treat the monitored machine as a
black box, and are extremely limited in their ability to re-
spond. Often times only one response is available: do noth-
ing. Other times the response may be limited to informing
an administrator or power-cycling the monitored machine,
assuming it is equipped for remote power-cycle.

The widespread adoption of virtualization represents an in-
flection point in the ability to provide improved availability
to most computer system users. Using virtualization, it is
possible to achieve this without expensive hardware, com-
plicated setup and configuration, expensive consulting con-
tracts, application-specific coding, or continual maintenance
and testing of the high availability functionality. This is be-
cause the virtualization layer, often called “ hypervisor” or
“virtual machine monitor”, encapsulates an entire operating
system and application instance (or, in the case of container
virtualization, application containers) within a virtual ob-
ject that can then be easily monitored, started, stopped,
replicated, checkpointed, and restarted locally or remotely,
all without knowledge of the contents or behavior of the vir-
tual object. This can all be done out-of-band, by agents that
run outside of the virtual objects and communicate with the
hypervisor via defined external interfaces.

Of course, with this new opportunity comes a new set of
challenges. Traditional high availability technologies rely
on intrusion into the behavior of the now encapsulated op-
erating system and application to determine their health,
and application-specific recovery procedures are usually em-
ployed. While these techniques can of course still be used in
a virtualized environment, many of the attractive capabili-
ties outlined above, such as generality, are lost.

What is needed is the ability to determine the health and
status of a virtual object based solely on measures available
externally to that object, typically provided by the hyper-



visor. Unfortunately, the richness of these indicators is typ-
ically quite limited, for a number of reasons. Visibility into
the virtual object may be limited because of security rea-
sons, or the hypervisor may only collect simple performance
metrics such as CPU utilization, I/O activity, and memory
utilization. This raises a difficult problem, since it is quite
difficult to discriminate based on these measures between a
virtual object that is performing properly, and one that is
quite ill.

This paper describes one approach to out-of-band monitor-
ing that performs this discrimination based on statistical
analysis, as implemented in the “Vigilant”1 system. Our
experimental results show that problems can be detected
out-of-band with high accuracy. We demonstrate successful
identification of hard-to-detect kernel hangs that saturate
CPU resources. Hangs of this type will cause a typical load
monitor to allocate more resources to the virtual object, and
will eventually result in resource exhaustion and degradation
of service. Under our analysis, we automatically choose the
preferred approach of shutting the object down. Using Vigi-
lant we demonstrate that out-of-band monitoring using vir-
tualization and statistical analysis can equal and even sur-
pass the diagnostic accuracy of in-band monitoring, while
avoiding the many pitfalls associated with in-band monitor-
ing.

The Vigilant system is presented in Section 2. Several ex-
periments which were used to validate both the system and
the general approach are described in Section 3. Related
work is presented in Section 4, future work in Section 5 and
our conclusions in Section 6.

2. ARCHITECTURE AND IMPLEMENTA-
TION

Vigilant is a two-stage system. First, we generate a classi-
fier, which is a piece of code that can identify faults. Second,
the classifier is applied to data from live virtual objects to
determine their current state.

In particular, we first collect data from a variety of virtual
machines under various loads. This data is then fed to a
machine learning process, which outputs the classifier. The
classifier is a decision routine that can label each observa-
tion, and do so in a manner that is generally consistent with
its training data. In the second stage, the system is running
in production, and the observations are collected as before.
But this time, each observation is fed through the classifier
and a label is predicted. If the label matches an actionable
condition (such as an imminent system failure), the system
can be configured to take the appropriate action. This pro-
cess corresponds to a discipline of machine learning known
as “supervised learning”. The supervision comes in the form
of the labels that are attached to the initial observations.

In our case, there are two possible labels: normal and faulty.
In particular, the fault we focus on is extremely high CPU
utilization in kernel space. This may be the result of either
a direct programming error leading to an infinite loop, but
also of more subtle scenarios. For example, a run queue
being constantly re-filled by its service thread, or a failed

1For “virtual guest inspection, learning, and control”.

piece of hardware continuously generating interrupts.

To inject this kind of fault, we wrote a minimal Linux ker-
nel module. As soon as it is loaded, it enters an infinite
loop. Loading of the module was timed to be at the begin-
ning of each respective experiment. In Linux, this kind of
bug does not obliterate the system’s vital signs. The system
will still respond to network pings, and continue to provide
network functions like serving web pages. However, the sys-
tem is extremely slow to respond to interactive input, and
its throughput is greatly diminished. This behavior makes
such a bug interesting to detect. As a specific example, mon-
itors that simply try to retrieve web pages as a sign for the
system’s health will be ineffective in this case.

