The nom Profit-Maximizing Operating
System

Shmuel (Muli) Ben-Yehuda

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

The nom Profit-Maximizing Operating
System

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Shmuel (Muli) Ben-Yehuda

Submitted to the Senate
of the Technion — Israel Institute of Technology
Iyar 5775 Haifa May 2015

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

This research thesis was done under the supervision of Prof. Dan Tsafrir in the Computer

Science Department.

Some results in this thesis as well as results this thesis builds on have been published as articles
by the author and research collaborators in conferences and journals during the course of the

author’s master’s research period. The most up-to-date versions of these articles are:

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The rise of RaaS: The
Resource-as-a-Service cloud. Communications of the ACM (CACM), 57(7):76-84, July 2014.

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vVIOMMU: efficient IOMMU emulation.
In USENIX Annual Technical Conference (ATC), 2011.

Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, and Ahuva Mu’alem.
Ginseng: Market-driven memory allocation. In ACM/USENIX International Conference on Virtual
Execution Environments (VEE). 2014.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Deconstructing Amazon
EC2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC), 1(3):16:1,
September 2013.

Muli Ben-Yehuda, Omer Peleg, Orna Agmon Ben-Yehuda, Igor Smolyar, and Dan Tsafrir. The nonkernel:
A kernel designed for the cloud. In Asia Pacific Workshop on Systems (APSYS), 2013.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Dan Tsafrir, and Assaf
Schuster. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2012.

Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory overcommit with Ginkgo. In IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2011.

ACKNOWLEDGEMENTS

First and foremost, I'd like to thank my amazing wife, friend, co-author, and advisor, Orna
Agmon Ben-Yehuda. You taught me more than you will ever know. Second, I'd like to thank
my amazing children, Yael and Ze’ev, who make it all worthwhile. Third, I’d like to thank my
parents, Yoel and Irit Ben Yehuda, for having kept faith all these years, even when my path
meandered. Last, I’d like to thank Michael Factor and Orran Krieger, who taught me what it
means to do research.

The nom operating system and this thesis have been in the making for a long time. During
the years I worked on them, I published nearly twenty papers co-authored with many wonderful

people. I’d like to thank all of them—it has been great working with you!

The generous financial support of the Technion is gratefully acknowledged.

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

Contents

List of Figures

Abstract

Abbreviations and Notations

1

2

Introduction

Motivation

2.1 Dynamic resource pricing iS COMing « . ¢ v v v v v e b
2.2 Dynamic pricing mandates change,
Design

3.1 Requirements
32 Principles e
33 CPUandscheduling
3.4 Memory management L. e e e e e e e e e
35 T/Odevices e
3.6 Networking
37 StOrage e e
3.8 Price-awarenesso i i e e e
Economic model and utility of network bandwidth

Implementation

Evaluation

6.1 Methodology e
6.2 Performance L
6.3 What makes nom fast?
6.4 Profit e
6.5 What makes nom profitable? oo oL L.
6.6 Effect of batching on throughput and latency

6.7 Throughput/latency Pareto frontier

10

11
11
12
13
13
13
15
16
16

17

21

Technion - Computer Science Department - M.Sc. Thesis MSC-2015-15 - 2015

7 Discussion

8 Related work

9 Conclusions and future work

Hebrew Abstract

35

37

39

List of Figures

1.1

3.1

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11

6.12

6.13

6.14
6.15

Cloud economic model: Applications run in the cloud. Users pay the application owner
for the service the application provides. The application owner in turn pays the cloud

provider for the cloud resources the application uses (e.g., network bandwidth).
Traditional kernel structure compared with nom’s kernel structure.

memcached throughputand latency
nhttpd throughputandlatency
NetPIPE throughputandlatency
memcached profit L. Lo e e
nhttpdprofit Lo
NetPIPEProfit o i i e e e e e e e e e e e e e e
memcached profit: static vs. adaptive behavior00
nhttpd profit: static vs. adaptive behavior
NetP IPE profit: static vs. adaptive behavior
memcached throughput (in the many users scenario) and latency (in the single user

scenario) as a function of batchingdelay
nhttpd throughput (in the many users scenario) and latency (in the single user sce-

nario) as a function of batchingdelay
NetPIPE throughput (in the many users scenario) and latency (in the single user

scenario) as a function of batchingdelay
The memcached throughput and latency Pareto frontier
The nhttpd throughput and latency Pareto frontier
The NetPIPE throughput and latency Pareto frontier

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

Abstract

In the near future, cloud providers will sell their users virtual machines with CPU, memory,
network, and storage resources whose prices constantly change according to market-driven
supply and demand conditions. Running traditional operating systems in these virtual machines
is a poor fit: traditional operating systems are not aware of changing resource prices and their
sole aim is to maximize performance with no consideration of costs. Consequently, they yield
low profits.

We present nom, a profit-maximizing operating system designed for cloud computing
platforms with dynamic resource prices. Applications running on nom aim to maximize profits
by optimizing for both performance and resource costs. The nom kernel provides them with
direct access to the underlying hardware and full control over their private software stacks. Since
nom applications know there is no single “best” software stack, they adapt their stacks’ behavior
on the fly according to the current price of available resources and their private valuations
of them. We show that in addition to achieving up to 3.9x better throughput and up to 9.1x
better latency, nom applications yield up to 11.1x higher profits when compared with the same

applications running on Linux and OSv.

“And in this too profit begets profit.”
—Aeschylus

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

Abbreviations and Notations

TaaS
RaaS
NIC
PIO
MMIO
DMA
SLA
SLO

Infrastructure-as-a-Service
Resource-as-a-Service
Network Interface Card
Programmed 1/0
Memory-Mapped I/0
Direct Memory Access
Service Level Agreement

Service Level Objective

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

Chapter 1

Introduction

More and more of the world’s computing workloads run in virtual machines on Infrastructure-
as-a-Service (IaaS) clouds. Often these workloads are network-intensive applications, such
as web servers or key-value stores, that serve their own third-party users. Each application
owner charges the application’s users for the service the application provides, thereby generating
revenue. The application owner also pays her cloud provider for the virtual machine in which
the application runs, thereby incurring expenses. The difference between the application owner’s
revenue and her expenses—and the focus of this work—is the application owner’s profit, which
she would naturally like to maximize. We depict this cloud economic model in Figure 1.1.
The application owner’s revenue depends on her application’s performance. For example,
the more simultaneous users the application can serve, the higher the revenue it generates. The
application owner’s expenses, on the other hand, depend on how much she pays the cloud
provider. Today’s IaaS cloud providers usually charge application owners a fixed sum per virtual
machine that does not depend on market conditions. In previous work, we showed that the
economic trends and market forces acting on today’s IaaS clouds will cause them to evolve into
Resource-as-a-Service (RaaS) clouds, where CPU, memory, network, and storage resources
have constantly changing market-driven prices [8, 9, 10]. In RaaS clouds, the cloud providers
will charge the application owners the current dynamic market prices of the resources they use.

IaaS clouds, and to a larger extent, RaaS clouds, represent a fundamentally new way of

Cloud Provider Application i

Figure 1.1: Cloud economic model: Applications run in the cloud. Users pay the application owner for
the service the application provides. The application owner in turn pays the cloud provider for the cloud
resources the application uses (e.g., network bandwidth).

buying, selling, and using computing resources. Nevertheless, nearly all virtual machines
running in today’s clouds run the same legacy operating systems that previously ran on bare-
metal servers. These operating systems were designed for the hardware available decades
ago. They abstract away the underlying hardware from their applications and assume that
every resource is at their disposal at no cost. Most importantly, they were designed solely for
maximizing performance with no regard for costs. They neither know nor care that the resources
they use in the cloud cost money, and that their prices might change, e.g., due to changes in
supply and demand.

We argue that in clouds with dynamic pricing, where costs can be substantial and resource
prices constantly change, running operating systems designed solely for performance is coun-
terproductive and may lead to lower profits and even net losses. Such clouds call instead for a
profit-maximizing operating system, designed to yield maximal profit by optimizing for both
performance and cost. Maximal profit is reached not when revenue (performance) is highest but
rather when the difference between revenue (performance) and expenses (cost) is highest. As
such, profit-maximizing operating systems enable their applications to pick the right level of
performance to operate at given current market conditions and resource prices. We show that
applications running on a profit-maximizing operating system can yield an order of magnitude
higher profit when compared with the same applications running on operating systems that
optimize for performance exclusively.

We begin by presenting in greater depth the motivation for a profit-maximizing operating
system. In Chapter 2, we present two ongoing trends that we believe will cause today’s IaaS
clouds to evolve into RaaS clouds with dynamic resource pricing. They are the increasingly
finer spatial granularity and the increasingly finer temporal granularity of resources that can be
allocated to guest virtual machines. We then present the changes that such clouds mandate in
the system software stack.

In Chapter 3, we present nom, a profit-maximizing operating system we designed for clouds
with dynamic pricing. Applications running on nom aim to maximize their profits from the
resources available to them. We describe how nom’s approach to CPU allocation and scheduling,
application memory management, private and direct access to I/O devices, and cost-aware
design, can all contribute to maximizing application profits by improving performance and
reducing costs.

We showcase and evaluate nom’s capabilities using network-intensive applications. We
present three main applications, the memcached in-memory key-value store [28], the nhttpd
web server, and the NetPIPE networking benchmark [65]. The performance of a network-
intensive application is usually expressed through its throughput, latency, and jitter. The expenses
the application incurs depend on the amount of bandwidth it uses (i.e., its throughput) and the
current price of network bandwidth. Since the price of bandwidth is beyond the application’s
control, the application can only maximize its profits by controlling its throughput, which affects
both revenue and expenses, and the latency and jitter its users experience, which affect its
revenue.

In Chapter 4, we use utility (valuation) functions to formalize the relationship between

application throughput, latency, jitter, and the cost of network bandwidth. An application’s
valuation function provides the application’s expected profit from a certain mix of throughput,
latency, and jitter, give the current price of network bandwidth and the load the application is
under. For example, the simplified valuation function in Equation (1.1) is a formalization of
the scenario where the application owner benefits from increased throughput (T), but only as
long as the application’s users’ average latency is below a certain latency service level objective
(SLO) and the price the application owner pays her cloud provider (P) per bandwidth unit is
lower than her benefit from that bandwidth unit («).

T-(a— P) latency < latency SLO
profit = (1.1
0 latency > latency SLO

We consider three potential valuation functions that differ in how the application’s users
pay for the service the application provides to them. We acknowledge that building valuation
functions is hard, but we believe it is worthwhile to do so in light of the substantially higher
profits it yields.

Our profit-maximizing applications re-evaluate their valuation functions at runtime whenever
the price of bandwidth or the load they are under change, picking each time the mix of throughput,
latency, and jitter that maximizes their valuation function at that point in time. To enable each
nom application to have fine-grained control over its throughput, latency, and jitter, nom provides
each application with direct access to the virtual or physical NICs the application uses and with
a private TCP/IP stack and network device drivers, linked into the application’s address space.
Each application can control its private stack’s throughput, latency, and jitter, by modifying the
stack’s batching delay: the amount of time the stack delays incoming or outgoing packets in
order to batch them together. Larger batching delays increase throughput (up to a limit) while
also increasing latency and jitter. Smaller batching delays reduce latency and jitter but also
reduce throughput. In nom, there is no “best” TCP/IP stack or “best” NIC device driver as in
other operating systems, because there is no single stack or driver that will always provide the
right mix of throughput, latency, and jitter, to every application at any given time.

