
The nom Profit-Maximizing Operating
System

Shmuel (Muli) Ben-Yehuda

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



The nom Profit-Maximizing Operating
System

Research Thesis

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

Shmuel (Muli) Ben-Yehuda

Submitted to the Senate

of the Technion — Israel Institute of Technology

Iyar 5775 Haifa May 2015

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



This research thesis was done under the supervision of Prof. Dan Tsafrir in the Computer

Science Department.

Some results in this thesis as well as results this thesis builds on have been published as articles

by the author and research collaborators in conferences and journals during the course of the

author’s master’s research period. The most up-to-date versions of these articles are:

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The rise of RaaS: The
Resource-as-a-Service cloud. Communications of the ACM (CACM), 57(7):76–84, July 2014.

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vIOMMU: efficient IOMMU emulation.
In USENIX Annual Technical Conference (ATC), 2011.

Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, and Ahuva Mu’alem.
Ginseng: Market-driven memory allocation. In ACM/USENIX International Conference on Virtual
Execution Environments (VEE). 2014.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Deconstructing Amazon
EC2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC), 1(3):16:1,
September 2013.

Muli Ben-Yehuda, Omer Peleg, Orna Agmon Ben-Yehuda, Igor Smolyar, and Dan Tsafrir. The nonkernel:
A kernel designed for the cloud. In Asia Pacific Workshop on Systems (APSYS), 2013.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Dan Tsafrir, and Assaf
Schuster. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2012.

Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory overcommit with Ginkgo. In IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2011.

ACKNOWLEDGEMENTS

First and foremost, I’d like to thank my amazing wife, friend, co-author, and advisor, Orna

Agmon Ben-Yehuda. You taught me more than you will ever know. Second, I’d like to thank

my amazing children, Yael and Ze’ev, who make it all worthwhile. Third, I’d like to thank my

parents, Yoel and Irit Ben Yehuda, for having kept faith all these years, even when my path

meandered. Last, I’d like to thank Michael Factor and Orran Krieger, who taught me what it

means to do research.

The nom operating system and this thesis have been in the making for a long time. During

the years I worked on them, I published nearly twenty papers co-authored with many wonderful

people. I’d like to thank all of them—it has been great working with you!

The generous financial support of the Technion is gratefully acknowledged.

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Contents

List of Figures

Abstract 1

Abbreviations and Notations 3

1 Introduction 5

2 Motivation 9
2.1 Dynamic resource pricing is coming . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dynamic pricing mandates change . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Design 11
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 CPU and scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.4 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 I/O devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.7 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.8 Price-awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Economic model and utility of network bandwidth 17

5 Implementation 21

6 Evaluation 23
6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 What makes nom fast? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 Profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.5 What makes nom profitable? . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.6 Effect of batching on throughput and latency . . . . . . . . . . . . . . . . . . . 30

6.7 Throughput/latency Pareto frontier . . . . . . . . . . . . . . . . . . . . . . . . 31

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



7 Discussion 35

8 Related work 37

9 Conclusions and future work 39

Hebrew Abstract i

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



List of Figures

1.1 Cloud economic model: Applications run in the cloud. Users pay the application owner

for the service the application provides. The application owner in turn pays the cloud

provider for the cloud resources the application uses (e.g., network bandwidth). . . . . 5

3.1 Traditional kernel structure compared with nom’s kernel structure. . . . . . . . . . . 12

6.1 memcached throughput and latency . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 nhttpd throughput and latency . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.3 NetPIPE throughput and latency . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.4 memcached profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.5 nhttpd profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.6 NetPIPE profit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.7 memcached profit: static vs. adaptive behavior . . . . . . . . . . . . . . . . . . . 29

6.8 nhttpd profit: static vs. adaptive behavior . . . . . . . . . . . . . . . . . . . . . 29

6.9 NetPIPE profit: static vs. adaptive behavior . . . . . . . . . . . . . . . . . . . . 30

6.10 memcached throughput (in the many users scenario) and latency (in the single user

scenario) as a function of batching delay . . . . . . . . . . . . . . . . . . . . . . . 31

6.11 nhttpd throughput (in the many users scenario) and latency (in the single user sce-

nario) as a function of batching delay . . . . . . . . . . . . . . . . . . . . . . . . 31

6.12 NetPIPE throughput (in the many users scenario) and latency (in the single user

scenario) as a function of batching delay . . . . . . . . . . . . . . . . . . . . . . . 32

6.13 The memcached throughput and latency Pareto frontier . . . . . . . . . . . . . . . 33

6.14 The nhttpd throughput and latency Pareto frontier . . . . . . . . . . . . . . . . . 33

6.15 The NetPIPE throughput and latency Pareto frontier . . . . . . . . . . . . . . . . 33

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Abstract

In the near future, cloud providers will sell their users virtual machines with CPU, memory,

network, and storage resources whose prices constantly change according to market-driven

supply and demand conditions. Running traditional operating systems in these virtual machines

is a poor fit: traditional operating systems are not aware of changing resource prices and their

sole aim is to maximize performance with no consideration of costs. Consequently, they yield

low profits.

We present nom, a profit-maximizing operating system designed for cloud computing

platforms with dynamic resource prices. Applications running on nom aim to maximize profits

by optimizing for both performance and resource costs. The nom kernel provides them with

direct access to the underlying hardware and full control over their private software stacks. Since

nom applications know there is no single “best” software stack, they adapt their stacks’ behavior

on the fly according to the current price of available resources and their private valuations

of them. We show that in addition to achieving up to 3.9x better throughput and up to 9.1x

better latency, nom applications yield up to 11.1x higher profits when compared with the same

applications running on Linux and OSv.

“And in this too profit begets profit.”

—Aeschylus

1

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



2

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Abbreviations and Notations

IaaS : Infrastructure-as-a-Service

RaaS : Resource-as-a-Service

NIC : Network Interface Card

PIO : Programmed I/O

MMIO : Memory-Mapped I/O

DMA : Direct Memory Access

SLA : Service Level Agreement

SLO : Service Level Objective

3

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



4

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 1

Introduction

More and more of the world’s computing workloads run in virtual machines on Infrastructure-

as-a-Service (IaaS) clouds. Often these workloads are network-intensive applications, such

as web servers or key-value stores, that serve their own third-party users. Each application

owner charges the application’s users for the service the application provides, thereby generating

revenue. The application owner also pays her cloud provider for the virtual machine in which

the application runs, thereby incurring expenses. The difference between the application owner’s

revenue and her expenses—and the focus of this work—is the application owner’s profit, which

she would naturally like to maximize. We depict this cloud economic model in Figure 1.1.

The application owner’s revenue depends on her application’s performance. For example,

the more simultaneous users the application can serve, the higher the revenue it generates. The

application owner’s expenses, on the other hand, depend on how much she pays the cloud

provider. Today’s IaaS cloud providers usually charge application owners a fixed sum per virtual

machine that does not depend on market conditions. In previous work, we showed that the

economic trends and market forces acting on today’s IaaS clouds will cause them to evolve into

Resource-as-a-Service (RaaS) clouds, where CPU, memory, network, and storage resources

have constantly changing market-driven prices [8, 9, 10]. In RaaS clouds, the cloud providers

will charge the application owners the current dynamic market prices of the resources they use.

