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ABSTRACT
Virtual machines are of very little use if they cannot access
the underlying physical network. Virtualizing the network
has traditionally been considered a challenge best met by
such network-centric measures as VLANs, implemented by
switches. We begin by arguing that network virtualization
is best done by hypervisors, not switches. We then show
that modern hypervisors do a poor job in virtualizing the
network, leaking details of the physical network into virtual
machines. For example, IP addresses used across the host’s
physical network, are exposed to guest virtual machines.
We then propose a method for plugging the network-related
leaks by ensuring that the virtual network traffic is encap-
sulated inside a host envelope prior to transmission across
the underlying physical network. In order to overcome the
performance hit related to traffic encapsulation, we analyze
the unique case of virtual machine traffic encapsulation, ex-
ploring the problems arising from dual networking stacks —
the guest’s and the host’s. Using a number of simple op-
timizations, we show how an unmodified guest under the
KVM hypervisor can reach throughput of 5.5Gbps for TCP
and 6.6Gbps for UDP for encapsulated traffic, compared to
280Mbps and 510Mbps respectively when using the default
guest and host networking stacks.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.4
[Operating Systems]: Communications Management—Net-
work communication

Keywords
Network abstraction, Network virtualization, I/O virtual-
ization

1. INTRODUCTION
Modern hypervisors are expected to support advanced ad-

ministrative actions such as Checkpoint/Restart [24] where
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a guest is paused for a potentially very long period of time,
VM Cloning [14] where a guest is duplicated, and Live Mi-
gration [5, 20], where a virtual machine is transferred from
a source hosting system to a destination hosting system. In
order to support such advanced functions, the hypervisor
must ensure that the guest application and operating sys-
tem are able to continue running unchanged even when the
compute, network and storage environments in which the
guest is running change drastically. This can be achieved
by completely abstracting the environment offered to guests
and ensuring that guests become unaware of any character-
istic of the hosting platform. Such an abstraction was not
required by older generations of hypervisors.

Hypervisors, first developed in the mid-60s as part of the
IBM 360/67 mainframe computer, were initially designed to
create a complete virtual replica of the hosting system [6].
Guest virtual machines were offered a fully protected and
isolated copy of the underlying physical host hardware. The
hypervisor ensured that the guest operating system and ap-
plications would behave exactly as they would on the origi-
nal hardware [16, 17]. Since the hypervisors traditional role
was to serve uninterrupted guests on a given hardware plat-
form, there was no need to completely abstract away the
platform environment from the guest. The need for a com-
plete abstraction layer emerged later with the introduction
of more advanced administrative actions.

A hypervisor offering networking services to its guests is
required to use optionally unique resources such as names
and addresses. Such resources are often local and relate to
the hosting platform or to the network system serving the
hypervisor. When a hypervisor exposes such direct local ref-
erences to the guest, it allows the guest operating system and
applications to learn and use such direct references to the
hypervisor environment. Exposing the guest to local net-
work environment resource references such as IP addresses
local to the host environment, is a leak in the hypervisor
abstraction layer.

Leaks in the hypervisor abstraction layer may tamper
with a future decision to migrate a guest to a remote hy-
pervisor, to clone a guest or to restart a guest at a later
time where/when direct references previously learned by the
guest may either be unavailable or already allocated to a dif-
ferent guest. As an example, consider a guest learning a local
IP address. The guest cannot be cloned, cannot be migrated
to a remote host, not served with the same IP subnet, and
cannot be safely restarted after a long pause, unknowing if
the IP address was not allocated to a different entity.

In order for a hypervisor to enable Live Migration, Check-



point/Restart and VM Cloning, it should construct a leak-
free abstraction layer in which guests: (1) are offered an
isolated virtual environment on top of the shared physical
environment; (2) remain independent of physical charac-
teristics; And (3) remain independent of physical location.
Network services, offered by hypervisors to virtual machines
should follow the same principle requirements. The hyper-
visor should ensure that the guests (1) are offered isolated
virtual network environments on top of the shared physical
network environment serving the hosting systems; (2) re-
main independent of physical network characteristics such
as topology, protocols, address spaces, etc.; And (3) remain
independent of physical location (e.g., a network segment)
that serves the hypervisor.