We discuss the implementation of our nom prototype in Chapter 5 and evaluate it in
Chapter 6. We show that nom’s memcached, nhttpd, and NetPIPE outearn as well as
outperform the same applications running on Linux and on the OSv single-application cloud
operating system [45]. When running on nom, our benchmark applications yield up to 11.1x
higher profits from their resources while also achieving up to 3.9x better throughput and up to
9.1x better latency.

In Chapter 7 we discuss the pros and cons of writing a new profit-maximizing operating
system from scratch vs. constructing it based on an existing operating system such as Linux. In
Chapter 8 we survey related work and in Chapter 9 we summarize the lessons we have learned

building nom and the challenges that remain.

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

Chapter 2

Motivation

2.1 Dynamic resource pricing is coming

We have identified in previous work [8, 9] two important trends that we believe will lead to
RaaS clouds, where different resources have constantly changing prices. These trends are
already apparent in current IaaS clouds and their underlying hardware. They are the increasingly
finer spatial granularity of resources that can be allocated to guest virtual machines and the
increasingly finer femporal granularity in which resources can be allocated.

Both trends can be seen all the way down to the hardware. Intel Resource Director Tech-
nology, for example, enables cloud providers to monitor each virtual machine’s CPU cache
utilization and allocate specific cache ways to selected virtual machines [3]. Mellanox Connect-
X2 and later NICs enable cloud providers to allocate adapter network bandwidth to up to 16
virtual machines and adapt the allocation in microsecond granularity.

Although most IaaS cloud providers today do not (yet) take advantage of such capabil-
ities, they already provide limited dynamic pricing and are moving towards fully dynamic
resource pricing. VMTurbo, for example, manufactures a private-cloud management layer that
relies on resource pricing and an economic engine to control ongoing resource consumption.
CloudSigma’s pricing algorithm allows pay-as-you-go burst pricing that changes over time
depending on how busy their cloud is; this algorithm prices CPU, RAM, and outgoing network
bandwidth separately. Perhaps most notably, Amazon’s EC2 spot instances have a dynamic
market-driven price [7] that changes every few minutes.

Why are cloud providers going in this direction? Is it not simpler for everyone to just keep
the price fixed? By frequently changing the price of different resources based on available
supply and demand, cloud providers can communicate resource pressure to their clients (the
applications/application owners) and influence their demand for these resources. By conveying
resource pressure to clients, cloud providers incentivize their clients to economize when needed
and consume less of the high-demand resources. By causing clients to economize, the cloud
provider can improve machine density and run more client virtual machines on the same
hardware and with the same power budget. Higher machine density means lower expenses,

increased profits, and better competitiveness. Improving profit margins by doing more work with

the same hardware is especially important given the cloud price wars that have been ongoing
since 2012 [9].

2.2 Dynamic pricing mandates change

A cloud with market-driven per-resource pricing differs from the traditional bare-metal platform
in several important areas: resource ownership, economic model, and architectural support.
These differences motivate changing the system software stack, and in particular, the operating
systems and applications.

Resource ownership and control. On a traditional bare-metal server, the operating system
is the sole owner of every resource. If the operating system does not use a resource, nobody else
will. In a dynamic pricing cloud, the operating system (running in a virtual machine) unwittingly
shares a physical server with other operating systems running in other virtual machines; it
neither owns nor controls physical resources.

Economic model. In the cloud, each operating system owner (cloud user) and cloud
provider constitute a separate, selfish economic entity. Every resource that the cloud provider
makes available to users has an associated price. Each user may have a different incentive,
different metrics she may want to optimize, and different valuations for available resources. The
cloud provider may want to price its resources to maximize the provider’s revenue or the users’
aggregate satisfaction (social welfare) [10]; one cloud user may want to pay as little as possible
for a given amount of work carried out by its virtual machines; another cloud user may want
to maximize the work carried out, sparing no expense. But in all cases, in the cloud, the user
pays the current going rate for the resources her operating system uses. On a traditional server,
resources are simply there to be used at no cost.

Resource granularity. On a traditional server, the operating system manages entire re-
sources: all cores, all of RAM, all available devices. In the cloud, the operating system will
manage resources in an increasingly finer-grained granularity. This is a consequence of the
economic model: once resources have prices attached to them, it is more efficient for both cloud
provider and cloud users to be able to buy, sell, or rent resources on increasingly finer scales [8].

Architectural support. Operating systems running on traditional servers usually strive to
support both the ancient and the modern. Linux, for example, only recently dropped support
for the original Intel 386. Modern x86 cloud servers have extensive support for machine
virtualization at the CPU, MMU, chipset, and I/O device level [66]. Modern I/O devices are
natively sharable [57]. Furthermore, cloud servers usually present the operating systems running
in virtual machines with a small subset of virtual devices. We contend that any new operating
system designed for the cloud should eschew legacy support and take full advantage of the

virtual and physical hardware available on modern servers.

10

Chapter 3

Design

3.1 Requirements

Given the fundamental differences between the traditional bare-metal and the cloud run time
platforms, we now ask: What requirements should be imposed on an operating system designed
for running in virtual machines on cloud servers with dynamic pricing?

Macximize profit. The first requirement is to enable applications to maximize their profit.
When resources are free, applications only have an incentive to optimize for performance.
Performance is usually measured in some application specific metric, e.g., in cache hits per
second for an in-memory cache or in transactions per second for a database. In the cloud,
where any work carried out requires paying for resources and every resource has a price that
changes over time, applications would still like to optimize for performance but now they are
also incentivized to optimize for cost. Why pay the cloud provider more when you could pay
less for the same performance? Thus the operating system should enable its applications to
maximize their profits by enabling them to optimize for both performance and cost.

Expose resources. On a traditional server, the operating system’s kernel serves multiple
roles: it abstracts and multiplexes the underlying hardware, it serves as a library of useful
functionality (e.g., file systems, network stacks), and it isolates applications from one another
while letting them share resources. This comes at a price: applications must access their
resources through the kernel, incurring run-time overhead; the kernel manages their resources in
a one-size-fits-all manner; and the functionality the kernel provides, “good enough” for many
applications, is far from optimal for any specific application.

In clouds with dynamic pricing, the kernel should get out of the way and let applications
manage their resources directly. Moving the kernel out of the way has several important
advantages: first, applications become elastic. They can decide when and how much of each
resource to use depending on its current price, thereby trading off cost with performance,
or trading off the use of a momentarily expensive resource with a momentarily cheap one.
For example, when memory is expensive, one application might use less memory but more
bandwidth while another might use less memory but more CPU cycles. Second, applications

know best how to use the resources they have [26, 37, 32]. An application knows what paging

11

Appl App2 App3 Appl App2 App3

Traditional kernel

Figure 3.1: Traditional kernel structure compared with nom’s kernel structure.

policy is best for it, or whether it wants a NIC driver that is currently optimized for throughput
or for latency or for some combination of both, or whether it needs a small or large routing table.
The kernel, which has to serve all applications equally, cannot be designed and optimized for
any one application. Exposing physical resources directly to applications means that nearly all
of the functionality of traditional kernels can be moved to application level and tailored to each
application’s specific needs.

Isolate applications. When running in a virtual machine on a modern server, the operating
system’s kernel can rely on the underlying hardware and on the hypervisor for many aspects
of safe sharing and isolation for which it was previously responsible. For example, using an
IOMMU [38], the kernel can give each application direct and secure access to its own I/O device
“instances” instead of multiplexing in software a few I/O devices between many applications.
Those instances may be SRIOV Virtual Functions (VFs) [57, 30] or they may be paravirtual I/O
devices [16, 61, 31, 35].

3.2 Principles

The primary distinguishing feature of nom is that it enables applications to maximize their
profits by (1) optimizing their entire software stack’s behavior for both performance and cost;
and (2) changing their behavior on the fly according to the current price of resources. As seen in
Figure 3.1, traditional operating systems have a kernel that sits between applications and their
I/O devices. The nom kernel, on the other hand, provides every application with safe direct
access to its resources, including in particular its I/O devices. Recently proposed operating
systems such as the cloud-targeted OSv [45] and Mirage [55, 54], or the bare-metal operating
systems IX [19] and Arrakis [58], all of which can be considered to provide direct access of
some sort, use it purely for performance. In nom, direct access enables each application to have
its own private I/O stacks and private device drivers that are specialized for that application.
The nom kernel itself is minimal. It performs three main functions: (1) it initializes the
hardware and boots; (2) it enumerates available resources such as CPU cores, memory, network
devices, and storage devices (and acts as a clearing house for available resources); and (3) it
runs applications. Once an application is launched, it queries the kernel for available resources,

acquires those resources, and from then on uses them directly with minimal kernel involvement.

12

3.3 CPU and scheduling

On startup, a nom application acquires one or more cores from the kernel. From then on
until it relinquishes the core or cores, the application performs its own scheduling using user
threads. The rationale behind user threading is that only the application knows what task will be
profitable to run at any given moment on its CPU cores. Applications relinquish cores when
they decide to do so, e.g., because the cores have grown too expensive.

The nom design minimizes the kernel’s involvement in application data paths. Applications
can make system calls for control-plane setup/teardown operations, e.g., to acquire and release
resources, but high performance nom applications are unlikely to make any system calls in their
data paths, since their software stacks and device drivers run entirely in user space. Furthermore,
nom applications handle their own traps and interrupts. Ideally, they will handle traps and
interrupts without any kernel involvement. Since it is possible to inject traps and interrupts
directly into virtual machines [30], ultimately the nom kernel will run its applications in guest
mode using machine virtualization support [6]. This is also the approach taken by the bare-metal
Dune [18] and IX [19] operating systems. Unlike Dune and IX, however, nom is targeted
primarily at cloud environments, and no cloud provider currently supports hardware-assisted
nested virtualization [20]. We therefore choose to run the nom kernel in ring 0 and nom
applications in ring 3, without relying on the availability of nested virtualization support. Since
it is not yet possible to inject traps and interrupts directly into ring 3 applications, the nom kernel
receives traps and interrupts on behalf of applications in ring O trampolines and injects the trap

or interrupt into its target application.

3.4 Memory management

Each nom application runs in its own kernel-provided address space, unlike unikernel operating
systems such as OSv [45] and Mirage [55, 54], where there is a single global address space. Each
nom application manages its own page mappings, unlike applications in traditional operating
systems. The kernel handles an application’s page fault by calling the application’s page fault
handler from the kernel trampoline and passing it the fault for handling. The application would
typically handle page faults by asking the kernel to allocate physical memory and map pages on
its behalf. This userspace-centric page fault approach provides applications with full control
over their page mappings, cache coloring [43], and the amount of memory they use at any
given time. There is no kernel-based paging; applications that desire paging-like functionality
implement it on their own [34]. The kernel itself is non-pageable but its memory footprint is

negligible.