IaaS clouds, and to a larger extent, RaaS clouds, represent a fundamentally new way of

$

$

$

$

$

$
$

Users

Cloud Provider Application

Figure 1.1: Cloud economic model: Applications run in the cloud. Users pay the application owner for
the service the application provides. The application owner in turn pays the cloud provider for the cloud
resources the application uses (e.g., network bandwidth).

5

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



buying, selling, and using computing resources. Nevertheless, nearly all virtual machines

running in today’s clouds run the same legacy operating systems that previously ran on bare-

metal servers. These operating systems were designed for the hardware available decades

ago. They abstract away the underlying hardware from their applications and assume that

every resource is at their disposal at no cost. Most importantly, they were designed solely for

maximizing performance with no regard for costs. They neither know nor care that the resources

they use in the cloud cost money, and that their prices might change, e.g., due to changes in

supply and demand.

We argue that in clouds with dynamic pricing, where costs can be substantial and resource

prices constantly change, running operating systems designed solely for performance is coun-

terproductive and may lead to lower profits and even net losses. Such clouds call instead for a

profit-maximizing operating system, designed to yield maximal profit by optimizing for both

performance and cost. Maximal profit is reached not when revenue (performance) is highest but

rather when the difference between revenue (performance) and expenses (cost) is highest. As

such, profit-maximizing operating systems enable their applications to pick the right level of

performance to operate at given current market conditions and resource prices. We show that

applications running on a profit-maximizing operating system can yield an order of magnitude

higher profit when compared with the same applications running on operating systems that

optimize for performance exclusively.

We begin by presenting in greater depth the motivation for a profit-maximizing operating

system. In Chapter 2, we present two ongoing trends that we believe will cause today’s IaaS

clouds to evolve into RaaS clouds with dynamic resource pricing. They are the increasingly

finer spatial granularity and the increasingly finer temporal granularity of resources that can be

allocated to guest virtual machines. We then present the changes that such clouds mandate in

the system software stack.

In Chapter 3, we present nom, a profit-maximizing operating system we designed for clouds

with dynamic pricing. Applications running on nom aim to maximize their profits from the

resources available to them. We describe how nom’s approach to CPU allocation and scheduling,

application memory management, private and direct access to I/O devices, and cost-aware

design, can all contribute to maximizing application profits by improving performance and

reducing costs.

We showcase and evaluate nom’s capabilities using network-intensive applications. We

present three main applications, the memcached in-memory key-value store [28], the nhttpd

web server, and the NetPIPE networking benchmark [65]. The performance of a network-

intensive application is usually expressed through its throughput, latency, and jitter. The expenses

the application incurs depend on the amount of bandwidth it uses (i.e., its throughput) and the

current price of network bandwidth. Since the price of bandwidth is beyond the application’s

control, the application can only maximize its profits by controlling its throughput, which affects

both revenue and expenses, and the latency and jitter its users experience, which affect its

revenue.

In Chapter 4, we use utility (valuation) functions to formalize the relationship between

6

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



application throughput, latency, jitter, and the cost of network bandwidth. An application’s

valuation function provides the application’s expected profit from a certain mix of throughput,

latency, and jitter, give the current price of network bandwidth and the load the application is

under. For example, the simplified valuation function in Equation (1.1) is a formalization of

the scenario where the application owner benefits from increased throughput (T), but only as

long as the application’s users’ average latency is below a certain latency service level objective

(SLO) and the price the application owner pays her cloud provider (P) per bandwidth unit is

lower than her benefit from that bandwidth unit (α).

profit =

T · (α− P ) latency ≤ latency SLO

0 latency > latency SLO
(1.1)

We consider three potential valuation functions that differ in how the application’s users

pay for the service the application provides to them. We acknowledge that building valuation

functions is hard, but we believe it is worthwhile to do so in light of the substantially higher

profits it yields.

Our profit-maximizing applications re-evaluate their valuation functions at runtime whenever

the price of bandwidth or the load they are under change, picking each time the mix of throughput,

latency, and jitter that maximizes their valuation function at that point in time. To enable each

nom application to have fine-grained control over its throughput, latency, and jitter, nom provides

each application with direct access to the virtual or physical NICs the application uses and with

a private TCP/IP stack and network device drivers, linked into the application’s address space.

Each application can control its private stack’s throughput, latency, and jitter, by modifying the

stack’s batching delay: the amount of time the stack delays incoming or outgoing packets in

order to batch them together. Larger batching delays increase throughput (up to a limit) while

also increasing latency and jitter. Smaller batching delays reduce latency and jitter but also

reduce throughput. In nom, there is no “best” TCP/IP stack or “best” NIC device driver as in

other operating systems, because there is no single stack or driver that will always provide the

right mix of throughput, latency, and jitter, to every application at any given time.

We discuss the implementation of our nom prototype in Chapter 5 and evaluate it in

Chapter 6. We show that nom’s memcached, nhttpd, and NetPIPE outearn as well as

outperform the same applications running on Linux and on the OSv single-application cloud

operating system [45]. When running on nom, our benchmark applications yield up to 11.1x

higher profits from their resources while also achieving up to 3.9x better throughput and up to

9.1x better latency.

In Chapter 7 we discuss the pros and cons of writing a new profit-maximizing operating

system from scratch vs. constructing it based on an existing operating system such as Linux. In

Chapter 8 we survey related work and in Chapter 9 we summarize the lessons we have learned

building nom and the challenges that remain.

7

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



8

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 2

Motivation

2.1 Dynamic resource pricing is coming

We have identified in previous work [8, 9] two important trends that we believe will lead to

RaaS clouds, where different resources have constantly changing prices. These trends are

already apparent in current IaaS clouds and their underlying hardware. They are the increasingly

finer spatial granularity of resources that can be allocated to guest virtual machines and the

increasingly finer temporal granularity in which resources can be allocated.

Both trends can be seen all the way down to the hardware. Intel Resource Director Tech-

nology, for example, enables cloud providers to monitor each virtual machine’s CPU cache

utilization and allocate specific cache ways to selected virtual machines [3]. Mellanox Connect-

X2 and later NICs enable cloud providers to allocate adapter network bandwidth to up to 16

virtual machines and adapt the allocation in microsecond granularity.

Although most IaaS cloud providers today do not (yet) take advantage of such capabil-

ities, they already provide limited dynamic pricing and are moving towards fully dynamic

resource pricing. VMTurbo, for example, manufactures a private-cloud management layer that

relies on resource pricing and an economic engine to control ongoing resource consumption.

CloudSigma’s pricing algorithm allows pay-as-you-go burst pricing that changes over time

depending on how busy their cloud is; this algorithm prices CPU, RAM, and outgoing network

bandwidth separately. Perhaps most notably, Amazon’s EC2 spot instances have a dynamic

market-driven price [7] that changes every few minutes.

Why are cloud providers going in this direction? Is it not simpler for everyone to just keep

the price fixed? By frequently changing the price of different resources based on available

supply and demand, cloud providers can communicate resource pressure to their clients (the

applications/application owners) and influence their demand for these resources. By conveying

resource pressure to clients, cloud providers incentivize their clients to economize when needed

and consume less of the high-demand resources. By causing clients to economize, the cloud

provider can improve machine density and run more client virtual machines on the same

hardware and with the same power budget. Higher machine density means lower expenses,

increased profits, and better competitiveness. Improving profit margins by doing more work with

9

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



the same hardware is especially important given the cloud price wars that have been ongoing

since 2012 [9].