This paper, as its name suggests, is focused on plug-
ging the abstraction layer leaks caused by hypervisors of-
fering virtual networking services to guests. Other, non-
networking related examples to abstraction layer leaks ex-
ists, but are not discussed in this paper (See for example,
constrains related to migrating a guest between an AMD and
an Intel platforms [27]). The contributions of this paper are:

• We analyze the network virtualization task from the
perspective of a hypervisor abstraction challenge. We
highlight the need for hypervisors that offer complete
network virtualization and identify leaks caused by
current common virtual networking approaches.

• We suggest a virtual networking framework for plug-
ging network related leaks in which hypervisors encap-
sulate guest virtual machine traffic using an external
envelope.

• We identify that in order to advance towards wire
speed performance, given the new framework, the guest
network stack and the host network stack need to be
optimized and cooperate. Such a Dual Stack approach
implementing the suggested virtual networking service
is discussed. The division of work between the two
stacks and the design of an efficient solution to the
Dual Stack problem is analyzed.

• We present first performance results of our Dual Stack
solution showing two virtual machines communicating
at TCP throughput of 5.5Gbps (6.6Gbps for UDP).
These results offer a 20 times (12 times for UDP) im-
provement compared to the default host configuration.

2. LEAKS IN EXISTING VIRTUAL NETWORK
MODELS

Most current hypervisors offer incomplete network ab-
straction, leading to abstraction layer leaks. (See for exam-
ple: VMware [22], KVM [12], Xen [3], Hyper-V [15]). One
common approach when offering network services to guests
is to allow the guest a direct access either to a dedicated
physical network adapter of the hosting platform or to one
or more queue pairs of a shared multi-queue network adapter
(See for example [29]). An apparent advantage of the direct
access approach is reducing the system overhead and im-
proving the performance of the network services offered to
guests [28]. Yet, in order for a guest to perform direct ac-
cess, the hypervisor exposes the guest to direct references
of unique platform hardware resources, which tampers with
potential future guest migration, cloning or restart.

Hypervisors that refrain from enabling guest direct access
to the platform hardware resources may either emulate a
network adapter in software or use a paravirtualized mode
in which a frontend driver added to the guest is working
against a hypervisor backend [18]. Regardless of the mode
used, one common approach is for the backend or emulated
adapter, to serve guest packets using a local software bridge
or router that optionally connects to the physical network.
Using a software bridge/router connecting the guest to the
physical network offers the advantage of a flat service in
which virtual machines and physical machines act the same
and are offered the same network services. Sadly, this is
also a major disadvantage of this approach as the physical
network is ill designed to support Live Migration, Check-
point/Restart or VM Cloning. A guest connected to a local
network via its hypervisor is exposed to network addresses
with spatial meaning that may also be time-bounded. Con-
sider as an example DHCP, where clients lease IP addresses
for a given time interval based on locality. Connecting the
guest to the physical network via a bridge/router therefore
introduces a leak in the hypervisor abstraction layer.

Current hypervisors tend to consider this incomplete ab-
straction as a network problem rather then a problem of the
hypervisor. One suggested solution for migrating a guest,
exposed to a network reference with local meaning, includes
either restricting the migration to a subset of the hypervi-
sors that are connected to the same network segment, there-
fore allowing the guest to continue using its acquired local
references [1, 2]. Another suggested solution includes syn-
chronizing the guest migration with a timely reorganization
of the network to ensure that the chosen destination hyper-
visor is allowed access to the same network segment [8]. In
this paper, the network virtualization problem is analyzed
and considered to be a task of the hypervisor. It is sug-
gested that hypervisors should offer complete abstraction
and avoid exposing guests to network related leaks such as
network addresses with local meaning.

Another common approach hypervisors take to address
network virtualization is to utilize a Network Address Trans-
lation (NAT) function. Using NAT, a virtual machine may
use a fixed virtual address. Packets traveling to/from the
virtual machine are converted to include the external phys-
ical address of the hosting platform [21]. Note however that
received packets continue to include references of peer phys-
ical addresses, causing a leak in the hypervisor abstraction
layer. Such leak may be evident at the guest application,
either running inside the NATed guest or in other nodes
referring to this guest over the network. As an example,
consider a guest acting as an application client and served
with NAT. The packets transmitted by the guest are con-
verted by the NAT function such that they would include
the external physical address of the hosting platform. The
guest may communicate with other nodes of the same ap-
plication acting as the application servers. The application
servers therefore receive packets that include references to
the external physical address of the guest hosting platform.
Thus tampering with future migration of the client guest
and other administrative actions.