3.5 1/0O devices

The nom kernel enumerates all available physical devices on start-up and handles device hot-plug

and hot-unplug. The kernel publishes resources such as I/0 devices to applications using the

13

bulletin board, an in-memory representation of currently available resources that is mapped into
each application’s address space. (The bulletin board was inspired by MOSIX’s [15] distributed
bulletin board [12].) When an application acquires a device resource, the kernel maps the
device’s memory-mapped /O (MMIO) regions in the application’s address space and enables
the application to perform programmed I/O (PIO) to the device. The application then initializes

the device and uses it.

Most modern devices, whether virtual devices such as virtio [61] and Xen’s frontend and
backend devices [16], or natively-sharable SRIOV devices [57], expect to read and write memory
directly via direct memory access (DMA). Since nom’s model is that applications bypass the
kernel and program their devices directly, devices driven by nom applications should be able
to access the memory pages of the applications driving them. At the same time, these devices

should not be able to access the memory pages of other applications and of the kernel.

The way nom handles DM A-capable devices depends on whether the virtual machine has
an IOMMU for intra-guest protection [70]. Providing virtual machines with IOMMUs for
intra-guest protection requires either an emulated IOMMU [13] or a two-level IOMMU such as
ARM’s sMMU or Intel’s VI-d2. When an IOMMU is available for the virtual machine’s use,
the nom kernel maps the application’s memory in the IOMMU address space of that device and

subsequently keeps the MMU'’s page tables and the IOMMU’s page tables in sync.

As far as we know, no cloud provider today exposes an IOMMU to virtual machines. To
enable nom applications to drive DMA capable devices even when an IOMMU is not present,
the nom kernel can also run applications in trusted mode. In this mode the kernel exposes
guest-virtual to guest-physical mappings to applications and applications program their devices
with these mappings. This means that in trusted mode, the kernel and every application in the
same nom instance implicitly trust every other application not to take over the virtual machine
by programming a device to write to memory they do not own. Strong isolation in the presence
of untrusted applications can be provided by running untrusted applications in their own nom

instances.

When a device owned by a nom application raises an interrupt, the kernel receives it and
the kernel trampoline calls a userspace device handler registered by the application driving that
device. It is the application’s responsibility to handle device interrupts correctly: acknowledge
the interrupt at the device and interrupt controller level and mask/unmask device interrupts as
needed. Once nom applications run in guest mode, we expect device interrupts to be injected

directly to the application [30].

It is well known that device polling may lead to better performance than interrupts but
interrupts can reduce CPU utilization [24, 56, 39, 63, 48]. Since nom applications have full
control over their software stacks and their devices, they decide when to wait for interrupts and

when to poll devices directly, thereby trading off CPU cycles for performance.

14

3.6 Networking

The nom operating system provides a default userspace network stack, based on the IwIP
network stack [25], and default network device drivers, including a driver for the virtio [61]
virtnet virtual network device. Applications that want to link and run with the default network
stack and network device drivers are welcome to do so. Applications that wish to yield even
higher profits are encouraged to run with their own customized network stack and network
device drivers. The default stack and drivers are provided as a convenience and as a basis for
modifications, not because applications must use them.

To enable applications running with the default network stack and virtnet device driver to
adapt their behavior on the fly, the stack and driver support run time tuning of their behavior via
the batching delay. The batching delay controls the stack’s and driver’s behavior when sending
and receiving packets. Applications can use the batching delay to trade-off throughput, latency,
and jitter. Setting the batching delay to Ousec means no delay: each incoming and outgoing
packet is run to completion. Each packet the application transmits (tx packet) traverses the
entire TCP/IP stack and the device driver and is sent on the wire immediately. Each packet the
application receives (rx packet) is passed from the wire to the driver, to the stack, and to the
application, before the next packet is handled.

Setting the batching delay to Wusec means delaying packets by batching them together at
various stages in the stack and in the driver such that no packet is delayed for more than Wpsec.
Tx packets are batched together by the stack and then passed on to the driver as a batch. The
driver batches all of the small batches of packets passed to it by the stack together into one large
batch. When either the transmit ring buffer is close to overflowing or the first packet in the large
batch has waited Wusec, the driver transmits the large batch to the device.

The timing of arrival of rx packets is not controlled by the stack or driver but rather by the
device. When W > 0, the driver receives incoming packets from the wire but does not pass
them on to the stack for processing. The batch is kept at the driver level until at least one of the
following happens: (1) Wusec have passed; (2) the batch grows beyond a predefined maximum
and threatens to overflow the receive ring buffer; or (3) there are no additional packets to receive,
e.g., because the connection has been closed. The driver then passes all of the incoming packets
together to the TCP/IP stack for processing.

Network-intensive applications usually optimize for throughput, latency, and jitter. Through-
put is defined as the number of bytes they can send or receive in a given time period or the
number of operations they can carry out. Latency is broadly defined as how long it takes to
transfer or receive a single packet or carry out a single operation. Applications are usually
concerned with either average latency or with tail latency, defined as the latency of the 99™
percentile of packets or operations. Jitter has many possible definitions. For simplicity, we
define jitter as the standard deviation of the latency distribution.

A larger batching delay, up to a limit, usually provides better (higher) throughput but worse
(higher) latency and jitter. A smaller batching delay usually provides better (lower) latency

and jitter but worse (lower) throughput. In Chapter 4 we discuss how applications can use

15

valuation functions to pick the right mix of throughput, latency, and jitter, given the current price
of network bandwidth. After picking the optimal mix for current conditions, applications that
use the default network stack and virtnet device driver can modify the stack’s batching delay to

achieve the desired throughput, latency, and jitter.

3.7 Storage

In nom, applications have private storage stacks, just like they have private network stacks.
They may use the default userspace storage stack and device drivers (e.g., virtio’s virtblk [61])
or their own tailored stacks and drivers. Unlike the default kernel-based storage stacks of
traditional operating systems, nom’s default stack and drivers can adapt their behavior at run
time when the cost of IOPs (for example) changes. One way to adapt behavior is to batch I/O
operations together at the storage stack and driver level. Another to modify the private elevator
(I/0 scheduler) algorithm.

To provide multiple applications in a single nom instance with the convenience of a shared
file system, £sd is an optional file system daemon that exposes a shared file system. Applications
communicate with £ sd via a generic high-performance IPC mechanism that uses shared memory

for bulk data transfer and cross-core IPIs for notifications.

3.8 Price-awareness

Optimizing for cost requires that applications be aware of the current price of resources. The
priced daemon queries the cloud provider via provider-specific means (e.g., the provider’s
REST API) for the current price of resources. It then publishes those prices to all applications
through the bulletin board. To avoid the need for applications to continuously poll the bulletin
board, yet enable them to react quickly to price changes, priced also notifies applications of
any change in the price of their resources, using the same high-performance IPC mechanism

fsd uses.

16

Chapter 4

Economic model and utility of network
bandwidth

To maximize profit, nom applications attempt to extract the maximal benefit from the network
resources they have available to them. This requires that the application be able to formulate
and quantify its benefit from network resources given their current prices. The standard game-
theoretic tool for doing this is a utility or valuation function: a function that is private to
each application and assigns numerical values—*"“utilities”, or in our case, profit—to different
outcomes.

We consider an application acting as a server, e.g., a web server or a key-value store. The
application generates revenue when it gets paid by its users for the service it provides. We
assume that the amount it gets paid is a function of its throughput, latency, and jitter. The
application benefits from increased throughput because higher throughput means serving more
users or providing them with more content. We assume that the amount the application gets paid
increases linearly with its throughput.

The application benefits from reduced latency and jitter because it can provide its users with
better quality of service. Better quality of service means improved user satisfaction. To quantify
user satisfaction, we adopt an existing cloud provider compensation model. Cloud providers
such as GoGrid [2], NTT [4], and Verizon [5] assume that their users are satisfied as long as
their service level objectives (SLOs) are met; when the provider fails to meet a user’s SLO, most
providers will offer their users compensation in proportion to the users’ payment for periods in
which the service did not meet the SLO. For example, Gogrid’s Service Level Agreement (SLA)

reads as follows:

A “10,000% Service Credit” is a credit equivalent to one hundred times Customer’s
fees for the impacted Service feature for the duration of the Failure. (For example,
where applicable: a Failure lasting seven hours would result in credit of seven

hundred hours of free service [...]).

We assume that an SLA using equivalent terms exists between the application and its users.

Although cloud providers list minimal throughput, maximal latency, and maximal jitter as their

17

SLA goals, we simplify the function by only considering latency.

We assume that the cloud provider charges the application in proportion to the outbound
bandwidth it consumes. Charging by used bandwidth is reasonable for several reasons. First, it
is easy for the cloud provider to monitor. Second, bandwidth consumption by one application
can directly affect the quality of service for other applications running on the same cloud when
there is resource pressure (limited outgoing bandwidth). Third and most important, this method
of charging is commonly used in today’s clouds. Amazon, for example, charges for outbound
traffic per GB after the first GB, which is free.

The application does not necessarily know why the price of bandwidth rises or falls. The
cloud provider may set prices to shape traffic, as CloudSigma started doing in 2010, or the price
may be set according to supply and demand, as Amazon does for its spot instances [7]. The price
may even be set randomly, as Amazon used to do [7]. In Kelly’s [42] terms, the application is a
price taker: it assumes it cannot affect the prices. It neither knows nor cares how the provider
sets them. This assumption is reasonable when the application’s bandwidth consumption is
relatively small compared with the cloud’s overall network bandwidth. The application does

know that it will pay for the bandwidth it uses according to its current price.

The utility functions that we use in this work formalize the application’s profit from different
mixes of throughput, latency, and jitter, given the current price of bandwidth. Any such function
must satisfy the utility function axiom: it must weakly monotonically increase as throughput
increases and weakly monotonically decrease as bandwidth cost, latency, and jitter increase.
In other words, the more throughput the application achieves for the same total cost, latency,
and jitter, the more it profits. As latency and jitter increase, the application gets paid less or
compensates its users more, so profit goes down. The higher the price of bandwidth, the higher

the application’s costs, so again profit goes down.

Putting all of the above together, we present three example utility functions which are
consistent with the utility function axiom. We begin with the penalty utility function, a
generalization of the simple utility function presented in the introduction (Equation (1.1)). In
the simple utility function, the application owner benefits from increased throughput (T), but
only as long as the application’s users’ average latency is below a certain latency service level
objective (SLO) and the price the application owner pays her cloud provider (P) per bandwidth
unit is lower than her benefit from that bandwidth unit («.) In other words, in the simple utility
function, users either pay or they don’t. In the penalty utility function, the application pays its
users a penalty (i.e, the users pay less) if samples of the latency distribution violate the SLO.
The size of the penalty depends on the probability of violating the SLO. We define the penalty
utility function in Equation (4.1) as follows:

Upenalty =T- (Oé' (1 - min(1>X 'N(LOaL7J))) - P)a (41)

where 7" denotes throughput in %ﬁ or application operations/second, o denotes the application
owner’s valuation of useful bandwidth in $/Gbit or $/operation, and X denotes the penalty factor

from not meeting the user’s SLO (e.g., 100 in the GoGrid SLA). L denotes the mean latency

18

(in psecs), Lo denotes the maximal latency allowed by the SLA, and o denotes the latency’s
standard deviation (jitter). N (Lo, L, o) denotes the probability that a normally distributed
variable with mean L and standard deviation ¢ will be higher than Lg. In other words, it is the
probability that a latency sample will not meet the latency SLO, and thus trigger compensation
to the application’s user. P denotes the price that the cloud provider charges the application
for outgoing network bandwidth. The provider’s price is set in $/Gbit, but the application may
translate it internally to $/operation.