Vigilant monitors virtual machines running on top of the
Xen [1] virtual machine monitor. For out-of-band monitor-
ing we used the xenmon [7,9] utility. xenmon collects informa-
tion about various events, mostly related to the hypervisor
scheduler. Specifically, it maintains counters for the follow-
ing types of information:

Execution count: The number of times a guest vir-
tual machine was scheduled to run.

CPU usage: Utilization of CPU by the guest virtual
machine, once it is scheduled.

Time waiting: Time spent in the “runnable” state.

Time blocked: Time spent waiting for an event (such
as completion of I/O, or sleep).

Time allocated: Amount of running time allocated
to the guest virtual machine by the scheduler.

I/O count: Xen uses “page-flipping” for I/O, a tech-
nique in which rather than copy data to or from the
I/O partition (dom0) to or from the virtual machines,
the pages holding the data are“flipped”between them.
The I/O count counts the number of page exchanges
between dom0 and the virtual machine.

We can see some of these are approximate counts only (for
example, the number of page exchanges is a rather crude
estimate of I/O traffic). This is the downside of out-of-
band monitoring. But below we demonstrate how even this
inaccurate data is sufficient for guest health monitoring.

The classifier chosen for the task was a decision tree. In
essence, this is a nested conditional statement, where each
test is a threshold test on a particular attribute (see Fig-
ure 1). For example, the root node may test the CPU uti-
lization against a threshold value, and its two children corre-
spond to the outcome of the test. Recursively, each sub-tree
corresponds to a refined subset of the data. Leaves may oc-
cur at any level (i.e., the tree is not necessarily balanced),
and are used to label an example. In our setting, a leaf may
be labeled either “normal” or “faulty”. Training the classifier
entails determining, from data, the decision tree’s structure,
as well as the tested attribute and threshold value for each
decision node. For further information about decision trees
and their learning we refer the interested reader to Mitchell’s
“Machine Learning” [13].
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Figure 1: Example of a decision tree.

Once a decision tree is trained, it can be used to classify
new, unseen examples. The new observation is tested for the
condition in the root node, and depending on the outcome of
the test, one of the subtrees is selected. When a leaf node is
reached, the label of the leaf is output as this observation’s
predicted class. In terms of implementation, the procedure is
very efficient and easy to code directly from the description
of the tree.

It is common practice to prune the tree by recursively remov-
ing leaves. The main justification is statistical — a tree that
is too tall is likely to model the training data well, but not
likely to be good at classifying unseen examples. Pruning
is usually implemented as part of the training process. For
example, an internal node may have two child nodes. Sup-
pose one child has label “A” and covers 99% of the examples
corresponding to th internal node. The other has label “B”
and covers 1%. A pruning step may eliminate both leaves,
and turn the internal node into a leaf with the unconditional
label “A”.

Our tree was trained using the standard MATLAB library
routine. It was then converted to small utility written in
C which runs in the dom0 service virtual machine in real
time. The raw readings from xenmon are noisy. That is, they
might have high variance between two samples, or exhibit
occasional spikes and dips. We therefore smooth them by
averaging over a moving window of five seconds. In addition,
the first five seconds in each experiment were thrown away.
To further eliminate false positives, we implemented a“three
strike” policy on top of the decision tree. Specifically, the
decision tree has to emit three consecutive “faulty” labels
before the combined classifier output “faulty”. Otherwise,
the label “normal” is output.

A decision tree is only one of many possible classifiers. In
this space, it has several advantages. First, simplicity in
training. Second, the generated tree is easy to interpret
by humans. Third, the trained tree is easy to implement
and runs efficiently. But it also has problems. In terms of
classification power, a decision tree is generally considered
as a crude precursor to today’s more modern tools (such
as support vector machines [6]). Our experience is that for
this kind of data, a decision tree is still powerful enough.
Therefore we chose to stick with it and enjoy its benefits.

3. EXPERIMENTS
We have experimented with several approaches to the prob-
lem of out-of-band detection. In one early experiment, we
deployed several virtual Linux instances under the QEMU
emulator [2]. Each of them ran a different type of workload
(web service, mail service, etc.), and the workloads were
timed to begin so as to vary the overall load on the host
system. We collected metrics from within the systems using
sar(1). We were able to classify, using a simple decision
tree, the case where the workloads from different machines
strain the host machine’s resources — as opposed to the case
where only one of the virtual machines is under load. We
omit the details of that experiment for brevity, but mention
it to show that our approach is applicable in a diversity of
settings.