2.2 Dynamic pricing mandates change

A cloud with market-driven per-resource pricing differs from the traditional bare-metal platform

in several important areas: resource ownership, economic model, and architectural support.

These differences motivate changing the system software stack, and in particular, the operating

systems and applications.

Resource ownership and control. On a traditional bare-metal server, the operating system

is the sole owner of every resource. If the operating system does not use a resource, nobody else

will. In a dynamic pricing cloud, the operating system (running in a virtual machine) unwittingly

shares a physical server with other operating systems running in other virtual machines; it

neither owns nor controls physical resources.

Economic model. In the cloud, each operating system owner (cloud user) and cloud

provider constitute a separate, selfish economic entity. Every resource that the cloud provider

makes available to users has an associated price. Each user may have a different incentive,

different metrics she may want to optimize, and different valuations for available resources. The

cloud provider may want to price its resources to maximize the provider’s revenue or the users’

aggregate satisfaction (social welfare) [10]; one cloud user may want to pay as little as possible

for a given amount of work carried out by its virtual machines; another cloud user may want

to maximize the work carried out, sparing no expense. But in all cases, in the cloud, the user

pays the current going rate for the resources her operating system uses. On a traditional server,

resources are simply there to be used at no cost.

Resource granularity. On a traditional server, the operating system manages entire re-

sources: all cores, all of RAM, all available devices. In the cloud, the operating system will

manage resources in an increasingly finer-grained granularity. This is a consequence of the

economic model: once resources have prices attached to them, it is more efficient for both cloud

provider and cloud users to be able to buy, sell, or rent resources on increasingly finer scales [8].

Architectural support. Operating systems running on traditional servers usually strive to

support both the ancient and the modern. Linux, for example, only recently dropped support

for the original Intel 386. Modern x86 cloud servers have extensive support for machine

virtualization at the CPU, MMU, chipset, and I/O device level [66]. Modern I/O devices are

natively sharable [57]. Furthermore, cloud servers usually present the operating systems running

in virtual machines with a small subset of virtual devices. We contend that any new operating

system designed for the cloud should eschew legacy support and take full advantage of the

virtual and physical hardware available on modern servers.

10

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 3

Design

3.1 Requirements

Given the fundamental differences between the traditional bare-metal and the cloud run time

platforms, we now ask: What requirements should be imposed on an operating system designed

for running in virtual machines on cloud servers with dynamic pricing?

Maximize profit. The first requirement is to enable applications to maximize their profit.

When resources are free, applications only have an incentive to optimize for performance.

Performance is usually measured in some application specific metric, e.g., in cache hits per

second for an in-memory cache or in transactions per second for a database. In the cloud,

where any work carried out requires paying for resources and every resource has a price that

changes over time, applications would still like to optimize for performance but now they are

also incentivized to optimize for cost. Why pay the cloud provider more when you could pay

less for the same performance? Thus the operating system should enable its applications to

maximize their profits by enabling them to optimize for both performance and cost.

Expose resources. On a traditional server, the operating system’s kernel serves multiple

roles: it abstracts and multiplexes the underlying hardware, it serves as a library of useful

functionality (e.g., file systems, network stacks), and it isolates applications from one another

while letting them share resources. This comes at a price: applications must access their

resources through the kernel, incurring run-time overhead; the kernel manages their resources in

a one-size-fits-all manner; and the functionality the kernel provides, “good enough” for many

applications, is far from optimal for any specific application.

In clouds with dynamic pricing, the kernel should get out of the way and let applications

manage their resources directly. Moving the kernel out of the way has several important

advantages: first, applications become elastic. They can decide when and how much of each

resource to use depending on its current price, thereby trading off cost with performance,

or trading off the use of a momentarily expensive resource with a momentarily cheap one.

For example, when memory is expensive, one application might use less memory but more

bandwidth while another might use less memory but more CPU cycles. Second, applications

know best how to use the resources they have [26, 37, 32]. An application knows what paging

11

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



App1 App2 App3 App1 App2 App3

Traditional kernel
n
o
m

Figure 3.1: Traditional kernel structure compared with nom’s kernel structure.

policy is best for it, or whether it wants a NIC driver that is currently optimized for throughput

or for latency or for some combination of both, or whether it needs a small or large routing table.

The kernel, which has to serve all applications equally, cannot be designed and optimized for

any one application. Exposing physical resources directly to applications means that nearly all

of the functionality of traditional kernels can be moved to application level and tailored to each

application’s specific needs.

Isolate applications. When running in a virtual machine on a modern server, the operating

system’s kernel can rely on the underlying hardware and on the hypervisor for many aspects

of safe sharing and isolation for which it was previously responsible. For example, using an

IOMMU [38], the kernel can give each application direct and secure access to its own I/O device

“instances” instead of multiplexing in software a few I/O devices between many applications.

Those instances may be SRIOV Virtual Functions (VFs) [57, 30] or they may be paravirtual I/O

devices [16, 61, 31, 35].

3.2 Principles

The primary distinguishing feature of nom is that it enables applications to maximize their

profits by (1) optimizing their entire software stack’s behavior for both performance and cost;

and (2) changing their behavior on the fly according to the current price of resources. As seen in

Figure 3.1, traditional operating systems have a kernel that sits between applications and their

I/O devices. The nom kernel, on the other hand, provides every application with safe direct

access to its resources, including in particular its I/O devices. Recently proposed operating

systems such as the cloud-targeted OSv [45] and Mirage [55, 54], or the bare-metal operating

systems IX [19] and Arrakis [58], all of which can be considered to provide direct access of

some sort, use it purely for performance. In nom, direct access enables each application to have

its own private I/O stacks and private device drivers that are specialized for that application.

The nom kernel itself is minimal. It performs three main functions: (1) it initializes the

hardware and boots; (2) it enumerates available resources such as CPU cores, memory, network

devices, and storage devices (and acts as a clearing house for available resources); and (3) it

runs applications. Once an application is launched, it queries the kernel for available resources,

acquires those resources, and from then on uses them directly with minimal kernel involvement.

12

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



3.3 CPU and scheduling

On startup, a nom application acquires one or more cores from the kernel. From then on

until it relinquishes the core or cores, the application performs its own scheduling using user

threads. The rationale behind user threading is that only the application knows what task will be

profitable to run at any given moment on its CPU cores. Applications relinquish cores when

they decide to do so, e.g., because the cores have grown too expensive.

The nom design minimizes the kernel’s involvement in application data paths. Applications

can make system calls for control-plane setup/teardown operations, e.g., to acquire and release

resources, but high performance nom applications are unlikely to make any system calls in their

data paths, since their software stacks and device drivers run entirely in user space. Furthermore,

nom applications handle their own traps and interrupts. Ideally, they will handle traps and

interrupts without any kernel involvement. Since it is possible to inject traps and interrupts

directly into virtual machines [30], ultimately the nom kernel will run its applications in guest

mode using machine virtualization support [6]. This is also the approach taken by the bare-metal

Dune [18] and IX [19] operating systems. Unlike Dune and IX, however, nom is targeted

primarily at cloud environments, and no cloud provider currently supports hardware-assisted

nested virtualization [20]. We therefore choose to run the nom kernel in ring 0 and nom

applications in ring 3, without relying on the availability of nested virtualization support. Since

it is not yet possible to inject traps and interrupts directly into ring 3 applications, the nom kernel

receives traps and interrupts on behalf of applications in ring 0 trampolines and injects the trap

or interrupt into its target application.