In the case where the sampled latency is always within the SLO and thus N” — 0, Equa-
tion (4.1) is reduced to T'- (aw — P), motivating the application to use as much bandwidth as
possible, provided the value it gets from sending data («) is higher than the price it pays for
sending that data (P). Conversely, when every latency sample falls outside the SLO, Equa-
tion (4.1) is reduced to —7T' - P, giving negative utility, since the penalties for violating the SLA
far outweigh any benefit. It is better in this case to send nothing at all, to at least avoid paying
for bandwidth.

In addition to the penalty utility function, we also consider two additional, simpler, function
forms that fit the axioms and represent other business models. These functions are inspired
by Lee and Snavely [49], who showed that user valuation functions for delay are usually
monotonically decreasing, with various shapes, which are not necessarily linear. Hence, we
consider both a linear refund valuation function (which is common in the literature because it is
easy to represent) and a reciprocal bonus valuation function, which captures the diminishing
marginal return, characteristic of some of the functions that Lee and Snavely found.

In the refund utility function in Equation (4.2), the application compensates its user by
giving it a progressively larger refund as the mean latency rises, capped at a refund of 100%
of the user’s payment. As in the penalty utility function, o denotes the application owner’s

valuation of useful bandwidth. The 5 parameter is the extent of the refund.

Urefund = T - (max(0,«« — 5+ L) — P), 4.2)

In the bonus utility function in Equation (4.3), the application gets a bonus from its users for
small latency values. The bonus decays to zero as latency grows and cannot exceed some

pre-negotiated threshold, §. -y is the extent of the bonus.
Usonus = T+ (o + min(+,8) = P), 4.3)

The parameters «, 3, v, 6, and X, are application-specific: they characterize its business
arrangements with its users. Price (P) is dictated by the cloud provider and changes over time.

We note that the application does not “choose” any function or parameters that it desires:
the utility function is simply a formalization of the application owner’s business relations
and agreements with its users and with its cloud provider. These relations and agreements
include how much the application owner pays its cloud provider for bandwidth, how much
the application’s users pay the application owner, how the application owner compensates its

users for violating their SLAs, etc. Having said that, by understanding the behavior of the

19

utility function, the application owner may try to strike more beneficial deals with its cloud
providers and its users. Furthermore, the application can adapt its behavior on the fly, trading

off throughput, latency, and jitter so as to maximize its profit given current bandwidth price.

20

Chapter 5
Implementation

We implemented a prototype of nom, including both ring O kernel and representative ring 3
applications. The prototype runs in x86-64 SMP virtual machines on top of the KVM [44]
hypervisor. It can run multiple applications with direct access to their I/O devices. It can also
run on bare-metal x86-64 servers with SRIOV devices, without an underlying hypervisor, but
that is not its primary use-case.

We implemented three representative applications that use the penalty, refund, and bonus
utility functions to adapt their behavior on the fly: memcached, a popular key-value stor-
age [28], nhttpd, a web server, and NetPIPE [65], a network ping-pong benchmark. All
three applications run with private copies of the default nom IwIP-based network stack and the
virtnet virtio NIC device driver. All three applications optimize for both performance and cost
by adapting their stack and driver’s behavior on the fly to achieve the throughput, latency, and
jitter that maximize their current utility function given the current price of network bandwidth.

We implemented nht t pd from scratch and ported Net PIPE and memcached from Linux.
The ports were relatively straightforward, since nom supports—but does not mandate—most of
the relevant POSIX APIs, including pthreads (via userspace threading), sockets, and libevent.
The main missing pieces for application porting are limited support for floating point (SSE) in
userspace and missing support for signals.

The nom kernel is approximately 8,000 lines of code. The network stack and NIC device
drivers are approximately 45,000 lines code. Both are implemented mostly in C, with a little

assembly.

21

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

22

Chapter 6

Evaluation

6.1 Methodology

The evaluation aims to answer the following questions: (1) Does optimizing for cost preclude
optimizing for performance? (2) Does optimizing for both cost and performance improve
application profit? and (3) Is being able to change behavior at runtime important for maximizing
profits?

We evaluate nom applications against the same applications running on Linux and on
OSv [45]. The applications run in virtual machines on an x86-64 host with four Intel Core™)
17-3517U CPUs running at 1.90GHz and 4GB of memory. The host runs Linux Mint 17 “Qiana”
with kernel 3.13.0-24 and the associated KVM and QEMU versions.

OSv and nom applications run in an x86-64 guest virtual machine with a single vCPU and
128MBs of memory. Linux applications run in a virtual machine running Linux Mint 17.1
“Rebecca”, which did not boot with 128MB, so we gave it a single vCPU and 256MB of memory.
We ignore the cost of memory and do not penalize Linux for running with twice the amount
of memory. We also ignore the cost of CPU cycles. The host does not expose an IOMMU to
virtual machines.

Our experimental setup approximates a cloud with dynamic bandwidth prices and assumes
that the cloud provider either does not charge or charges a fixed sum for all other resources.
Each application runs for two minutes. During the first 60 seconds, the price of bandwidth
is $1/Gb. After 60 seconds, the price rises to $10/Gb. This situation can occur, for example,
when the application starts running on a relatively idle cloud but then a noisy, network-intensive
application joins it, driving up the price.

We run memcached, nhttpd, and NetPIPE, on Linux, OSv, and nom, and evaluate
all three applications with all three valuation functions described in Chapter 4. The valuation
functions take into account price, throughput, and latency, and the penalty valuation function
also takes into account jitter. Applications running on Linux and OSv use the default Linux and
OSv stacks and device drivers and are not price-aware.

Applications running on nom use the default IwIP and virtnet device driver. They know

the throughput, latency, and jitter they expect to achieve for different settings of the batching

23

delay. The relationship between batching delay and throughput, latency, and jitter may be
generated online and refined as the application runs or generated offline [37, 10]. We generated
it offline. The applications use this information and the current price of network bandwidth as
input to their valuation functions, tuning their stacks at any given moment to the batching delay
that maximizes their profits. When the price of network bandwidth or the load they are under
changes, they may pick a different batching delay if they calculate that it will improve their
profit.

We vary the load during the experiment. During the first 60 seconds, we generate a load
that approximates serving many small users. During the second 60 seconds, we generate a
load that approximates serving a single important user at a time. The memcached load is
generated with the memas1ap benchmark application running with a GET/SET ratio of 90/10
(the default). The nhttpd load is generated with the wrk benchmark application requesting
a single static file of 175 bytes in a loop. The Net PIPE server runs on the operating system
under test and the Net PIPE client runs on the Linux host. memcached and nhttpd run
in multiple threads/multiple requests mode, approximating serving many small users, or in a
single thread/single request mode, approximating serving a single user at a time. The NetPIPE
client either runs in bi-directional streaming mode (many) or in single request mode (single)
with message size set to 1024 bytes. In all cases, to minimize physical networking effects, the
load generator runs on the host, communicating with the virtual machine under test through the
hypervisor’s virtual networking apparatus. All power saving features are disabled in the host’s
BIOS and the experiments run in single user mode.

We run each experiment five times and report the averages of measured values. The average
standard deviation of throughput and latency values between runs with the same parameters
is less than 1% of the mean for memcached and less than 3% of the mean for Net PIPE.
In nhttpd experiments, the single user scenario exhibits average standard deviation of both
throughput and latency that is less than 1% of the mean. The many users scenario, however,
exhibits average standard deviation of 10% of the mean for throughput values and 73% of the

mean for latency values.

6.2 Performance

We argued that cloud applications should be optimized for cost. Does this preclude also opti-
mizing them for performance? To answer this question, we begin by comparing the throughput,
latency, and jitter achieved by nom applications with those achieved by their OSv and Linux
counterparts. Throughput and latency results are the average throughput and latency recorded
during each part of each experiment.

We show in Figure 6.1, Figure 6.2, and Figure 6.3 the throughput and latency achieved by
memcached, nhttpd, and NetPIPE, respectively, during the first 60 seconds, when they
serve as many users as possible, and during the second 60 seconds, when they only serve the
most important users, a single user at a time. For all three applications and both scenarios,

nom achieves better (higher) throughput and better (lower) latency than both OSv and Linux.

24

memcached many
50 -
40

o 18 —
71.01X 15 —

X

memcached single

30
20 —

- ’ N\ N/ ’
AN\

o %
VAV AN

WA

throughput [1K ops/s]
=
o O
|
PSRN S
AAAA A AW
|_I
oOwWoLuwoN
| | |

120 -
96 -

70.93x

72 -
48 —

S

<
S
XX

NN\
X X

nom -

latency [usec]
= N W DS
o o o o

o O O O O
| | |

X AKX AKX X

NN N N NN\
N

o b
|

Linux —
OSv <

Figure 6.1: memcached throughput and latency

nhttpd many

1.28x

1.29x

nom -

nhttpd single

v

2 10 - e 7 -

S g 123 e

% ’ 0.91x

o6 - 4.2 - XKD

5 4- o 2.8 - 196538

£ 5 0.32x 1.4 - X

> 050 %

e 0 [. / (\ 4. . [0 [\l/

e

)

5 - o 250

g 4 - 0.27x. @ 200 —-

23 8- 2150 - 1.11x

L>)’ \>\K > /\'//\/'

9] CXK %00

0 A M - 0 [SVAVASS

3 @ £ 3 @
£ o 2 £ O
- -

Figure 6.2: nhttpd throughput and latency

Taking memcached as an example, we see that nom achieves 1.01x—1.28x the throughput of
Linux, whereas OSv only achieves 0.93x. We also see that nom achieves average latency that is
1.01x-1.29x better than Linux (vs. 0.93x for OSv) with up to 4x better jitter when compared
with Linux and up to 588x better jitter when compared with OSv. (Jitter is shown in Table 6.1.)

25

| 1.16x

1.22x

nom -

NetPIPE many NetPIPE single

E' 400 — L 4o 400 —
2 _ 42X _ 1.37x
=z 320 1.11x 320 1.14x
2 240 - 240 -
2 160 XXX 160 554
=4
3 80 - 80 -
f, 0 Y 0 T
_ 100 - 50 —
D 40 —
9 . 1.14x
= 30 1.37x
g 20
8 10 _
©
[O | I
x > E X > E
z & S g & S
| |

Figure 6.3: NetPIPE throughput and latency

Scenario OS Latency (usec) Jitter (usec)

many Linux 402 499
OSv 434 24,148
nom 399 121
single Linux 82 14
OSv 88 7,638
nom 63 13

Table 6.1: memcached latency and jitter

nhttpd on nom achieves 1.2x—3.9x better throughput and up to 9.1x better latency than Linux
and OSv, and NetPIPE achieves up to 1.42x better throughput and latency.

6.3 What makes nom fast?

Network applications running on nom achieve up to 3.9x better throughput and up to 9.1x better
latency than their Linux and OSv counterparts (Figure 6.1, Figure 6.2, and Figure 6.3). This
improvement is by virtue of nom’s design and through careful application of several rules of
thumb for writing high-performance virtualized systems. In particular, nom, as a cloud operating
system, tries hard to keep the hypervisor out of the I/O path.