3. A NEW FRAMEWORK FOR NETWORK
VIRTUALIZATION

Unlike traditional approaches that seek to solve the net-



work challenge outside of the hypervisor, here we consider
the hypervisor abstraction layer as the right place for net-
work virtualization. Under the suggested framework, hyper-
visors would plug networking related leaks, by introducing
traffic encapsulation as a hypervisor service. Using traffic
encapsulation, the hypervisor can hide all references of local
resources from the guest. Thus the use of traffic encapsula-
tion enables hypervisors to establish a leak free abstraction
layer when serving guests. The suggested hypervisor ser-
vice would encapsulate all guest traffic traveling on external
network links.

Frames traveling on external links would therefore include
an internal envelope which is the outcome of the guest net-
work stack, as well as an external envelope, added by the
hypervisor. The external envelope may include protocol spe-
cific fields as well as host specific protocol headers, such as IP
and MAC headers to allow packet forwarding between hosts.
This means that when guest frames leave the guest network
stack and enter the hypervisor, the hypervisor should add
an external envelope, prior to sending the frames. Since the
external envelope includes standard protocol headers, the
hypervisor can be expected to use a hypervisor (or host)
network stack.

We suggest considering the guest network stack and the
hypervisor network stack, not as independent complete net-
work stacks, but rather as two fragments of a complete Dual
Stack solution. The suggested Dual Stack approach is help-
ful in optimizing the service offered to guests and reducing
unnecessary overheads. In order to reach acceptable perfor-
mance, the two fragments, the guest network stack and the
hypervisor network stack, need to be optimized and cooper-
ate such that the work traditionally performed by a single
complete stack would now efficiently be divided between the
two stack fragments.

One notable constraint on the suggested Dual Stack ap-
proach, is that in many cases, the virtual machine is ex-
pected to be unaware of being virtualized, limiting the opti-
mizations that can be introduced at the guest network stack
fragment. The hypervisor network stack fragment can be
more freely optimized.

4. RELATED WORK
When a hypervisor serves layer 2 frames coming to/from

virtual machines by encapsulating them and sending them
across the host network, the hypervisor is said to create an
Overlay Network in which a virtual network overlay connect-
ing virtual machines is created on top of the host physical
network (the underlay).

Several research groups have investigated the problem area
of constructing an overlay network to serve as a virtual
network between virtual machines. Project VIOLIN, Vir-
tual Internetworking on OverLay Infrastructure (see [9, 19])
connects virtual machines physically deployed on separate
subnets to a virtual Local Area Network. VIOLIN mim-
ics the structure of a standard LAN with physical hosts
and switches connected by physical links to serve Virtual
machines. The physical links are emulated by using UDP
tunneling. The LAN physical switches are emulated by us-
ing a single centralized virtual switch service. A UDP tunnel
therefore connects each virtual interface of a virtual machine
to the respective virtual switch serving the virtual LAN. The
virtual interface nodes register to a virtual switch which
maintains a centralized routing table and forwards traffic

between the nodes. A star topology is used. The use of a
centralized virtual switch forces co-located nodes to commu-
nicate via a possibly distant virtual switch.

The VNET project uses a similar approach [23]. Virtual
Machines are served using VMWare’s host-only connection
transferring the virtual machine frames to the host. A host
service then encapsulates the frames using TCP/SSL and
forwards them to a remote virtual switch. VENT extends
VIOLIN by allowing the virtual switch to take heuristic rout-
ing decisions and ask nodes to establish adaptive direct con-
nections. VNET therefore improves the solution efficiency,
but remains dependent upon a centralized switch.

VANs, suggested by [7], offers a distributed alternative.
Unlike VIOLIN and VNET, a centralized virtual switch is
not used. Instead, a distributed virtual switch is imple-
mented between hosts. The VAN host daemon uses a host
UDP port to communicate with peering daemons located on
other hosts. Such communication includes both a data plane
and a control plane. The control plane includes auto discov-
ery and dynamic routing between peering hosting platforms
to reduce the need for complex management. Under KVM,
VANs were implemented by combining a TAP device [13]
with a centralized traffic encapsulation host service. A TAP
device simulates a virtual Ethernet device attached to the
host. The use of TAP devices allows the host administra-
tor to freely serve the QEMU guest with different network-
ing services available at the host. VANs suggested that the
administrator would connect the TAP device to a central-
ized VAN daemon. In this way, guest frames forwarded by
QEMU via the TAP device would be encapsulated by the
centralized VAN daemon before being transmitted across the
host network encapsulated within a UDP packet. Similarly,
frames received via the host network and destined to guests
are decapsulated by the host VAN daemon and transfered
via the virtual Ethernet interface to QEMU where they are
forwarded to the guest.