3.4 Memory management

Each nom application runs in its own kernel-provided address space, unlike unikernel operating

systems such as OSv [45] and Mirage [55, 54], where there is a single global address space. Each

nom application manages its own page mappings, unlike applications in traditional operating

systems. The kernel handles an application’s page fault by calling the application’s page fault

handler from the kernel trampoline and passing it the fault for handling. The application would

typically handle page faults by asking the kernel to allocate physical memory and map pages on

its behalf. This userspace-centric page fault approach provides applications with full control

over their page mappings, cache coloring [43], and the amount of memory they use at any

given time. There is no kernel-based paging; applications that desire paging-like functionality

implement it on their own [34]. The kernel itself is non-pageable but its memory footprint is

negligible.

3.5 I/O devices

The nom kernel enumerates all available physical devices on start-up and handles device hot-plug

and hot-unplug. The kernel publishes resources such as I/O devices to applications using the

13

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



bulletin board, an in-memory representation of currently available resources that is mapped into

each application’s address space. (The bulletin board was inspired by MOSIX’s [15] distributed

bulletin board [12].) When an application acquires a device resource, the kernel maps the

device’s memory-mapped I/O (MMIO) regions in the application’s address space and enables

the application to perform programmed I/O (PIO) to the device. The application then initializes

the device and uses it.

Most modern devices, whether virtual devices such as virtio [61] and Xen’s frontend and

backend devices [16], or natively-sharable SRIOV devices [57], expect to read and write memory

directly via direct memory access (DMA). Since nom’s model is that applications bypass the

kernel and program their devices directly, devices driven by nom applications should be able

to access the memory pages of the applications driving them. At the same time, these devices

should not be able to access the memory pages of other applications and of the kernel.

The way nom handles DMA-capable devices depends on whether the virtual machine has

an IOMMU for intra-guest protection [70]. Providing virtual machines with IOMMUs for

intra-guest protection requires either an emulated IOMMU [13] or a two-level IOMMU such as

ARM’s sMMU or Intel’s VT-d2. When an IOMMU is available for the virtual machine’s use,

the nom kernel maps the application’s memory in the IOMMU address space of that device and

subsequently keeps the MMU’s page tables and the IOMMU’s page tables in sync.

As far as we know, no cloud provider today exposes an IOMMU to virtual machines. To

enable nom applications to drive DMA capable devices even when an IOMMU is not present,

the nom kernel can also run applications in trusted mode. In this mode the kernel exposes

guest-virtual to guest-physical mappings to applications and applications program their devices

with these mappings. This means that in trusted mode, the kernel and every application in the

same nom instance implicitly trust every other application not to take over the virtual machine

by programming a device to write to memory they do not own. Strong isolation in the presence

of untrusted applications can be provided by running untrusted applications in their own nom

instances.

When a device owned by a nom application raises an interrupt, the kernel receives it and

the kernel trampoline calls a userspace device handler registered by the application driving that

device. It is the application’s responsibility to handle device interrupts correctly: acknowledge

the interrupt at the device and interrupt controller level and mask/unmask device interrupts as

needed. Once nom applications run in guest mode, we expect device interrupts to be injected

directly to the application [30].

It is well known that device polling may lead to better performance than interrupts but

interrupts can reduce CPU utilization [24, 56, 39, 63, 48]. Since nom applications have full

control over their software stacks and their devices, they decide when to wait for interrupts and

when to poll devices directly, thereby trading off CPU cycles for performance.

14

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



3.6 Networking

The nom operating system provides a default userspace network stack, based on the lwIP

network stack [25], and default network device drivers, including a driver for the virtio [61]

virtnet virtual network device. Applications that want to link and run with the default network

stack and network device drivers are welcome to do so. Applications that wish to yield even

higher profits are encouraged to run with their own customized network stack and network

device drivers. The default stack and drivers are provided as a convenience and as a basis for

modifications, not because applications must use them.

To enable applications running with the default network stack and virtnet device driver to

adapt their behavior on the fly, the stack and driver support run time tuning of their behavior via

the batching delay. The batching delay controls the stack’s and driver’s behavior when sending

and receiving packets. Applications can use the batching delay to trade-off throughput, latency,

and jitter. Setting the batching delay to 0µsec means no delay: each incoming and outgoing

packet is run to completion. Each packet the application transmits (tx packet) traverses the

entire TCP/IP stack and the device driver and is sent on the wire immediately. Each packet the

application receives (rx packet) is passed from the wire to the driver, to the stack, and to the

application, before the next packet is handled.

Setting the batching delay to Wµsec means delaying packets by batching them together at

various stages in the stack and in the driver such that no packet is delayed for more than Wµsec.

Tx packets are batched together by the stack and then passed on to the driver as a batch. The

driver batches all of the small batches of packets passed to it by the stack together into one large

batch. When either the transmit ring buffer is close to overflowing or the first packet in the large

batch has waited Wµsec, the driver transmits the large batch to the device.

The timing of arrival of rx packets is not controlled by the stack or driver but rather by the

device. When W > 0, the driver receives incoming packets from the wire but does not pass

them on to the stack for processing. The batch is kept at the driver level until at least one of the

following happens: (1) Wµsec have passed; (2) the batch grows beyond a predefined maximum

and threatens to overflow the receive ring buffer; or (3) there are no additional packets to receive,

e.g., because the connection has been closed. The driver then passes all of the incoming packets

together to the TCP/IP stack for processing.

Network-intensive applications usually optimize for throughput, latency, and jitter. Through-

put is defined as the number of bytes they can send or receive in a given time period or the

number of operations they can carry out. Latency is broadly defined as how long it takes to

transfer or receive a single packet or carry out a single operation. Applications are usually

concerned with either average latency or with tail latency, defined as the latency of the 99th

percentile of packets or operations. Jitter has many possible definitions. For simplicity, we

define jitter as the standard deviation of the latency distribution.

A larger batching delay, up to a limit, usually provides better (higher) throughput but worse

(higher) latency and jitter. A smaller batching delay usually provides better (lower) latency

and jitter but worse (lower) throughput. In Chapter 4 we discuss how applications can use

15

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



valuation functions to pick the right mix of throughput, latency, and jitter, given the current price

of network bandwidth. After picking the optimal mix for current conditions, applications that

use the default network stack and virtnet device driver can modify the stack’s batching delay to

achieve the desired throughput, latency, and jitter.

3.7 Storage

In nom, applications have private storage stacks, just like they have private network stacks.

They may use the default userspace storage stack and device drivers (e.g., virtio’s virtblk [61])

or their own tailored stacks and drivers. Unlike the default kernel-based storage stacks of

traditional operating systems, nom’s default stack and drivers can adapt their behavior at run

time when the cost of IOPs (for example) changes. One way to adapt behavior is to batch I/O

operations together at the storage stack and driver level. Another to modify the private elevator

(I/O scheduler) algorithm.

To provide multiple applications in a single nom instance with the convenience of a shared

file system, fsd is an optional file system daemon that exposes a shared file system. Applications

communicate with fsd via a generic high-performance IPC mechanism that uses shared memory

for bulk data transfer and cross-core IPIs for notifications.