Table 6.2 shows the average number of exits per second for Linux, OSv, and nom when
running memcached. We can see that nom causes 2.8x—4.9x fewer exits than Linux and
OSv. One of the key causes of expensive hypervisor exits is injecting and acknowledging

interrupts [30]. Since each nom application has its own device driver, it can decide when to wait

26

Metric oS many single
#exits/sec Linux 43,146 90,166
OSv 43,144 51,237
nom 10,834 18,280
#irq injections/sec Linux 20,245 12,194
OSv 21,768 12,368
nom 999 999
CPU utilization Linux 75% 65%
OSv 59% 63%
nom 87% 98%

Table 6.2: Average exit rate, interrupt injection rate, and CPU utilization running memcached

for interrupts and when to poll the device directly. We can see in Table 6.2 that the hypervisor
only injects approximately 1,000 interrupts to nom while memcached is running. These 1,000
interrupts are all timer interrupts, which can be avoided by implementing tickless mode in
the nom kernel. There are no device interrupts because all three nom applications described
previously switch to polling mode as soon as they come under heavy load. Linux and OSyv, in
contrast, take approximately 20K-22K interrupts in the many users scenario and approximately
12K interrupts in the single user scenario. We can also see that nom’s CPU utilization is 87%—
98%, higher than Linux and OSv’s 59%—-75%. Since in our evaluation scenario CPU cycles are
“free”, the nom applications make the right choice to trade off CPU cycles for better throughput
and latency by polling the network device. Linux and OSv applications, which do not control
their software stacks and device drivers, cannot make such a tradeoff.

In addition to being “hypervisor friendly” by avoiding costly exits, nom’s applications,
default TCP/IP stack, and default virtnet device drivers are tuned to work well together. We
eliminated expensive memory allocations on the I/O path in the applications, network stacks and
device drivers, and avoided unnecessary copies in favor of zero-copy operations on the transmit
and receive paths. We also used the time stamp counter (TSC) to track and reduce the frequency
and cycle costs of data path operations.

Despite the 2.8x—4.9x difference in number of exits and 12x-22x difference in number
of interrupts, nom’s throughput and latency for memcached are only up to 1.3x better than
Linux’s. This disparity is caused by nom’s default network stack and default virtnet device
driver, which memcached uses, being not nearly as optimized as Linux’s. We expect to achieve
better performance and higher profits by optimizing and further customizing the stack and the
driver to each application’s needs. For example, instead of using the socket API, memcached’s
internal event handling logic could call into internal network stack APIs to bypass the relatively

slow socket layer [60, 40, 33]. Further optimizations and customization remain as future work.

6.4 Profit

Next, we investigate whether optimizing for both performance and cost does indeed increase

profit. Using the penalty, refund, and bonus utility functions presented in Chapter 4, we calculate

27

penalty utility refund utility bonus utility

— 1 12x
@ 075 — 0.75 0.9 A..
% 05 — 0.5 P _/g. . 0.6 X{. .
0.00 XX X
0 MIX | 0 B AP 0 BNV
X > E X > E X > E
5 0 5 5 0 5 5 0 5
£ o 8 £ o @ £ o @
Figure 6.4: memcached profit
penalty utility refund utility bonus utility
60 - 1.30x 275 - 325 -
T 48 - 1.00x 220 - 1.81x 260 — 1.25x
— S
36 - §\A 165 - 195 vy
£ 24 K580 110 sy 130 - 0.57x
2 12 — R 55 — -0.40x. 65 — X1
e <></ KA ;></
0 [/\I/ I 0 [/\/\” I O I "\I/\” I
X > c X = x > =
5 0N 5 @ 5 0
c o c o c o
5 9 € 5 9 =€ 5 9 =€

Figure 6.5: nhttpd profit

how much money the applications running on Linux, OSv, and nom made. Bandwidth prices
fluctuate as described in the methodology section. « is set to 20 Gb1t’ B is set to 10 %, 7 is set
to 0. Olelt S
the latency SLO in the penalty function (X)) is 100, and the maximal latency allowed by the
SLA is 750usec. We show in Figure 6.4, Figure 6.5, and Figure 6.6 memcached’s, nhttpd’s,

and § is set to + inf (i.e., there is no limit on the bonus). The penalty for violating

penalty utility refund utility bonus utility
5 - 5 - 35 -
< 12 - La 2 La B 1.72x
~ 41X 41X
S9 - 1.12x 9~ 112 21 - 1.21x
F 6 % 6 > 14 X
e ZaN /\ N VAN
a 3 ~><§\ 3 ><\\> 7 ,)<\\>
0 Rt 0 S A 0 S A
bad > £ X > £ bad > £
) n o)) n o) > n o)
§ ° 2 § o @ § o 2

Figure 6.6: NetP IPE profit

28

penalty utility refund utility bonus utility

1.25 - 1.25 - 15 -
s 1- 1 - 0.97x 1.2 § 0.92x
5 0.75 %) 0.82x 0.75 0.69x 0.9 - 0.73x
T 0.5 0.5 0.6
£ 025 - 0.14x 0.25 - 0.3 -
0 KK IXAL 0 K KL LX 0 B4
5 & ® 5 & ® 5 & ®
(o) (o) ©
Figure 6.7: memcached profit: static vs. adaptive behavior
penalty utility refund utility bonus utility
00~ 0.9ax 27>~ 275 - 0.90x
ﬁ 48 0.73x 220 - 0.87x 220 0.80x
#3606 165 0.78x 165 -
% 24 110 110
a 12 - 55 55
0] 0 1 | 0 >4 f
s 3 B s 3 B s 3 B
© © ©

Figure 6.8: nhttpd profit: static vs. adaptive behavior

and NetPIPE’s profits. We can see that nom makes more money than either Linux or OSv with
every utility function and every application. To use the penalty utility function and memcached
as an example, for every $1 of profit Linux makes, nom makes over 11x more profit, $11.14.
OSv does not profit at all due to its average latency of 7,638usec for the single case, more
than ten times the latency SLO of 750usec. For other applications and penalty functions the

difference between operating systems is not as large, but nom always yields the highest profits.

6.5 What makes nom profitable?

The nom operating system has better performance and yields higher profits than Linux and
OSv. Let us now focus on only nom (rather than Linux and OSv) and answer the question:
To maximize profits, is it enough to run nom applications with the settings that provide the
best performance, or must applications also change their behavior on the fly when conditions
change? To answer this question, we repeated the profit experiments from the previous section.
This time we compared nom applications with static behavior that lead to (1) the best throughput
or (2) the best latency with applications that adapt their behavior. We ran each application for
120 seconds, with price and load changing after 60 seconds. Each 120 second run used a fixed

batching delay in the range of 0—40usec.

29

penalty utility refund utility bonus utility

15 - 15 — 45 —
T 12 - 12 - 36 -
— 1.00x1.00x 1.00x1.00x 1.00x1.00x
@9 9 27
F 6 - 6 - 18 -
(@]
a 3 - 3 - 9 -
O | | [0 [| [0 [[T
g 8 & g 8 = S 8 &
((v] (v} ©

Figure 6.9: NetPIPE profit: static vs. adaptive behavior

Figure 6.7, Figure 6.8, and Figure 6.9 show the resulting profits. For the nom applications
with static behavior and a fixed batching delay, each setting of the batching delay gave different
throughput, latency, and jitter results. In the tpt column, we calculated the profit using the
throughput and latency resulting from the batching delay that gave the best absolute throughput.
In the lat column, we used the throughput and latency resulting from running the nom application
with the fixed batching delay that gave the best absolute latency. In the adp (adaptive) column,
the nom application changed the batching delay when the price or load changed.

As can be seen in Figure 6.7 and Figure 6.8, for both memcached and nhttpd, varying
the batching delay depending on the current price and load yields higher profit than running with
any fixed batching delay. Taking the penalty utility function as an example, we see that running
with the throughput-optimized batching delay would give memcached 82% of the profit, but
running with this setting would only give nhttpd 73% of the profit. Likewise, running with
the latency-optimized batching delay would give nhttpd 94% of the profit, but would give
memcached only 14% of the profit. Hence we conclude that there is no single “one size fits
all” batching delay that is optimal for all applications at all times. Furthermore, there can be
no single “best” stack and single “best” device driver for all applications at all times. Each
application’s ability to change its stack’s behavior, whether through tuning or more aggressive
means, is crucial for maximizing profit.

Unlike memcached and nhttpd, NetPIPE (Figure 6.9) shows no difference between
columns. This is because Net PIPE is a synthetic ping-pong benchmark; its throughput is the
inverse of its latency. When running on nom, NetPIPE tunes its stack to always run with

batching delay 0, minimizing latency and maximizing throughput.

6.6 Effect of batching on throughput and latency

To understand the effect of the batching delay on application throughput and latency, we ran
each application in both scenarios with a fixed batching delay between 0—40usec. Figure 6.10,
Figure 6.11, and Figure 6.12 show throughput and latency as a function of the batching delay
for memcached, nhttpd, and NetPIPE, respectively. The throughput value shown is the

30

40 " ' 110

W 38 - - 105
0 - 100
2 36 - T,
o - 95 g
> 34 - L 90 2
-ag- 32 4 - 85 L>f
g 30 - 80 qc)
- +J
> 28 - S
o - 70
5 26 :/Q_/V/ throughput —— + 65
latency
24 [[[60

0 5 10 15 20 25 30 35 40
batching delay 'w' [usec]

Figure 6.10: memcached throughput (in the many users scenario) and latency (in the single user
scenario) as a function of batching delay

8 210
— - 200
2]
g 7.5 - /R - 100
o F 180§

7 - ()
X ¥ - 1709
5 6.5 - 160 >,
= ~ 150%
= ® - 140+
o 55 - - 130
c .
o throughput —— + 120

E latency
5 ‘ ‘ ‘ 110

0 5 10 15 20 25 30 35 40
batching delay 'w' [usec]

Figure 6.11: nhttpd throughput (in the many users scenario) and latency (in the single user scenario)
as a function of batching delay

throughput achieved in the “many” scenario, which is higher than the throughput achieved in
the “single” scenario. The latency value shown is the latency achieved in the “single” scenario,
which is lower (better) than the latency achieved in the “many” scenario.

We can see that for memcached throughput achieves a local optimum at 14psec, for
nhttpd the optimum is 12usec, and for Net PIPE a delay of Opsec (no delay) is best. Latency
for all applications is best (lowest) with no batching delay, and each microsecond of batching

delay adds approximately another microsecond of latency.