The first design of VANs, like VIOLIN and VNET is not
geared to wire speed performance. All three solutions make
use of host network services and try to solve the network vir-
tualization challenge outside of the hypervisor. Solving the
challenge as part of a host service as suggested by VIOLIN,
VNET and VANs results in high latency, low performance
service to guests. VIOLIN and VNET further make use of a
centralized virtual switch resulting in inefficient routes and
interfering with the resulting performance offered to virtual
machines. Here, we target offering virtual machines with
wire speed performance. We therefore assume the VAN dis-
tributed switching approach and replace the hypervisor data
plane with a new framework designing virtual networking
into the hypervisor abstraction layer.

5. TRAFFIC ENCAPSULATION IN KVM

5.1 The Existing Network Path
Under the KVM Hypervisor [12], guests are implemented

in the framework of QEMU user space processes and may be
offered different host networking services. See figure 1. In
order for the QEMU process to utilize the host networking
services it is required to communicate layer 2 frames between
the guest and the host. QEMU commonly communicates
layer 2 frames to/from the host using TAP devices. Using
the TAP device, the administrator may connect the guest
to the host bridging or routing services and offer the guest
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Figure 1: Network services via a TAP Device as used today: A guest application sends and receives traffic
via a guest socket interface. The Guest network stack uses a network driver, either a standard one or a
paravirtualized frontend driver, to communicate with a QEMU emulated adapter or a backend. The QEMU
then uses a TAP device to transfer the traffic to/from the host. The host administrator can connect the
virtual network interface of the TAP device to the appropriate host network services.

services such as NAT, DHCP, DNS, etc.
In the case of a fully virtualized mode, the guest operating

system uses one of several Ethernet drivers supported by a
respective set of emulated network adapters in QEMU. The
emulated drivers behave just like their hardware counter-
parts and expose I/O channels and memory mapped regis-
ters which are used by the guest operating system’s match-
ing Ethernet drivers. In the case of a paravirtualized mode,
the guest operating system uses a frontend network driver
that in turn uses a pair of message rings (see virtio [18])
between the guest and QEMU. The frontend is supported
by a backend located in QEMU and connected to the other
side of the virtio message rings. Recently, it was suggested
to move the QEMU virtio backend functionality to kernel
space [26].

In both fully virtualized and paravirtualized modes, layer
2 frames transmitted by the guest operating system are
transfered to QEMU. When QEMU is configured to use a
TAP device, it writes the layer 2 frames to the TAP de-
vice. In cases where the host bridge is configured to serve
the virtual Ethernet interface of the respective QEMU TAP
device, the host bridge would then receive the frames for
further processing. The host bridge performs standard layer
2 bridging and may consequently send the frames out to a
different bridge interface such as another QEMU instance
connected via a TAP device or an external interface con-
nected to the local network.

Frames are received from the host bridge by QEMU using
a select() and read() sequence. Once read, the frames
are delivered to the guest operating system either using the
backend-to-frontend paravirtualized path or via the emu-
lated Ethernet device and its respective frontend driver us-

ing the fully virtualized path.

5.2 A Dual Stack Under KVM
The current research explores a different approach in which

encapsulation is performed distributively by each QEMU in-
stance rather than by a centralized host service. See figure 2.
The research targets a low latency, high performance net-
working service for serving guests and to minimize host and
guest networking overheads while plugging the hypervisor
networking related leaks. Here, layer 2 frames transmitted
by the guest operating system via the frontend-backend path
or via an emulated network adapter are then encapsulated
by the hypervisor and sent out using the standard network
stack of the host. Packets received using the host network
stack are decapsulated by the hypervisor and forwarded to
the guest. Adding encapsulation/decapsulation abilities to
QEMU offers an opportunity to improve the performance
of encapsulation-based virtual networking services. Packets
transmitted by the guest application go through the guest
network stack first, then passed to the QEMU hypervisor
code which sends them via the host network stack. If and
when the QEMU virtio backend moves to kernel space, the
encapsulation will follow suit, as doing encapsulation at the
backend prevents performance-degrading kernel-user mode
switches. This paper seeks to explore the behavior of the
dual stack path between guest applications and the host
network.