3.8 Price-awareness

Optimizing for cost requires that applications be aware of the current price of resources. The

priced daemon queries the cloud provider via provider-specific means (e.g., the provider’s

REST API) for the current price of resources. It then publishes those prices to all applications

through the bulletin board. To avoid the need for applications to continuously poll the bulletin

board, yet enable them to react quickly to price changes, priced also notifies applications of

any change in the price of their resources, using the same high-performance IPC mechanism

fsd uses.

16

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 4

Economic model and utility of network
bandwidth

To maximize profit, nom applications attempt to extract the maximal benefit from the network

resources they have available to them. This requires that the application be able to formulate

and quantify its benefit from network resources given their current prices. The standard game-

theoretic tool for doing this is a utility or valuation function: a function that is private to

each application and assigns numerical values—“utilities”, or in our case, profit—to different

outcomes.

We consider an application acting as a server, e.g., a web server or a key-value store. The

application generates revenue when it gets paid by its users for the service it provides. We

assume that the amount it gets paid is a function of its throughput, latency, and jitter. The

application benefits from increased throughput because higher throughput means serving more

users or providing them with more content. We assume that the amount the application gets paid

increases linearly with its throughput.

The application benefits from reduced latency and jitter because it can provide its users with

better quality of service. Better quality of service means improved user satisfaction. To quantify

user satisfaction, we adopt an existing cloud provider compensation model. Cloud providers

such as GoGrid [2], NTT [4], and Verizon [5] assume that their users are satisfied as long as

their service level objectives (SLOs) are met; when the provider fails to meet a user’s SLO, most

providers will offer their users compensation in proportion to the users’ payment for periods in

which the service did not meet the SLO. For example, Gogrid’s Service Level Agreement (SLA)

reads as follows:

A “10,000% Service Credit” is a credit equivalent to one hundred times Customer’s

fees for the impacted Service feature for the duration of the Failure. (For example,

where applicable: a Failure lasting seven hours would result in credit of seven

hundred hours of free service [. . .]).

We assume that an SLA using equivalent terms exists between the application and its users.

Although cloud providers list minimal throughput, maximal latency, and maximal jitter as their

17

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



SLA goals, we simplify the function by only considering latency.

We assume that the cloud provider charges the application in proportion to the outbound

bandwidth it consumes. Charging by used bandwidth is reasonable for several reasons. First, it

is easy for the cloud provider to monitor. Second, bandwidth consumption by one application

can directly affect the quality of service for other applications running on the same cloud when

there is resource pressure (limited outgoing bandwidth). Third and most important, this method

of charging is commonly used in today’s clouds. Amazon, for example, charges for outbound

traffic per GB after the first GB, which is free.

The application does not necessarily know why the price of bandwidth rises or falls. The

cloud provider may set prices to shape traffic, as CloudSigma started doing in 2010, or the price

may be set according to supply and demand, as Amazon does for its spot instances [7]. The price

may even be set randomly, as Amazon used to do [7]. In Kelly’s [42] terms, the application is a

price taker: it assumes it cannot affect the prices. It neither knows nor cares how the provider

sets them. This assumption is reasonable when the application’s bandwidth consumption is

relatively small compared with the cloud’s overall network bandwidth. The application does

know that it will pay for the bandwidth it uses according to its current price.

The utility functions that we use in this work formalize the application’s profit from different

mixes of throughput, latency, and jitter, given the current price of bandwidth. Any such function

must satisfy the utility function axiom: it must weakly monotonically increase as throughput

increases and weakly monotonically decrease as bandwidth cost, latency, and jitter increase.

In other words, the more throughput the application achieves for the same total cost, latency,

and jitter, the more it profits. As latency and jitter increase, the application gets paid less or

compensates its users more, so profit goes down. The higher the price of bandwidth, the higher

the application’s costs, so again profit goes down.

Putting all of the above together, we present three example utility functions which are

consistent with the utility function axiom. We begin with the penalty utility function, a

generalization of the simple utility function presented in the introduction (Equation (1.1)). In

the simple utility function, the application owner benefits from increased throughput (T), but

only as long as the application’s users’ average latency is below a certain latency service level

objective (SLO) and the price the application owner pays her cloud provider (P) per bandwidth

unit is lower than her benefit from that bandwidth unit (α.) In other words, in the simple utility

function, users either pay or they don’t. In the penalty utility function, the application pays its

users a penalty (i.e, the users pay less) if samples of the latency distribution violate the SLO.

The size of the penalty depends on the probability of violating the SLO. We define the penalty

utility function in Equation (4.1) as follows:

Upenalty = T · (α · (1−min(1, X · N (L0, L, σ)))− P ), (4.1)

where T denotes throughput in Gbit
s or application operations/second, α denotes the application

owner’s valuation of useful bandwidth in $/Gbit or $/operation, and X denotes the penalty factor

from not meeting the user’s SLO (e.g., 100 in the GoGrid SLA). L denotes the mean latency

18

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



(in µsecs), L0 denotes the maximal latency allowed by the SLA, and σ denotes the latency’s

standard deviation (jitter). N (L0, L, σ) denotes the probability that a normally distributed

variable with mean L and standard deviation σ will be higher than L0. In other words, it is the

probability that a latency sample will not meet the latency SLO, and thus trigger compensation

to the application’s user. P denotes the price that the cloud provider charges the application

for outgoing network bandwidth. The provider’s price is set in $/Gbit, but the application may

translate it internally to $/operation.

In the case where the sampled latency is always within the SLO and thus N → 0, Equa-

tion (4.1) is reduced to T · (α − P ), motivating the application to use as much bandwidth as

possible, provided the value it gets from sending data (α) is higher than the price it pays for

sending that data (P ). Conversely, when every latency sample falls outside the SLO, Equa-

tion (4.1) is reduced to −T ·P , giving negative utility, since the penalties for violating the SLA

far outweigh any benefit. It is better in this case to send nothing at all, to at least avoid paying

for bandwidth.

In addition to the penalty utility function, we also consider two additional, simpler, function

forms that fit the axioms and represent other business models. These functions are inspired

by Lee and Snavely [49], who showed that user valuation functions for delay are usually

monotonically decreasing, with various shapes, which are not necessarily linear. Hence, we

consider both a linear refund valuation function (which is common in the literature because it is

easy to represent) and a reciprocal bonus valuation function, which captures the diminishing

marginal return, characteristic of some of the functions that Lee and Snavely found.

In the refund utility function in Equation (4.2), the application compensates its user by

giving it a progressively larger refund as the mean latency rises, capped at a refund of 100%

of the user’s payment. As in the penalty utility function, α denotes the application owner’s

valuation of useful bandwidth. The β parameter is the extent of the refund.

Urefund = T · (max(0, α− β ·L)− P ), (4.2)

In the bonus utility function in Equation (4.3), the application gets a bonus from its users for

small latency values. The bonus decays to zero as latency grows and cannot exceed some

pre-negotiated threshold, δ. γ is the extent of the bonus.

Ubonus = T · (α+min(
γ

L
, δ)− P ), (4.3)

The parameters α, β, γ, δ, and X , are application-specific: they characterize its business

arrangements with its users. Price (P ) is dictated by the cloud provider and changes over time.