6.7 Throughput/latency Pareto frontier

Varying the batching delay affects both throughput and latency. Figure 6.13, Figure 6.14, and
Figure 6.15 show (throughput, latency) pairs with selected batching delays noted above the

31

340 50
throughput ——

320 A latency
Y 300 - - 45
O ©)
S 280 - 3
': - 40 5
8_260 . :
5,240 - 35¢
5 220 1 3
2 200 L
< - 30

180 +

160 . . F 25

0 5 10 15 20 25 30 35 40
batching delay 'w' [usec]

Figure 6.12: NetPIPE throughput (in the many users scenario) and latency (in the single user scenario)
as a function of batching delay

points representing them for memcached, nhttpd, and Net PIPE, respectively. For both
memcached and nhttpd there is a clear Pareto frontier, shown in blue: a set of (through-
put, latency) pairs that are not dominated by any other (throughput, latency) pair. Taking
memcached as an example, we see that using a batching delay of 10usec can yield throughput
of approximately 38K ops/s with latency of 74usec. Using a batching delay of 32pusec (shown
as a black point with *32” above it), can also yield throughput of approximately 38K ops/s
with latency of approximately 96usec. Therefore, batching delay 10 dominates 32 because it
provides the same throughput with lower latency. With a different batching delay, memcached
can also achieve higher throughput: a batching delay of 14usec provides approximately 40K
ops/s, but not without also increasing latency to 77usec. Therefore both point 10 (38K ops/s,
74usec) and point 14 (40K ops/s, 77usec) are on the memcached throughput/latency Pareto
frontier, but point 32 is not. nhttpd’s Pareto frontier includes batching delays 0 and 6-12.
NetPIPE’s Pareto frontier includes a single point, 0.

The batching delay settings that are on the Pareto frontier produce better (throughput,
latency) pairs than all other batching delays not on the Pareto frontier, but no one point on
the Pareto frontier can be considered better than any other point on the frontier. Whereas a
performance-optimized operating system is designed to find the “best” (throughput, latency)
point for all cases, nom profit-maximizing applications pick the working point on the Pareto
frontier that maximizes their profit at any given time given current price and load. When the
price and/or load change, they may pick a different working point. Our experiments with nom

show that there is no single “best” setting for all applications, scenarios and prices.

32

110

105 »;

100 *32
95
90 - K
85 ¥
80

75 - 6 8

70 | 24
65 2

6 0 1 1 1 1

10

latency [usec]

24 26 28 30 32 34 36 38 40
throughput [1K ops/s]

Figure 6.13: The memcached throughput and latency Pareto frontier

210

0 ¥ X

*—

110 | | | | |

5 55 6 6.5 7 7.5 8

throughput [1K ops/s]

Figure 6.14: The nht tpd throughput and latency Pareto frontier

60

A A U1 WU
o U»u o wuv
T T
X

latency [usec]
w
(8]
¥
P S

0
%

N W
U O
T T

X

20 | | | | | | | |
160 180 200 220 240 260 280 300 320
throughput [Mb/s]

Figure 6.15: The NetPIPE throughput and latency Pareto frontier

33

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

34

Chapter 7

Discussion

There are two ways one could go about building a profit-maximizing operating system: based
on an existing operating system or from scratch. To turn Linux, for example, into a profit-
maximizing operating system, one could have it run applications in virtual machines using a
mechanism such as Dune [18] and provide applications with direct access using direct device
assignment [71] or VFIO [68]. The applications themselves would need to be modified to adapt
to the changing prices of resources and would still need userspace stacks and device drivers.
The primary difference between building a profit-maximizing operating system from scratch
and basing it on an existing operating system is how one constructs the kernel.

We felt that going the Linux route would have constrained the design space, so we decided
to implement nom from scratch to allow a wider and deeper investigation of the design space.
Additionally, at its core, the profit-maximizing kernel is a nonkernel: a kernel that does as little
as possible. Basing it on Linux seemed wasteful.

In addition to maximizing profits and improving performance, the nom approach has several
advantages when compared with traditional kernels and exokernels. These include reduced
driver complexity, since drivers now run completely in userspace, each driver instance serving a
single application; easier debugging, development and verification of drivers and I/O stacks, for
the same reason; a simpler and easier to verify trusted-computing-base in the form of the nom
kernel itself [46]; and a system that we hope is more secure overall, for the same reason. The
nom approach can also be useful for systems where operating power is a concern, by letting
applications tune their resource requirements to the current thermal envelope limits.

The main disadvantages of the nom approach are that it forsakes legacy architectures and
applications. It is designed and implemented for the kind of modern hardware available on
cloud servers and will not run on older bare-metal machines. Likewise, it is not at its best when
running legacy applications; realizing its benefits to the fullest extent requires some level of
cooperation and effort on the part of the application developer. We believe that in the cloud,

breaking away from legacy is no longer unthinkable.

35

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

36

Chapter 8

Related work

The nom design draws inspiration from several ideas in operating system and hypervisor
construction. In addition to the original MIT exokernel [26, 27] and single address space
operating systems [36, 50], nom also borrows from past work on userspace 1/O (e.g., [69, 64, 22,
21, 29]), virtual machine device assignment (e.g., [71, 51, 52]), multi-core aware and extensible
operating systems (e.g., [17, 47]), and library operating systems (e.g., [59, 14, 67]). It shares the
underlying philosophy of specializing applications for the cloud with Mirage [55, 54] and the
underlying philosophy of a minimal kernel/hypervisor with NoHype [41]. OSv [45] is a single
application operating system designed for running in cloud environments. Arrakis [58] and
IX [19] both provide applications with direct access to their I/O devices on bare-metal servers.
All of these operating systems, however, optimize for performance. As far as we are aware, nom
is the first and only operating system that maximizes profit by optimizing for both performance
and cost.

The case for clouds with dynamic resource pricing (RaaS clouds) was first made by Agmon
Ben-Yehuda et al. [8, 9]. On the basis of existing trends in the current IaaS industry, they
deduced that the cloud business model must change: resources must be allocated on an economic
basis, using economic mechanisms inside each physical machine. Ginseng [10] was the first
implementation of a RaaS cloud for allocating memory. It showed that running elastic memory
applications inside a traditional operating system such as Linux can be problematic due to the
kernel abstracting away the hardware.

A common theme in cloud research is optimizing for cost. EXPERT [11] and Cloudyn [1]
schedule workloads on clouds by taking into account both performance and cost. Optimizing for
multiple goals was also previously explored in the context of power consumption. Lo et al. [53]

balanced power consumption and latency. Ding et al. [23] optimized the energy-delay product.

37

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

38

Chapter 9

Conclusions and future work

Clouds with dynamic pricing pose new challenges but also provide an opportunity to rethink
how we build system software. We propose the nom profit-maximizing operating system, a new
kind of operating system that is designed and optimized for both performance and cost. The
current nom prototype shows that there is no single “best” network stack or driver. Instead, nom
applications maximize their profits by having private application-specific software stacks and
changing their behavior on the fly in response to changing resource prices and load conditions.

The current nom prototype focuses specifically on network-intensive applications in clouds
with dynamic bandwidth pricing. We are continuing to investigate profit-maximizing operating
systems along several dimensions. First, we are investigating how to extract maximal value
from every resource: CPU, memory, network, storage, and power. Second, we are investigat-
ing software and hardware mechanisms that can help applications change their behavior on
the fly, while also achieving high performance. And third, we are investigating how to con-
struct application-specific profit-maximizing I/O stacks and device drivers—preferably through

automatic code synthesis [62].

39

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

40

Bibliography

[1]
(2]

(3]

[4]
(5]

[6]

[7]

[8]

[9]

[10]

Cloudyn Use Cases (Online). https:/www.cloudyn.com/use-cases/.

GoGrid Service Level Agreement (Online). http://www.gogrid.com/legal/service-level-

agreement-sla.

Intel Xeon processor E5 v3 family. http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.
NTT Service Level Agreement (Online). http://www.us.ntt.net/support/sla/network.cfm.

Verizon Service Level Agreement (Online). http://www.verizonenterprise.com/about/

network/latency/.

ADAMS, K., AND AGESEN, O. A comparison of software and hardware techniques
for x86 virtualization. In ACM Architectural Support for Programming Languages
& Operating Systems (ASPLOS) (2006), pp. 2—13.

AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,
D. Deconstructing Amazon EC2 spot instance pricing. In IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) (2011).

AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,
D. The Resource-as-a-Service (RaaS) cloud. In USENIX Conference on Hot Topics
in Cloud Computing (HotCloud) (2012).

AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,

D. The rise of RaaS: The Resource-as-a-Service cloud. Communications of the
ACM (CACM) 57,7 (July 2014), 76-84.

AGMON BEN-YEHUDA, O., POSENER, E., BEN-YEHUDA, M., SCHUSTER, A.,
AND MU’ALEM, A. Ginseng: Market-driven memory allocation. In Proceedings of
the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments (2014), VEE ’14.

AGMON BEN-YEHUDA, O., SCHUSTER, A., SHAROV, A., SILBERSTEIN, M.,
AND I0oSUP, A. Expert: Pareto-efficient task replication on grids and clouds. In
IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2012).

41

https://www.cloudyn.com/use-cases/
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.us.ntt.net/support/sla/network.cfm
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

AMAR, L., BARAK, A., DREZNER, Z., AND OKUN, M. Randomized gossip algo-
rithms for maintaining a distributed bulletin board with guaranteed age properties.
Concurrency and Computation: Practice and Experience 21, 15 (2009), 1907-1927.

AMIT, N., BEN-YEHUDA, M., TSAFRIR, D., AND SCHUSTER, A. vIOMMU:
efficient IOMMU emulation. In USENIX Annual Technical Conference (ATC)
(2011).

AMMONS, G., SiLvA, D. D., KRIEGER, O., GROVE, D., ROSENBURG, B.,
WISNIEWSKI, R. W., BUTRICO, M., KAWACHIYA, K., AND HENSBERGEN, E. V.
Libra: A library operating system for a JVM in a virtualized execution environment.
In ACM/USENIX International Conference on Virtual Execution Environments
(VEE) (2007).

BARAK, A., GUDAY, S., AND WHEELER, R. G. The MOSIX Distributed Operating
System: Load Balancing for UNIX. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1993.

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtualization.
In ACM Symposium on Operating Systems Principles (SOSP) (2003).

BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS, R., PETER,
S., ROSCOE, T., SCHUPBACH, A., AND SINGHANIA, A. The multikernel: a new
OS architecture for scalable multicore systems. In ACM Symposium on Operating
Systems Principles (SOSP) (2009).

BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D., MAZIERES, D., AND
KozYyRAKIS, C. Dune: Safe user-level access to privileged cpu features. In

Symposium on Operating Systems Design & Implementation (OSDI) (2012).

BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S., KOZYRAKIS, C., AND
BUGNION, E. Ix: A protected dataplane operating system for high throughput and
low latency. In Symposium on Operating Systems Design & Implementation (OSDI)
(2014).

BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M., HAR’EL, N.,
GORDON, A., LIGUORI, A., WASSERMAN, O., AND YASSOUR, B.-A. The
Turtles project: Design and implementation of nested virtualization. In Symposium

on Operating Systems Design & Implementation (OSDI) (2010).

CAULFIELD, A. M., MoLLoV, T. L., EISNER, L. A., DE, A., COBURN, J., AND
SWANSON, S. Providing safe, user space access to fast, solid state disks. In ACM
Architectural Support for Programming Languages & Operating Systems (ASPLOS)
(2012).

42

[22]

(28]

[29]

[31]

CHEN, Y., BILAS, A., DAMIANAKIS, S. N., DUBNICKI, C., AND L1, K. UTLB:
a mechanism for address translation on network interfaces. SIGPLAN Not. 33
(October 1998), 193-204.

DING, Y., KANDEMIR, M., RAGHAVAN, P., AND IRWIN, M. J. A helper thread

based EDP reduction scheme for adapting application execution in cmps. In /IEEE
International Parallel & Distributed Processing Symposium (IPDPS) (2008).