6. TOWARDS MAXIMAL PERFORMANCE
When two network stacks – one at the host and the other

at the guest – are involved in the transmission and reception
of network packets, it is extremely important to ascertain
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that both stacks are tuned to work together to achieve max-
imal performance. In this section we discuss several aspects
immensely affecting performance.

6.1 Large Packets
Applications using standard socket interface may send

packets up to 64K. A typical size of an Ethernet MTU
is 1500 bytes (although some networks support 9000-byte
jumbo frames, they are not ubiquitous). Hence, the operat-
ing system normally splits outgoing packets into MTU-sized
frames, and transmits each frame separately. The decision
where to split the packet into MTU sized frames affects the
performance of network stacks. Traditionally, packets are
segmented at the transport or network layer which may re-
sult in multiple frames traversing the network stack per each
sent packet. In order to reduce per frame network stack
overheads, modern network stacks postpone segmentation
of the packet to later in the network stack. Similarly, mod-
ern network stacks seek to reassemble IP packets early at
the network stack. The benefit is that only one (big) packet
traverses the networking stack, instead of being split in soft-
ware into many MTU-sized packets each traversing the stack
as a separate entity.

Modern NICs have a feature called segmentation offload-
ing. Such NICs can receive a packet of up to 64 KB in size
from the OS, segment it into MTU-sized frames, add the nec-
essary headers and transmit each frame. Using such modern
NICs, when an application asks the OS to send a packet, the
packet traverses the stack as a whole unit and only gets seg-
mented before transmitting it on the wire. When segmen-
tation offloading is not used, modern network stacks may
use a process called generic segmentation offloading (GSO)
where segmentation is done in software late in the network

stack.
In virtualized environments, there is a higher per-frame

processing cost compared to non virtualized environments
that is the result of:

• A VM exit caused by the guest OS transmitting the
packet over the virtual NIC. This state transition car-
ries much overhead in the form of time during which
neither the guest nor the host can execute useful work.

• VM exit handling. This is the code running on the
host, analyzing the exit reason and finding the right
handler.

• Packet transmission on the host, passing through the
host stack.

We enabled segmentation offloading at the virtual NIC
exposed to the guest to help reduce not only the guest net-
work stack overhead, but also the number of VM exits and
the host network stack overhead. To this end, in the case of
a dual stack, the packet route from the guest to the wire is
as follows:

1. Guest application sends packets larger than the MTU
via the guest socket.

2. Guest Network Stack avoids segmenting the packet
since the virtual NIC supports segmentation offload-
ing.

3. Guest virtual NIC transfers the packet as a whole to
the host.

4. Host receives the whole, unsegmented packet.



5. Host adds the required encapsulation.

6. Host hands the unsegmented and encapsulated packet
to the host network stack.

7. Ideally, Host network stack avoids segmenting the packet
until it reaches the physical NIC.

8. Physical NIC does the segmentation in hardware and
sends the resultant frames on the wire.

A complementary feature, used on the receive path, is
called large receive offload (LRO). When used with a phys-
ical NIC, it allows the NIC or the NIC driver to aggregate
several incoming packets and pass them to the stack for han-
dling as a single entity. Supporting LRO in the virtual NIC
allows a guest to receive a packet of up to 64 KB from the
host without the host needing to segment and the guest hav-
ing to reassemble it.

6.2 TCP and UDP Checksums
As a prerequisite for segmentation offloading, a NIC must

be able to compute TCP and/or UDP checksums. As it cre-
ates frames for transmission by segmenting the original big
packet, it has to add network-layer (IP) and transport-layer
(TCP or UDP) headers, which contain a checksum field [4].
Since the virtual NIC transmits frames from the guest to
the host running the guest, there is no reason to compute
the checksum in the guest and check it in the host. There-
fore, we modified KVM to signal the guest driver to fill in
a dummy checksum and indicate to the host that checksum
of this frame should not be verified. Since the virtual NIC
is implemented in software, refraining from computing and
verifying checksums saves precious CPU cycles.

6.3 CPU Affinity and Pinning
QEMU, KVM’s user-space component, creates a thread

called CPU thread for each guest virtual CPU, and one ad-
ditional thread called IO thread handling I/O on behalf of
the guest [11]. Consider the case when the guest has only one
virtual CPU. In this case, QEMU will create two threads.
When the host has multiple CPU cores, the Linux process
scheduler has the freedom to schedule both threads to run
on the same core or on different cores. Moreover, it can
move the threads from core to core.