We note that the application does not “choose” any function or parameters that it desires:

the utility function is simply a formalization of the application owner’s business relations

and agreements with its users and with its cloud provider. These relations and agreements

include how much the application owner pays its cloud provider for bandwidth, how much

the application’s users pay the application owner, how the application owner compensates its

users for violating their SLAs, etc. Having said that, by understanding the behavior of the

19

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



utility function, the application owner may try to strike more beneficial deals with its cloud

providers and its users. Furthermore, the application can adapt its behavior on the fly, trading

off throughput, latency, and jitter so as to maximize its profit given current bandwidth price.

20

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 5

Implementation

We implemented a prototype of nom, including both ring 0 kernel and representative ring 3

applications. The prototype runs in x86-64 SMP virtual machines on top of the KVM [44]

hypervisor. It can run multiple applications with direct access to their I/O devices. It can also

run on bare-metal x86-64 servers with SRIOV devices, without an underlying hypervisor, but

that is not its primary use-case.

We implemented three representative applications that use the penalty, refund, and bonus

utility functions to adapt their behavior on the fly: memcached, a popular key-value stor-

age [28], nhttpd, a web server, and NetPIPE [65], a network ping-pong benchmark. All

three applications run with private copies of the default nom lwIP-based network stack and the

virtnet virtio NIC device driver. All three applications optimize for both performance and cost

by adapting their stack and driver’s behavior on the fly to achieve the throughput, latency, and

jitter that maximize their current utility function given the current price of network bandwidth.

We implemented nhttpd from scratch and ported NetPIPE and memcached from Linux.

The ports were relatively straightforward, since nom supports—but does not mandate—most of

the relevant POSIX APIs, including pthreads (via userspace threading), sockets, and libevent.

The main missing pieces for application porting are limited support for floating point (SSE) in

userspace and missing support for signals.

The nom kernel is approximately 8,000 lines of code. The network stack and NIC device

drivers are approximately 45,000 lines code. Both are implemented mostly in C, with a little

assembly.

21

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



22

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 6

Evaluation

6.1 Methodology

The evaluation aims to answer the following questions: (1) Does optimizing for cost preclude

optimizing for performance? (2) Does optimizing for both cost and performance improve

application profit? and (3) Is being able to change behavior at runtime important for maximizing

profits?

We evaluate nom applications against the same applications running on Linux and on

OSv [45]. The applications run in virtual machines on an x86-64 host with four Intel Core(TM)

i7-3517U CPUs running at 1.90GHz and 4GB of memory. The host runs Linux Mint 17 “Qiana”

with kernel 3.13.0-24 and the associated KVM and QEMU versions.

OSv and nom applications run in an x86-64 guest virtual machine with a single vCPU and

128MBs of memory. Linux applications run in a virtual machine running Linux Mint 17.1

“Rebecca”, which did not boot with 128MB, so we gave it a single vCPU and 256MB of memory.

We ignore the cost of memory and do not penalize Linux for running with twice the amount

of memory. We also ignore the cost of CPU cycles. The host does not expose an IOMMU to

virtual machines.

Our experimental setup approximates a cloud with dynamic bandwidth prices and assumes

that the cloud provider either does not charge or charges a fixed sum for all other resources.

Each application runs for two minutes. During the first 60 seconds, the price of bandwidth

is $1/Gb. After 60 seconds, the price rises to $10/Gb. This situation can occur, for example,

when the application starts running on a relatively idle cloud but then a noisy, network-intensive

application joins it, driving up the price.

We run memcached, nhttpd, and NetPIPE, on Linux, OSv, and nom, and evaluate

all three applications with all three valuation functions described in Chapter 4. The valuation

functions take into account price, throughput, and latency, and the penalty valuation function

also takes into account jitter. Applications running on Linux and OSv use the default Linux and

OSv stacks and device drivers and are not price-aware.

Applications running on nom use the default lwIP and virtnet device driver. They know

the throughput, latency, and jitter they expect to achieve for different settings of the batching

23

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



delay. The relationship between batching delay and throughput, latency, and jitter may be

generated online and refined as the application runs or generated offline [37, 10]. We generated

it offline. The applications use this information and the current price of network bandwidth as

input to their valuation functions, tuning their stacks at any given moment to the batching delay

that maximizes their profits. When the price of network bandwidth or the load they are under

changes, they may pick a different batching delay if they calculate that it will improve their

profit.

We vary the load during the experiment. During the first 60 seconds, we generate a load

that approximates serving many small users. During the second 60 seconds, we generate a

load that approximates serving a single important user at a time. The memcached load is

generated with the memaslap benchmark application running with a GET/SET ratio of 90/10

(the default). The nhttpd load is generated with the wrk benchmark application requesting

a single static file of 175 bytes in a loop. The NetPIPE server runs on the operating system

under test and the NetPIPE client runs on the Linux host. memcached and nhttpd run

in multiple threads/multiple requests mode, approximating serving many small users, or in a

single thread/single request mode, approximating serving a single user at a time. The NetPIPE

client either runs in bi-directional streaming mode (many) or in single request mode (single)

with message size set to 1024 bytes. In all cases, to minimize physical networking effects, the

load generator runs on the host, communicating with the virtual machine under test through the

hypervisor’s virtual networking apparatus. All power saving features are disabled in the host’s

BIOS and the experiments run in single user mode.

We run each experiment five times and report the averages of measured values. The average

standard deviation of throughput and latency values between runs with the same parameters

is less than 1% of the mean for memcached and less than 3% of the mean for NetPIPE.

In nhttpd experiments, the single user scenario exhibits average standard deviation of both

throughput and latency that is less than 1% of the mean. The many users scenario, however,

exhibits average standard deviation of 10% of the mean for throughput values and 73% of the

mean for latency values.

6.2 Performance

We argued that cloud applications should be optimized for cost. Does this preclude also opti-

mizing them for performance? To answer this question, we begin by comparing the throughput,

latency, and jitter achieved by nom applications with those achieved by their OSv and Linux

counterparts. Throughput and latency results are the average throughput and latency recorded

during each part of each experiment.

We show in Figure 6.1, Figure 6.2, and Figure 6.3 the throughput and latency achieved by

memcached, nhttpd, and NetPIPE, respectively, during the first 60 seconds, when they

serve as many users as possible, and during the second 60 seconds, when they only serve the

most important users, a single user at a time. For all three applications and both scenarios,

nom achieves better (higher) throughput and better (lower) latency than both OSv and Linux.

24

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 0

 10

 20

 30

 40

 50

th
ro

u
g

h
p

u
t 

[1
K

 o
p

s/
s]

memcached many

0.93x 1.01x

 0
 3
 6
 9

 12
 15
 18

memcached single

0.93x

1.28x

 0

 100

 200

 300

 400

 500

Li
n
u
x

O
S

v

n
o
m

la
te

n
cy

 [
u
se

c] 0.93x 1.01x

 0

 24

 48

 72

 96

 120

Li
n
u
x

O
S

v

n
o
m

0.93x

1.29x

Figure 6.1: memcached throughput and latency

 0

 2

 4

 6

 8

 10

th
ro

u
g

h
p

u
t 

[1
K

 r
e
q

s/
s] nhttpd many

0.32x

1.23x

 0

 1.4

 2.8

 4.2

 5.6

 7

nhttpd single

0.91x
1.16x

 0

 1

 2

 3

 4

 5

Li
n
u
x

O
S

v

n
o
m

la
te

n
cy

 [
se

c] 0.27x

2.47x
 0

 50

 100

 150

 200

 250

Li
n
u
x

O
S

v

n
o
m

la
te

n
cy

 [
u
se

c]

1.11x 1.22x

Figure 6.2: nhttpd throughput and latency

Taking memcached as an example, we see that nom achieves 1.01x–1.28x the throughput of

Linux, whereas OSv only achieves 0.93x. We also see that nom achieves average latency that is

1.01x–1.29x better than Linux (vs. 0.93x for OSv) with up to 4x better jitter when compared

with Linux and up to 588x better jitter when compared with OSv. (Jitter is shown in Table 6.1.)