DovRoOLIS, C., THAYER, B., AND RAMANATHAN, P. HIP: hybrid interrupt-polling
for the network interface. ACM SIGOPS Operating Systems Review (OSR) 35 (2001),
50-60.

DUNKELS, A. Design and implementation of the IwIP TCP/IP stack. In Swedish
Institute of Computer Science (2001), vol. 2, p. 77.

ENGLER, D. R., AND KAASHOEK, M. F. Exterminate all operating system abstrac-
tions. In USENIX Workshop on Hot Topics in Operating Systems (HOTOS) (1995),
IEEE Computer Society, pp. 78-83.

ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE JR., J. Exokernel: an
operating system architecture for application-level resource management. In ACM

Symposium on Operating Systems Principles (SOSP) (1995).

FITZPATRICK, B. Distributed caching with memcached. Linux J. 2004, 124 (Aug.
2004), 5-.

GANGER, G. R., ENGLER, D. R., KAASHOEK, M. F., BRICENO, H. M., HUNT,
R., AND PINCKNEY, T. Fast and flexible application-level networking on exokernel
systems. ACM Transactions on Computer Systems (TOCS) 20, 1 (February 2002),
49-83.

GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M., LANDAU, A.,
TSAFRIR, D., AND SCHUSTER, A. ELI: Bare-metal performance for I/O virtual-
ization. In ACM Architectural Support for Programming Languages & Operating
Systems (ASPLOS) (2012).

GORDON, A., HAR’EL, N., LANDAU, A., BEN-YEHUDA, M., AND TRAEGER,
A. Towards exitless and efficient paravirtual I/O. In The 5th Annual International
Systems and Storage Conference (SYSTOR) (2012).

GORDON, A., HINES, M., DA SILVA, D., BEN-YEHUDA, M., SILVA, M., AND
LIZARRAGA, G. Ginkgo: Automated, application-driven memory overcommitment
for cloud computing. In Runtime Environments/Systems, Layering, & Virtualized
Environments workshop (ASPLOS RESOLVE) (2011).

43

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY, S. Megapipe: A new

programming interface for scalable network /0. In Symposium on Operating Systems
Design & Implementation (OSDI) (Hollywood, CA, 2012), USENIX, pp. 135-148.

HAND, S. M. Self-paging in the Nemesis operating system. In Symposium on
Operating Systems Design & Implementation (OSDI) (Berkeley, CA, USA, 1999),
USENIX Association, pp. 73-86.

HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA, M., TRAEGER, A.,
AND LADELSKY, R. Efficient and scalable paravirtual I/O system. In USENIX

Annual Technical Conference (ATC) (2013).

HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL, S., AND LIEDTKE,

J. The mungi single-address-space operating system. Software: Practice and
Experience 28, 9 (1998), 901-928.

HINES, M., GORDON, A., SILVA, M., SiLvA, D. D., Ryu, K. D., AND BEN-
YEHUDA, M. Applications know best: Performance-driven memory overcommit
with ginkgo. In IEEE International Conference on Cloud Computing Technology
and Science (CloudCom) (2011).

Intel virtualization technology for directed I/O, architecture specification.
ftp://download.intel.com/technology/computing/vptech/Intel(r)_VT _for_Direct_IO.pdf,
Feb 2011. Revision 1.3. Intel Corporation. (Accessed Apr 2011).

ITZKOVITZ, A., AND SCHUSTER, A. MultiView and MilliPage—fine-grain sharing

in page-based DSMs. In Symposium on Operating Systems Design & Implementation
(OSDI) (1999).

JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM, S., HAN, D., AND PARK,
K. mtcp: a highly scalable user-level tcp stack for multicore systems. USENIX
Association, pp. 489-502.

KELLER, E., SZEFER, J., REXFORD, J., AND LEE, R. B. Nohype: virtualized
cloud infrastructure without the virtualization. In ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA) (New York, NY, USA, 2010), ACM.

KELLY, F. Charging and rate control for elastic traffic. European Transactions on

Telecommunications 8 (1997).

KESSLER, R. E., AND HILL, M. D. Page placement algorithms for large real-
indexed caches. ACM Transactions on Computer Systems (TOCS) 10, 4 (Nov. 1992),
338-359.

KIviTy, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A. KVM:
the Linux virtual machine monitor. In Ottawa Linux Symposium (OLS) (2007).

44

[46]

http://www.kernel.org/doc/ols/2007/01s2007v1-pages-225-230.pdf. (Accessed Apr,
2011).

KIvITY, A., LAOR, D., CoSTA, G., ENBERG, P., HAR’EL, N., MARTI, D., AND
ZOLOTAROV, V. Osv—optimizing the operating system for virtual machines. In
USENIX Annual Technical Conference (ATC) (2014).

KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK, D., DERRIN,
P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M., SEWELL,
T., TuCcH, H., AND WINWOOD, S. selL4: formal verification of an os kernel. In
ACM Symposium on Operating Systems Principles (SOSP) (2009).

KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WISNIEWSKI, R. W., XENI-
DIS, J., DA SILVA, D., OSTROWSKI, M., APPAVOO, J., BUTRICO, M., MERGEN,
M., WATERLAND, A., AND UHLIG, V. K42: building a complete operating system.
In ACM SIGOPS European Conference on Computer Systems (EuroSys) (2006).

LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX: Split guest/hypervisor
execution on multi-core. In USENIX Workshop on I/0 Virtualization (WIOV) (2011).

LEE, C. B., AND SNAVELY, A. E. Precise and realistic utility functions for user-
centric performance analysis of schedulers. In International Symposium on High
Performance Distributed Computer (HPDC) (2007).

LESLIE, 1., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P., EVERS,
D., FAIRBAIRNS, R., AND HYDEN, E. The design and implementation of an
operating system to support distributed multimedia applications. Selected Areas in
Communications, IEEE Journal on 14,7 (Sep 1996), 1280-1297.

LEVASSEUR, J., UHLIG, V., STOESS, J., AND GOTZ, S. Unmodified device driver
reuse and improved system dependability via virtual machines. In Symposium on
Operating Systems Design & Implementation (OSDI) (2004).

L1u, J., HUANG, W., ABALI, B., AND PANDA, D. K. High performance VMM-
bypass I/O in virtual machines. In USENIX Annual Technical Conference (ATC)
(2006), pp. 29-42.

Lo, D., CHENG, L., GOVINDARAJU, R., BARROSO, L. A., AND KOZYRAKIS,
C. Towards energy proportionality for large-scale latency-critical workloads. In
Proceeding of the 41st Annual International Symposium on Computer Architecuture
(Piscataway, NJ, USA, 2014), ACM/IEEE International Symposium on Computer
Architecture (ISCA), IEEE Press, pp. 301-312.

MADHAVAPEDDY, A., MORTIER, R., ROTs0s, C., SCOTT, D., SINGH, B., GAZA-
GNAIRE, T., SMITH, S., HAND, S., AND CROWCROFT, J. Unikernels: Library

45

operating systems for the cloud. In ACM Architectural Support for Programming
Languages & Operating Systems (ASPLOS) (2013).

[55] MADHAVAPEDDY, A., MORTIER, R., SOHAN, R., GAZAGNAIRE, T., HAND,
S., DEEGAN, T., MCAULEY, D., AND CROWCROFT, J. Turning down the lamp:
software specialisation for the cloud. In USENIX Conference on Hot Topics in Cloud
Computing (HotCloud) (2010).

[56] MoOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating receive livelock in an
interrupt-driven kernel. ACM Transactions on Computer Systems (TOCS) 15 (1997),
217-252.

[57] PCI SIG. Single root I/O virtualization and sharing 1.0 specification, 2007.

[58] PETER, S., L1, J., ZHANG, I., PORTS, D. R. K., W00s, D., KRISHNAMURTHY,
A., ANDERSON, T., AND ROSCOE, T. Arrakis: The operating system is the control
plane. In Symposium on Operating Systems Design & Implementation (OSDI)
(2014).

[59] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R., AND HUNT,
G. C. Rethinking the library OS from the top down. In ACM Architectural Support
for Programming Languages & Operating Systems (ASPLOS) (2011).

[60] R1zzo, L. Netmap: a novel framework for fast packet I/O. In USENIX Annual
Technical Conference (ATC) (2012).

[61] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Systems Review (OSR) 42, 5 (2008), 95-103.

[62] RYZHYK, L., WALKER, A., KEYS, J., LEGG, A., RAGHUNATH, A., STUMM, M.,
AND V1J, M. User-guided device driver synthesis. In Symposium on Operating
Systems Design & Implementation (OSDI) (Broomfield, CO, Oct. 2014), USENIX
Association, pp. 661-676.

[63] SALIM, J. H., OLSSON, R., AND KUZNETSOV, A. Beyond Softnet. In Anual Linux
Showcase & Conference (2001).

[64] SCHAELICKE, L., AND DAVIS, A. L. Design Trade-Offs for User-Level 1/O
Architectures. IEEE Trans. Comput. 55 (August 2006), 962-973.

[65] SNELL, Q. O., MIKLER, A. R., AND GUSTAFSON, J. L. Netpipe: A network
protocol independent performance evaluator. IASTED International Conference on

Intelligent Information Management and Systems 6 (1996).

[66] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS, F. C. M.,
ANDERSON, A. V., BENNETT, S. M., KAGI, A., LEUNG, F. H., AND SMITH, L.
Intel virtualization technology. Computer 38, 5 (2005), 48-56.

46

[67]

[68]

[69]

VAN HENSBERGEN, E. PR.O.S.E.: partitioned reliable operating system environ-
ment. SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006), 12-15.

VFIO driver: non-privileged user level PCI drivers. http://lwn.net/Articles/391459/,
Jun 2010. (Accessed Feb., 2015).

VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: a user-level
network interface for parallel and distributed computing. In ACM Symposium on
Operating Systems Principles (SOSP) (New York, NY, USA, 1995).

WILLMANN, P., RIXNER, S., AND C0OX, A. L. Protection strategies for direct
access to virtualized I/O devices. In USENIX Annual Technical Conference (ATC)
(2008).

YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O. Direct device

assignment for untrusted fully-virtualized virtual machines. Tech. Rep. H-0263,
IBM Research, 2008.