Given that the CPU and IO threads consume more than
a single core, scheduling them to run on a single core will
limit maximum performance. However, the Linux scheduler
was observed to do just that. Moreover, if the host has
more than 2 CPU cores, in an attempt to balance workload
among cores, the scheduler moves the CPU and IO threads
back and forth. This results in cache lines bouncing between
cores impeding performance. A performance prone solution
is to ensure that the scheduler assigns one fixed core to the
CPU thread and a second one to the IO thread. Since fix-
ing the Linux scheduler is out of the scope of this work, we
implemented a simple solution that works around both defi-
ciencies by pinning the CPU thread to one core and the IO
thread to a different core.

6.4 Flow Control
When using a Dual Stack, care must be taken to avoid

duplicating the end-to-end flow control mechanisms. Du-
plicated flow control introduces unnecessary overhead and
may have unwanted effects on the resulting performance.

For example when the client application uses a TCP ser-
vice and therefore activates a sliding window flow control,
using a second sliding window mechanism at the host stack,
duplicates the TCP sliding window mechanism which may
severely degrade TCP performance [25].

End-to-end flow control is the task of the OSI Transport
Layer and is not expected to be part of the OSI Data Link
Layer. Since guest applications running on a virtual machine
are not aware of the underlying host environment, guest ap-
plications use whatever end-to-end flow control mechanism
suitable for their purposes. At the same time the guest ex-
pects no end-to-end flow control to exist as part of its net-
work service. The lower host stack should therefore avoid
using an end-to-end flow control mechanism making native
UDP a prime candidate for the lower stack network service.

Unlike end-to-end flow control, the lower stack is expected
to engage in per link flow control. When two guests reside
at two different hosting platforms connected via a network,
the guest sender packets are delivered by the sender host-
ing platform via the host network stack and from there via
the physical network links to the receiving hosting platform.
This network path is identical to the one used by host appli-
cations such that the same per link flow control is used across
the different logical and physical links. However when two
guests reside on the same hosting platform, the guest sender
packets are delivered by the host to the receiving guest via
the host network stack and via the host loopback device.
An advantage therefore arises in implementing a link flow
control across the loopback interface to ensure that the host
network stack would stop sending packets across the loop-
back interface when its receive path to the receiving guest
is full.

Note that in order to optimize the network service per-
formance offered to guests, care must be taken to allocate
sufficient buffering at the lower host stack to ensure that
packets are not lost during transient host conditions. High
CPU load on the host may temporarily reduce the number
of packets that the host is able to process. This translates
into traffic burstiness even when the sender guest sends out
traffic with a fixed rate. On top of that, the current virtio
implementation transmits packets in bursts. Thus even if
the receiver processing speed equals the sender packet pro-
ducing speed, the host buffers must accommodate the traffic
burstiness caused by CPU and implementation. Using in-
sufficient buffers, the traffic burstiness would cause sporadic
packet loss, not related to the end-to-end flow control used
by the guest sender.

A guest transmitting UDP packets (UDP in UDP encap-
sulation) encountering a sporadic packet loss would achieve
low throughput. Results would become significantly worse
for a guest sending TCP packets (TCP in UDP encapsula-
tion). TCP will detect the loss and reduce its transmission
speed aggressively. We enlarged the transmit and receive
UDP buffers in the host stack to the size of the data in flight,
which in the TCP case is the end-to-end bandwidth-delay
product, thereby reducing the effect of implementation and
CPU related burstiness.

7. PERFORMANCE RESULTS
To quantify the performance of the dual stack implemen-

tation under KVM, we started two virtual machines (A and
B) with one virtual CPU each on the same host. The host
is an Intel Core 2 Quad processor at 2.4GHz with 4GB of
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RAM. Network frames transmitted by VM A are encapsu-
lated by QEMU into UDP packets and transmitted via a
socket on the local host loopback interface to the QEMU
process running VM B, which then extracts the packet and
passes it to VM B. Loopback, as opposed to a physical NIC,
was chosen so as to inhibit the adverse performance effect
of managing a hardware device. In this section we show the
performance results for this setup, considering the optimiza-
tion opportunities observed in Section 6.