25

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 0

 80

 160

 240

 320

 400

th
ro

u
g

h
p

u
t 

[M
b

/s
]

NetPIPE many

1.11x
1.42x

 0

 80

 160

 240

 320

 400

NetPIPE single

1.14x
1.37x

 0

 20

 40

 60

 80

 100

Li
n
u
x

O
S

v

n
o
m

la
te

n
cy

 [
u
se

c]

1.10x
1.42x

 0

 10

 20

 30

 40

 50

Li
n
u
x

O
S

v

n
o
m

1.14x
1.37x

Figure 6.3: NetPIPE throughput and latency

Scenario OS Latency (µsec) Jitter (µsec)
many Linux 402 499

OSv 434 24,148
nom 399 121

single Linux 82 14
OSv 88 7,638
nom 63 13

Table 6.1: memcached latency and jitter

nhttpd on nom achieves 1.2x–3.9x better throughput and up to 9.1x better latency than Linux

and OSv, and NetPIPE achieves up to 1.42x better throughput and latency.

6.3 What makes nom fast?

Network applications running on nom achieve up to 3.9x better throughput and up to 9.1x better

latency than their Linux and OSv counterparts (Figure 6.1, Figure 6.2, and Figure 6.3). This

improvement is by virtue of nom’s design and through careful application of several rules of

thumb for writing high-performance virtualized systems. In particular, nom, as a cloud operating

system, tries hard to keep the hypervisor out of the I/O path.

Table 6.2 shows the average number of exits per second for Linux, OSv, and nom when

running memcached. We can see that nom causes 2.8x–4.9x fewer exits than Linux and

OSv. One of the key causes of expensive hypervisor exits is injecting and acknowledging

interrupts [30]. Since each nom application has its own device driver, it can decide when to wait

26

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Metric OS many single
#exits/sec Linux 43,146 90,166

OSv 43,144 51,237
nom 10,834 18,280

#irq injections/sec Linux 20,245 12,194
OSv 21,768 12,368
nom 999 999

CPU utilization Linux 75% 65%
OSv 59% 63%
nom 87% 98%

Table 6.2: Average exit rate, interrupt injection rate, and CPU utilization running memcached

for interrupts and when to poll the device directly. We can see in Table 6.2 that the hypervisor

only injects approximately 1,000 interrupts to nom while memcached is running. These 1,000

interrupts are all timer interrupts, which can be avoided by implementing tickless mode in

the nom kernel. There are no device interrupts because all three nom applications described

previously switch to polling mode as soon as they come under heavy load. Linux and OSv, in

contrast, take approximately 20K–22K interrupts in the many users scenario and approximately

12K interrupts in the single user scenario. We can also see that nom’s CPU utilization is 87%–

98%, higher than Linux and OSv’s 59%–75%. Since in our evaluation scenario CPU cycles are

“free”, the nom applications make the right choice to trade off CPU cycles for better throughput

and latency by polling the network device. Linux and OSv applications, which do not control

their software stacks and device drivers, cannot make such a tradeoff.

In addition to being “hypervisor friendly” by avoiding costly exits, nom’s applications,

default TCP/IP stack, and default virtnet device drivers are tuned to work well together. We

eliminated expensive memory allocations on the I/O path in the applications, network stacks and

device drivers, and avoided unnecessary copies in favor of zero-copy operations on the transmit

and receive paths. We also used the time stamp counter (TSC) to track and reduce the frequency

and cycle costs of data path operations.

Despite the 2.8x–4.9x difference in number of exits and 12x–22x difference in number

of interrupts, nom’s throughput and latency for memcached are only up to 1.3x better than

Linux’s. This disparity is caused by nom’s default network stack and default virtnet device

driver, which memcached uses, being not nearly as optimized as Linux’s. We expect to achieve

better performance and higher profits by optimizing and further customizing the stack and the

driver to each application’s needs. For example, instead of using the socket API, memcached’s

internal event handling logic could call into internal network stack APIs to bypass the relatively

slow socket layer [60, 40, 33]. Further optimizations and customization remain as future work.

6.4 Profit

Next, we investigate whether optimizing for both performance and cost does indeed increase

profit. Using the penalty, refund, and bonus utility functions presented in Chapter 4, we calculate

27

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 0

 0.25

 0.5

 0.75

 1

 1.25

Li
n
u
x

O
S

v

n
o
m

P
ro
fi
t 

[$
1

M
]

penalty utility

0.00x

11.14x

 0

 0.25

 0.5

 0.75

 1

 1.25

Li
n
u
x

O
S

v

n
o
m

refund utility

0.93x
1.04x

 0

 0.3

 0.6

 0.9

 1.2

 1.5

Li
n
u
x

O
S

v

n
o
m

bonus utility

0.91x
1.12x

Figure 6.4: memcached profit

 0

 12

 24

 36

 48

 60

Li
n
u
x

O
S

v

n
o
m

P
ro
fi
t 

[$
1

K
]

penalty utility

1.00x

1.30x

 0

 55

 110

 165

 220

 275

Li
n
u
x

O
S

v

n
o
m

refund utility

0.40x

1.81x

 0

 65

 130

 195

 260

 325

Li
n
u
x

O
S

v

n
o
m

bonus utility

0.57x

1.25x

Figure 6.5: nhttpd profit

how much money the applications running on Linux, OSv, and nom made. Bandwidth prices

fluctuate as described in the methodology section. α is set to 20 $
Gbit , β is set to 10 $ · s

Gbit , γ is set

to 0.01 $
Gbit · s and δ is set to + inf (i.e., there is no limit on the bonus). The penalty for violating

the latency SLO in the penalty function (X) is 100, and the maximal latency allowed by the

SLA is 750µsec. We show in Figure 6.4, Figure 6.5, and Figure 6.6 memcached’s, nhttpd’s,

 0

 3

 6

 9

 12

 15

Li
n
u
x

O
S

v

n
o
m

P
ro
fi
t 

[$
1

K
]

penalty utility

1.12x
1.41x

 0

 3

 6

 9

 12

 15

Li
n
u
x

O
S

v

n
o
m

refund utility

1.12x
1.41x

 0

 7

 14

 21

 28

 35

Li
n
u
x

O
S

v

n
o
m

bonus utility

1.21x

1.72x

Figure 6.6: NetPIPE profit

28

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 0

 0.25

 0.5

 0.75

 1

 1.25

a
d

p

tp
t

la
t

P
ro
fi
t 

[$
1

M
]

penalty utility

0.82x

0.14x
 0

 0.25

 0.5

 0.75

 1

 1.25

a
d

p

tp
t

la
t

refund utility

0.97x

0.69x

 0

 0.3

 0.6

 0.9

 1.2

 1.5

a
d

p

tp
t

la
t

bonus utility

0.92x
0.73x

Figure 6.7: memcached profit: static vs. adaptive behavior

 0

 12

 24

 36

 48

 60

a
d

p

tp
t

la
t

P
ro
fi
t 

[$
1

K
]

penalty utility

0.73x

0.94x

 0

 55

 110

 165

 220

 275

a
d

p

tp
t

la
t

refund utility

0.87x0.78x

 0

 55

 110

 165

 220

 275

a
d

p

tp
t

la
t

bonus utility

0.90x
0.80x

Figure 6.8: nhttpd profit: static vs. adaptive behavior

and NetPIPE’s profits. We can see that nom makes more money than either Linux or OSv with

every utility function and every application. To use the penalty utility function and memcached

as an example, for every $1 of profit Linux makes, nom makes over 11x more profit, $11.14.