To demonstrate the effectiveness of our approach on a full-
fledged virtualized system, we built a test-bench based on
Xen. We used a mixture of physical hosts with CPU speeds
ranging from 1.4 to 3 Ghz, and memory sizes from 256MB
to 2GB. The hypervisors used were Xen versions 3.0.3 and
3.1.0, using para-virtualization and full virtualization, re-
spectively. The guests were running primarily SUSE Linux,
as well as proprietary operating systems.

To exert normal workloads, we used the following tools:

iperf: A TCP bandwidth measurement tool [18], which
was run in client mode (the server was not monitored).

iozone:: A filesystem benchmark tool [14], configured
for the write/rewrite test with file sizes that exceed
physical memory.

libMicro: A micro-benchmark library [17], configured
to run the “memset” and “forkbomb” tests, which con-
sume large amounts of memory and processes, respec-
tively.

WebSphere: IBM’s Application Server, running a
benchmark application which simulates a stock trad-
ing platform. An unmonitored DB2 server was used
on the back end.

Apache: Web-server workload, generated from an un-
monitored client running a benchmark tool fetching
static pages at high concurrency levels.

idle: Idle workload.

The workload is exerted on a particular guest virtual ma-
chine. In about half of the runs, the guest was the only one
on its host. In the others, another (either idle or busy) guest
was running on the same host.

Each experiment consisted of the following steps:

1. Starting up a guest virtual machine (and potentially
starting up any sibling virtual machines).

2. Starting xenmon, configured to log all readings about
the domain.



3. Exerting the load in question by either starting the
benchmark program, starting a benchmark client, or
loading the kernel module, as appropriate.

4. Collecting data for about two minutes.

By default, xenmon generates readings at 1Hz. This resulted
in about 120 readings per experiment. Overall, 106 exper-
iments were conducted, composed of 19 hung systems and
87 normal systems.

To make best use of the available data, we created an en-
semble of 50 different trees, each one defined by a random
partition of the data. The data was randomly divided into
“train” and “test” sets. Given a partition into “train” and
“test”, a specific tree was created as follows.

Each decision tree was created using only the training set,
using the standard MATLAB routine as explained above.
Once the tree was grown, each example in the training set
was classified by the tree. We repeated the process for each
level of pruning, and choose the best level (i.e., the one which
yields the highest accuracy on the training set). The tree
is then fixed at its optimal pruning level. After the tree is
fixed, its performance is measured, this time by classifying
(testing) the test set.

Given the full ensemble of 50 trees, we iterated over the sam-
ples. For each one, we recorded the fraction of trees which
classified it as normal. This is a number in the range [0, 1],
referred to as the “prediction value”, where values toward
zero indicate that more trees classify it as faulty, and the
converse for values near one.

Next, we implement an aggregated classifier. It uses the pre-
diction value for each example as above. The prediction is
“normal” if and only if the value is above a given threshold.
We can now range over the threshold value to get a family
of classifiers. A low value will result in many (or all) ex-
amples being classified as normal. This translates to many
false positives and a high hit rate on the positive examples.
Conversely, a high value will classify very few examples as
normal, entailing a low false positive rate and a low hit rate.
Figure 2 shows, for each possible threshold level, the hit
rate versus the false positive rate. This plot is known as the
ROC (“Receiver operating characteristic”) curve [6]2. The
area under the curve is widely considered to be an indica-
tion of a classifier’s accuracy. For our ensemble classifier, the
ares is 0.94 (out of a maximum of 1), giving a very accurate
classifier.

Before (or during) deployment, a particular threshold value
has to be chosen. The requirements of the particular setting
will determine this value. The ROC curve will help in es-
timation of the expected accuracy. For example, if system
uptime is paramount, even at the cost of burned cycles, high
values should be chosen. This will increase the hit rate, at
the cost of possible false negatives. Conversely, other con-
straints may lower the chosen threshold.

2ROC curves have a long and varied history, dating back
to the attack on Pearl Harbor. See http://en.wikipedia.
org/wiki/Receiver_operating_characteristic for more
information on ROC curves.
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Figure 2: ROC curve for an ensemble of hang de-
tection decision trees.

The lowest threshold value for which there are no false posi-
tives is 0.434. If we look at the individual predictions at this
value, we find 14 false negatives (normal systems classified
as faulty). A closer examination reveals that four of them
were running the“forkbomb”workload, which places consid-
erable stress on the system, and the other were running the
“memset” workload, which is also a major resource drain.
Additionally (and probably less importantly), all were run
on multiple-guest systems. Because of the nature of the
workloads, we feel flagging them as faulty is still acceptable
behavior of the classifier, as the virtual guests would need
at least some sort of administrative inspection.