In the following benchmarks, throughput was measured
with NetPerf [10] and CPU utilization with TOP. The per-
formance baseline we compare our results to is when no op-
timizations are in place, i.e., when guest A sends MTU-sized
packets to guest B, no threads are pinned to particular CPUs
and the default UDP buffer sizes are used. This is marked
as “baseline” in the following figures. The first enhancement
we implement is large packets, as described in Section 6.1,
marked as “64k”. The benchmark was run with the -m 64k

option to Netperf. The next enhancement is CPU pinning
(see Section 6.3). In addition to using large packets VM
A’s I/O and CPU thread were pinned to cores 1 and 2 re-
spectively, while VM B’s I/O and CPU thread were pinned
to cores 3 and 4. This was done by using the taskset

command. The results are marked “64k + pinning”. Fi-
nally, after increasing UDP buffer sizes (as indicated in Sec-
tion 6.4) by writing the value 16777216 (16 Mbytes) to the
files /proc/sys/net/core/{r,w}mem_{max,default}, UDP
packets stop being lost on the host, the guest TCP stops
throttling its transmit rate, and we get results marked “64k
+ pinning + buffers”.

In Figures 3–6 we show benchmark results for throughput,
sender and receiver QEMU CPU utilization, and CPU uti-
lization as measured by the guests. CPU utilization is mea-
sured in percents of a single core, while throughput is mea-
sured in Mbps by the guest (i.e., this is the “data” through-
put; if we count the raw bytes transmitted on the loopback
interface including the encapsulation overhead, the figures
would be higher).

In Figure 3 we see that the TCP throughput doubles with
each new optimization, except the last – increased host UDP
buffers – which increases the throughput more than five-fold
to a value of 5.5Gbps. UDP throughput quadruples when
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Figure 4: CPU utilization of sender QEMU as mea-
sured by the host
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Figure 5: CPU utilization of receiver QEMU as mea-
sured by the host

64k packets are being used, and reaches 6.6Gbps with all
optimizations.

Figure 4 depicts sender QEMU CPU utilization as mea-
sured by the host. Both I/O and CPU QEMU threads are
shown. In all cases, the utilization will all optimizations is
higher than for the baseline. However, the maximum is 66%
of a core. The receiver QEMU CPU utilization, shown in
Figure 5, suggests that the bottleneck is on the receiver side.
With all optimizations in place, the receiver I/O thread’s
CPU utilization is 100% for both TCP and UDP.

Finally, in Figure 6 we show CPU utilization as measured
inside the guests. Interestingly, this time the sender is the
one that approaches 100% when all optimizations are in
place.

8. CONCLUSIONS
In this paper we identified abstraction layer leaks created

by hypervisors offering virtual networking services to guests.
We discussed the creation of an efficient Dual Stack solution
to achieve network encapsulation and to plug the abstrac-



 0

 20

 40

 60

 80

 100

Sender TCP Sender UDP Receiver TCP Receiver UDP

%
 C

P
U

 U
til

iz
at

io
n

baseline
64k

64k + pinning
64k + pinning + buffers

Figure 6: CPU utilization of sender and receiver as
measured by guests

tion layer leaks. Finally, we identified and fixed bottlenecks
in the performance of the suggested Dual Stack network vir-
tualization approach. We showed that using the new frame-
work, virtual machines can be served with throughputs ex-
ceeding 5.5Gbps.

9. ACKNOWLEDGMENTS
The research leading to these results is partially supported

by the European Community’s Seventh Framework Programme
([FP7/2001-2013]) under grant agreement number 215605

References
[1] Migration – KVM. http://www.linux-kvm.org/page/

Migration.

[2] Xen 3.0 Virtualization User Guide. http:

//www.linuxtopia.org/online_books/linux_

virtualization/xen_3.0_user_guide/index.html.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen
and the art of virtualization. In SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating sys-
tems principles, pages 164–177, New York, NY, USA,
2003. ACM.

[4] R. Braden, D. Borman, and C. Partridge. Computing
the Internet checksum. RFC 1071, Internet Engineering
Task Force, Sept. 1988.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migration
of virtual machines. In NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems De-
sign & Implementation, pages 273–286, Berkeley, CA,
USA, 2005. USENIX Association.

[6] R. J. Creasy. The origin of the VM/370 time-sharing
system. IBM IBM Journal of Research and Develop-
ment, 25(5):483–490, 1981.

[7] D. Hadas, S. Guenender, and B. Rochwerger. Vir-
tual Network Services For Federated Cloud Computing.
IBM Technical Report, H-0269, 2009.