47

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

N DY) P09 YA 21001 DY XD MINN YO NIWARND N NP N DY VO/VOHPN TANYND
YNWYN MM Y5 HY OI9N NOMNN INPN .NNAY THPH MNNY DMV VOS/VOP IPNN
,OPODPN NN N NWYNY TV PIVD ,PO0N DY PORD P WA 952 MNaD mn Yy NN

09N AN YV NONN PHNna MHND

Y20 7 1IN PN TN PRI 720 007 WA 99O PRY DRI DN DY NIWY DMOMN
IWAND ,N9YAN MOWN N POY NING DIPNI .NINK INNY 20 RPNT IND INX N 10W N
DM OWY MOV NYIN 9901 HY DY DY Pt NNNINNN MPY T DY AN NN DOPRY MmN YO0
MMM P02 NN NY DY DARYNN RN NN NN 1AW A8 MOND 7YY 0)pnnn

M3y 20 DN D nyTY

il

P905 MM DY NPY NI NIPIRY TITINND NN YHRNYND 105M DY DNNIN N DOPNRY oY
DY DNYL INPY NDYSN MIIWNN MYIT IPYI NON DMIPYN DRD DX .Y NN P2 179N
kphial))a R tp)al

PMONN .DINYN DPNN DY DAY NIY MO NDYPN 0N MTT 295 MIDNY NOYaN NN NN DN
MYTIN VOO/VOP NPNNY NP MY IR D) ,DXONNN PN H95 , 010 HY ONWN P57 DY
,DANYI VO 70N DD DA LAVARN D95 DOYTY DINND YWD DY NIDIND WAND TYpn [phnd
MNoOY MDY MY DN DY MYIW NMIDIN HYNID D .0MYY IIMNNY TY DY DN ,DMNX DY WM
TYPN)XY JIOW PR MPN) DX MO PR 29T MY ,Ja8ya JobY DOVINN NN TIRT
VY9/V5PN HIHONI BN SV NDON SV MAMYN DO 1Y WO DIMINY VOS/VOPN PANYNID 1INy

DANYNN DY DNV DPNND YT TN NN 95 NN MYIY | .0 DWHYIN

NNAN” SN VITOPN T NIV N ,NYIL SDDIVIN YIDY MUYNNYNI NN DINN * NTaya
NN JPNN SN X OONTNR TN (TCP/IP stack) nwa 5951 px ona .memcached w5 "7
0N MY YN NNX NIDIND ONTRY 1IN JPNN NN N DY D19OoNY Dwn ONTN TN
9991 D) PHY NOYW VO9/VOPN NPNND NPYW MY W DN YY NI MIOIN Y95 NN DIPHI NN
NNY DY MNON AN N O9DON MY D09 TIMN NPNN YN NHYN M09 NYA
95 NVYNTVYN NN NAY NYIN DY DN AN DY YN MDY AIPN P 10N MIDNN SV NOnY
HMNM ,N9Y NYIN 20510 MDMINN ,NNHMNN NIN NI 7T N INYO N9 DN DY NNV MDIN
YO M1 O Sy MW MINN Svnd T5 INYN DN M MOYWd MDY NIINN MHPNN 0NN

D91 2N HY ANONN YPNHNI MOND NYIT MPPIN MOaAPMm N Jn DNIAY NIRNM A8PN NN

(latency) Pnvnn ,mpoon v (throughput) NYIN PODN DINYN 190N 29D MTTNRI MY NNION
NN 4HI1 MYNNIVYNR DN DY MXIW NN .PNIYNN DY (jitter) T 0NN JOY MNMponv
PX RN ITIAYA I P JNNMNN AN INYY PR NYTH 70 DY "nHnn mrspng” RIApWY OPNunn
PIMMPY IR NN NYIYI MINN NIV ,DWNY DY NDDIAN 7PXPNY NONN NPEPNS YDV DIPIN
DTN MOINN DAY [, MNN DY NDOINN PPN [, TIN 7PNIYN 22D PIMIPNNNA NTY NYNYD
PSP NV AT NN DOND DNV TPIYNNY 955 mMHYY DIDDNN TN TN PON Mmmpso
ANY DM DNY NPADN NN PAYNNY Y35 MoINN DX DOMNN MNPYN NaY ,PINn Novian
PIVN ,PADN P2 M 1N POR NONX VONND MDD DN DY MYIW NMIDIN ,NONNN NPIPN NRY2
S¥ NONN PN MYND ,)PANT N DOPY POND DX 1IN DN MNDPHN NPSYON TN
DOV NNE DY T DN D001 DX .NINIY NPSPNS XVID NYPY NN DNNI MYV .09 2NN

901 M) YNNI NN DN DAIPNI NN YYD INTOY

MM VDY P Mt 0190 ax KVM niawnn nnn nndoniv mnona NI 0N YY D10 ax 2
YT Y0 AWRD ON TN VISV DY S 1M 7T NNan” NY 00PN 29T N mnTO
NN 9Y 0 M §0 AURD TNOIN JMIN WUND NP DM DNNT 0N DI D) MPWn 0N Yy
VIDY DN DY 0791 Yo NTYvHN AwTn nbyan noayn ,0Sv by i opvh mwenn nbysnn
YT Y N0 AWM 3.9 %9 575 Ty 10 WA PN ,11.1 29 3T TY DAV NN MPYN MDINN

9.1

YN "ANYND NPT NNo MOIN 0 D NP D0 DA MPYN DN DY M8 oM
DPY DYDY WY ANKRD NP D0 DN TIPYH 0 NNYHN P9 DN P DINMH DMIAYIN

ii

PNPN

,(Infrastructure-as-a-Service, [aaS) mMPYo 7PNYN "Mya XYM MMOYN 2WNHND MK 9NM NP
NIUN DXOID DY NNNXY TN 95 .50 NIAN N PHX NN OY MPYD PRYNN MY Sund wmd
YN MO DN MPYD TPNVUN MY 92010 SN2 1IWNN N MPYI TPNYN S0YN NOWH 09
SY (NONN MMM DY NI, DXTaPN) DHHAN DIANYAN NRYL NPONIVP MNOH TIN MM

JPYN MNoNn

(Resource-as- M YD ANWNI Y0 19971 MPYI TPNVAN MNYY DOPHNND DN PPOYIY MDD SNy ¥
NPT MINVM PN TN Y’y VOWIN PN PP AN D30 MWD AW Mya .a-Service, RaaS)
NN SY MDY NONNN NPPYNVM NN DIARYA NPIVN DY MV NINNN NPPYNN)1 NNN
DN 0N MNHY NN DPINDN DNYL O 925 YN TN SNY MXID 1))R DIRYD

DDIDN DIANYN NIY MNYN PNHD DX DNIYNN PN 0PN 925,30 DY

N2 0 NYTN TIT DOYMND ,MPYD ARYN Y NP Ty N NN, PV TINYN SNYY mnd
NN DY PYA DPN DY TPHRIOD NN Y5 VYN VNP YARYNA YHNWND ,NOND IIpY 1)
NIV DIINN NIAY MM BN NHYAN MO TINON DPIND D IIYPN NOYON MOWYH YN
N5V oY MW TN MPODN 10 .T292 TAN M 2WNN DY Nayy MTYPD DNVY a0 Nyt
YTYOIN WIDYD DIPI AWNNN SANYND YOV MMM PHNNNY DN DX NPNDHY DAy Nvvan
PY2 DN MYNNIYH 1Y DARYNNIY)10 NAON X MYTY RO J0 ,MINK N1 MY 95 NOY
DOANYND NPT PIRN YNNI DMPYN NNNIND SUnd w1 Pa MNVND 515 DPNNYY 0D DY

PR OYON MOYN J9HNND PASY PYO NYPRNND PN ON INYPHD NOYIN MOWNY DIN0 DN
95 NOO LY T DY NPV AVARD HID DN DIV PIDY ,NNYNRID YNRID MNDINN
DXANYNN MDY IWND P9 09N, DM DAY D 1 Oy DWATIN DANYNN MOY2 MIAVYNNN
M PN LAINAP MOYN DX .NIAVYND NN NN /MDD NN PR DR MOYN OX WP X R
ND ,DVIP KDY DR KXY DPNNN DNV ,DINYN OPNN DY DNYIY DMV DX DD MUYH
DN MNOPHNY NDYaN MOWN NIND PIY ,DIPNI OROY NNV NYaN MOIYN PID INTD
) PWN T DY OYOPOPN ONNT N2 DVHNNYND PYND MNDIND DNNT MNOPHN NOYON MoIyn
MNDPRK NYYON MOIWNY NTIAYN TYHRNL DXIN DX DIMDY P2 DI P NoMN P MY P2
oY WY NN YMRY MNITN 5T 7O M AT JPDY MW MIDIND NAND MY PN

TN NOYON MOWN

P2 .DOY INPY NDYSNN MOIWNI 12PN MPYD INYN MDYV DMPYN NN R 1Ty DIPID DN
IOIND WAND MIAPN PP JNOOY DNN DAXWNN 55¥ MDD AN DI XD NHYSN MOIWYN 1N

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

AVNNN YTND NVNPA 1IN)T 'N1N9 DV INPMINT YN IPNnN

POMYI 2NNN TIND DN MDNY JPOY DOINN M NDAY IHINNHM I NN MXHNN I PN
NP NPIDTYN MRDDN .I2NNN DY T0DIRNY IPNRN NNPAN ToNNA NY-IANI DI pPHnd
PN NON ONINN HY

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The rise of RaaS: The
Resource-as-a-Service cloud. Communications of the ACM (CACM), 57(7):76-84, July 2014.

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vVIOMMU: efficient IOMMU emulation.
In USENIX Annual Technical Conference (ATC), 2011.

Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, and Ahuva Mu’alem.
Ginseng: Market-driven memory allocation. In ACM/USENIX International Conference on Virtual
Execution Environments (VEE). 2014.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Deconstructing Amazon
EC2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC), 1(3):16:1,
September 2013.

Muli Ben-Yehuda, Omer Peleg, Orna Agmon Ben-Yehuda, Igor Smolyar, and Dan Tsafrir. The nonkernel:
A kernel designed for the cloud. In Asia Pacific Workshop on Systems (APSYS), 2013.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Dan Tsafrir, and Assaf
Schuster. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2012.

Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory overcommit with Ginkgo. In IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2011.

mmn

DT, NI NPHY NN IHN AT PN NN, IPATHN SNYUND MTIND NN TPUNA
NN NN R AN DY DMNTIN YT MTIND MNNID TV INND DY N IOINY NN In? IMIN
PMNNN NN ITDXR XD DOWNY T DY 0TI’ 12 0PY ORY NS DY MTIND NN PN Mynun)
STIN YTV AWK ,INIP YIND) NOPO HPMNHo MTINY MN¥IA NHDID ONONS NN TITIYD O) P2
AP inn

DIMIND OIWYD YNIDN YN DOV TYNI .M DOV Mt NN DY 0N NDYsnn NoYN Sy 'nTay
1D9Y TAYY TIND PTPIM—D915Y MTIND MN¥I D37 DI DVIR DY T2

R PPN SV HOPbhN P DY PIDVS NMDN DTN NION

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

"0 ©NNIN NNOPNN NPYONN NIIYN

PPN Oy NN

MINN NOAPO MUITH HY PN "o DYH
VNN PYTHI DY TNHD IOOMN

NI (05m) SNV

NI MNTNOV N1ON T PIDVN VIDD YN
2015 NN non YWnn M

GTOZ - ST-STOZ-OSIN SIS8yL 05" Al - uslileda 80Us10S JeindwioD - uoiuyos |

"0 ©NNIN NNOPNN NPYONN NIIYN

N2 (051) SNV

	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Motivation
	2.1 Dynamic resource pricing is coming
	2.2 Dynamic pricing mandates change

	3 Design
	3.1 Requirements
	3.2 Principles
	3.3 CPU and scheduling
	3.4 Memory management
	3.5 I/O devices
	3.6 Networking
	3.7 Storage
	3.8 Price-awareness

	4 Economic model and utility of network bandwidth
	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Performance
	6.3 What makes nom fast?
	6.4 Profit
	6.5 What makes nom profitable?
	6.6 Effect of batching on throughput and latency
	6.7 Throughput/latency Pareto frontier

	7 Discussion
	8 Related work
	9 Conclusions and future work
	Bibliography
	Hebrew Abstract