We now give and discuss an excerpt of the final Vigilant de-
cision tree used to detect kernel hangs in virtual machines
(Figure 3). First, we check whether blockedTot is smaller
than some (empirically determined as part of the training
process) amount. blockedTot is the amount of time the
domain spent blocked (sleeping). Intuitively, if the domain
spent a lot of time blocked, then it must have been waiting
for external resources which it was using to do useful work.
Therefore it is probably not hung. Next we check whether
the amount of time the domain waited for the CPU (i.e.,
was runnable but did not run) in the last execution period
is bigger than some (empirically determined as part of the
training process) amount. Again, intuitively, if the domain
is “almost never” waiting for any external events and is “al-
ways” ready to run, then it is probably hung. We continue
in the same manner down the tree, refining the criteria for
“ok” or “hung” in each step.

4. RELATED WORK
Machine learning has been applied to problem determina-
tion for complex systems in avionics and energy production
and generation. For computer systems machine learning has
been applied primarily in the domains of security and perfor-
mance management. Service management products that aid



Figure 3: Part of the Vigilant decision tree.

in problem determination, such as IBM’s Tivoli [11] or HP’s
Business Technology Optimization software [10], largely rely
on expert systems derived from human input, unlike Vigilant
which applies machine learning to computer system problem
determination.

Another approach to problem determination, Multivariate
State Estimation Technique (MSET), was developed in the
early 1990s for proactive detection of online sensor and signal
anomalies in space shuttle telemetry data and nuclear power
plants. MSET was used by Gross et al. to detect the onset
of software aging in commercial computer systems [8] and by
Cassidy et al. to identify early signs of shared memory pool
latch contention [4]. Similarly to Vigilant, machine learning
was used for the detection component of problem determina-
tion. Unlike Vigilant, these works were aimed at predicting
future critical events thus allowing operational staff to per-
form actions to decrease or avoid unplanned outage, whereas
Vigilant is used to identify existing but hard-to-detect kernel
hangs.

In the context of the Recovery Oriented Computing (ROC)
project, Chen et al. evaluated automated problem deter-
mination and the use of data mining for faulty component
identification [5] and Brown et al. used statistical model-
ing to compute component dependencies to find problem
sources [3]. In both of these works the necessary data is
provided by in-band rather than out-band monitoring and
machine learning is only employed for problem isolation.

Virtualization and machine learning were identified by Kephart
et al. as key components of Autonomic Computing [12], but
they were not linked or integrated. Vigilant combines vir-

tualization (used to monitor virtual machines out-of-band)
with machine learning (used to analyze the monitoring re-
sults). The importance of virtualization as a framework for
software rejuvenation was explored by Silva et al. [16]. Their
work described the detection of software aging in a virtual-
ized environment, and a method for recovery with (usually)
no downtime, VM-Rejuv, that employs three virtual ma-
chines: active VM, standby VM, and a monitoring VM.
Like Vigilant, it operates on VM-level granularity. Unlike
Vigilant, VM-Rejuv was aimed at detecting future resource
constraints. VM-Rejuv also included an automated recovery
scheme, whereas Vigilant is currently limited in its ability
to recover from detected faults.

5. FUTURE WORK
This paper has described the use of machine learning to
detect that a virtual object has failed, based on externally-
visible indicators. This work has focused on detecting a
limited set of faults, and should be expanded to being able
to detect a much larger class of faults.

This kind of research has been chronically hobbled by the
limited availability of labeled data that can be used to train
the classifier to detect normal and abnormal operation. One
interesting approach to overcoming this lack of data is to
automatically detect that a virtual object has failed (essen-
tially, labeling the data) using the hypervisor’s indication
that the object has crashed, and then performing real-time
machine learning on the data obtained prior to the failure
to learn how to detect or predict the failure.

It also seems important to enhance the problem detection
capability with problem prediction by detecting that the vir-
tual object’s parameters are wandering toward a portion of
the state space associated with a problem, and perhaps tak-
ing proactive measures such as notifying the user that a fail-
ure might be imminent, checkpointing the virtual machine
in anticipation of the failure, or similar measures. A natural
extension is to determine that a virtual machine is having
performance problems, and then either adjust resource al-
locations or outright migrate the problematic virtual object
to a physical host that has more resources available.

6. CONCLUSIONS
We have described the Vigilant system, a novel way of mon-
itoring virtual machines for problems. We have shown that
our system, which takes an out-of-band approach and knows
nothing about the workload running in the virtual machine
being monitored, can detect a hard-to-detect failure such
as a kernel hang which an in-band agent is likely to fail
to detect. Using Vigilant we demonstrate that out-of-band
monitoring using virtualization and machine learning can
accurately identify faults in the guest OS, while avoiding
the many pitfalls associated with in-band monitoring.
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