[8] C. S. Inc. Network Considerations to Optimize Virtual
Desktop Deployment. http://www.cisco.com/en/US/

prod/collateral/switches/ps5718/ps4324/white_

paper_c11-531553.pdf, 2009.

[9] X. Jiang and D. Xu. VIOLIN: Virtual Internetwork-
ing on Overlay INfrastructure. In Proc. of the 2nd Intl.
Symp. on Parallel and Distributed Processing and Ap-
plications, pages 937–946, 2003.

[10] R. Jones, K. Choy, and D. Shield. Netperf. HP In-
formation Networks Division, Networking Performance
Team, http://www.netperf.org, 2001.

[11] J. Kiszka. Towards Linux as a Real-Time Hypervisor.
In Eleventh Real-Time Linux Workshop, Sept. 2009.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the linux virtual machine monitor.
In OLS ’07: The 2007 Ottawa Linux Symposium, pages
225–230, July 2007.

[13] M. Krasnyansky. Universal TUN/TAP device driver.
http://www.kernel.org/pub/linux/kernel/people/

marcelo/linux-2.4/Documentation/networking/

tuntap.txt, 1999.

[14] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell,
P. Patchin, S. M. Rumble, E. D. Lara, M. Brudno, and
M. Satyanarayanan. SnowFlock: rapid virtual machine
cloning for cloud computing. In EuroSys ’09: Proceed-
ings of the 4th ACM European conference on Computer
systems, pages 1–12, New York, NY, USA, 2009. ACM.

[15] R. Morimoto, M. Noel, O. Droubi, R. Mistry, and
C. Amaris. Windows Server 2008 Unleashed. Sams
Publishing, 2008.

[16] G. J. Popek and R. P. Goldberg. Formal requirements
for virtualizable third generation architectures. Com-
mun. ACM, 17(7):412–421, 1974.

[17] R. Rose. Survey of system virtualization techniques,
2004. http://hdl.handle.net/1957/9907.

[18] R. Russell. virtio: towards a de-facto standard for vir-
tual i/o devices. SIGOPS Oper. Syst. Rev., 42(5):95–
103, 2008.

[19] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. Virtual
Distributed Environments in a Shared Infrastructure.
IEEE Computer, 38:2005, 2005.

[20] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow,
M. S. Lam, and M. Rosenblum. Optimizing the migra-
tion of virtual computers. SIGOPS Oper. Syst. Rev.,
36(SI):377–390, 2002.

[21] P. Srisuresh and K. Egevang. Traditional IP Network
Address Translator (Traditional NAT). RFC 3022, In-
ternet Engineering Task Force, Jan. 2001.



[22] J. Sugerman, G. Venkitachalam, and B. Lim. Virtu-
alizing I/O Devices on VMware Workstation’s Hosted
Virtual Machine Monitor. In Proceedings of the Gen-
eral Track: 2002 USENIX Annual Technical Confer-
ence, pages 1–14, Berkeley, CA, USA, 2001. USENIX
Association.

[23] A. I. Sundararaj, A. Gupta, and P. A. Dinda. Dy-
namic Topology Adaptation of Virtual Networks of Vir-
tual Machines. In In Proceedings of the Seventh Work-
shop on Langauges, Compilers and Run-time Support
for Scalable Systems (LCR, 2004.

[24] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor.
Virtual machine time travel using continuous data pro-
tection and checkpointing. SIGOPS Oper. Syst. Rev.,
42(1):127–134, 2008.

[25] O. Titz. Why TCP over TCP is a bad idea,
2001. http://sites.inka.de/sites/bigred/devel/

tcp-tcp.html.

[26] M. S. Tsirkin. vhost: a kernel-level virtio server.
https://lists.linux-foundation.org/pipermail/

virtualization/2009-August/013525.html, 2009.

[27] VMware. VMware VMotion and CPU Compatibility.
http://www.vmware.com/resources/techresources/

1022, 2008.

[28] B. Yassour, M. Ben-Yehuda, and O. Wasserman. Direct
Device Assignment for Untrusted Fully-Virtualized Vir-
tual Machines. Technical report, IBM Research, 2008.

[29] E. Zhai, G. D. Cummings, and Y. Dong. Live Migra-
tion with Pass-through Device for Linux VM. In OLS
’08: The 2007 Ottawa Linux Symposium, pages 261–
267, 2007.