OSv does not profit at all due to its average latency of 7,638µsec for the single case, more

than ten times the latency SLO of 750µsec. For other applications and penalty functions the

difference between operating systems is not as large, but nom always yields the highest profits.

6.5 What makes nom profitable?

The nom operating system has better performance and yields higher profits than Linux and

OSv. Let us now focus on only nom (rather than Linux and OSv) and answer the question:

To maximize profits, is it enough to run nom applications with the settings that provide the

best performance, or must applications also change their behavior on the fly when conditions

change? To answer this question, we repeated the profit experiments from the previous section.

This time we compared nom applications with static behavior that lead to (1) the best throughput

or (2) the best latency with applications that adapt their behavior. We ran each application for

120 seconds, with price and load changing after 60 seconds. Each 120 second run used a fixed

batching delay in the range of 0–40µsec.

29

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 0

 3

 6

 9

 12

 15

a
d

p

tp
t

la
t

P
ro
fi
t 

[$
1

K
]

penalty utility

1.00x1.00x

 0

 3

 6

 9

 12

 15

a
d

p

tp
t

la
t

refund utility

1.00x1.00x

 0

 9

 18

 27

 36

 45

a
d

p

tp
t

la
t

bonus utility

1.00x1.00x

Figure 6.9: NetPIPE profit: static vs. adaptive behavior

Figure 6.7, Figure 6.8, and Figure 6.9 show the resulting profits. For the nom applications

with static behavior and a fixed batching delay, each setting of the batching delay gave different

throughput, latency, and jitter results. In the tpt column, we calculated the profit using the

throughput and latency resulting from the batching delay that gave the best absolute throughput.

In the lat column, we used the throughput and latency resulting from running the nom application

with the fixed batching delay that gave the best absolute latency. In the adp (adaptive) column,

the nom application changed the batching delay when the price or load changed.

As can be seen in Figure 6.7 and Figure 6.8, for both memcached and nhttpd, varying

the batching delay depending on the current price and load yields higher profit than running with

any fixed batching delay. Taking the penalty utility function as an example, we see that running

with the throughput-optimized batching delay would give memcached 82% of the profit, but

running with this setting would only give nhttpd 73% of the profit. Likewise, running with

the latency-optimized batching delay would give nhttpd 94% of the profit, but would give

memcached only 14% of the profit. Hence we conclude that there is no single “one size fits

all” batching delay that is optimal for all applications at all times. Furthermore, there can be

no single “best” stack and single “best” device driver for all applications at all times. Each

application’s ability to change its stack’s behavior, whether through tuning or more aggressive

means, is crucial for maximizing profit.

Unlike memcached and nhttpd, NetPIPE (Figure 6.9) shows no difference between

columns. This is because NetPIPE is a synthetic ping-pong benchmark; its throughput is the

inverse of its latency. When running on nom, NetPIPE tunes its stack to always run with

batching delay 0, minimizing latency and maximizing throughput.

6.6 Effect of batching on throughput and latency

To understand the effect of the batching delay on application throughput and latency, we ran

each application in both scenarios with a fixed batching delay between 0–40µsec. Figure 6.10,

Figure 6.11, and Figure 6.12 show throughput and latency as a function of the batching delay

for memcached, nhttpd, and NetPIPE, respectively. The throughput value shown is the

30

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 24

 26

 28

 30

 32

 34

 36

 38

 40

 0  5  10  15  20  25  30  35  40
 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

th
ro

u
g

h
p

u
t 

[1
K

 o
p

s/
s]

la
te

n
cy

 [
u
se

c]

batching delay 'w' [usec]

throughput
latency

Figure 6.10: memcached throughput (in the many users scenario) and latency (in the single user
scenario) as a function of batching delay

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0  5  10  15  20  25  30  35  40
 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

th
ro

u
g

h
p

u
t 

[1
K

 o
p

s/
s]

la
te

n
cy

 [
u
se

c]

batching delay 'w' [usec]

throughput
latency

Figure 6.11: nhttpd throughput (in the many users scenario) and latency (in the single user scenario)
as a function of batching delay

throughput achieved in the “many” scenario, which is higher than the throughput achieved in

the “single” scenario. The latency value shown is the latency achieved in the “single” scenario,

which is lower (better) than the latency achieved in the “many” scenario.

We can see that for memcached throughput achieves a local optimum at 14µsec, for

nhttpd the optimum is 12µsec, and for NetPIPE a delay of 0µsec (no delay) is best. Latency

for all applications is best (lowest) with no batching delay, and each microsecond of batching

delay adds approximately another microsecond of latency.

6.7 Throughput/latency Pareto frontier

Varying the batching delay affects both throughput and latency. Figure 6.13, Figure 6.14, and

Figure 6.15 show (throughput, latency) pairs with selected batching delays noted above the

31

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0  5  10  15  20  25  30  35  40
 25

 30

 35

 40

 45

 50

th
ro

u
g

h
p

u
t 

[M
b

/s
]

la
te

n
cy

 [
u
se

c]

batching delay 'w' [usec]

throughput
latency

Figure 6.12: NetPIPE throughput (in the many users scenario) and latency (in the single user scenario)
as a function of batching delay

points representing them for memcached, nhttpd, and NetPIPE, respectively. For both

memcached and nhttpd there is a clear Pareto frontier, shown in blue: a set of (through-

put, latency) pairs that are not dominated by any other (throughput, latency) pair. Taking

memcached as an example, we see that using a batching delay of 10µsec can yield throughput

of approximately 38K ops/s with latency of 74µsec. Using a batching delay of 32µsec (shown

as a black point with ’32’ above it), can also yield throughput of approximately 38K ops/s

with latency of approximately 96µsec. Therefore, batching delay 10 dominates 32 because it

provides the same throughput with lower latency. With a different batching delay, memcached

can also achieve higher throughput: a batching delay of 14µsec provides approximately 40K

ops/s, but not without also increasing latency to 77µsec. Therefore both point 10 (38K ops/s,

74µsec) and point 14 (40K ops/s, 77µsec) are on the memcached throughput/latency Pareto

frontier, but point 32 is not. nhttpd’s Pareto frontier includes batching delays 0 and 6–12.

NetPIPE’s Pareto frontier includes a single point, 0.

The batching delay settings that are on the Pareto frontier produce better (throughput,

latency) pairs than all other batching delays not on the Pareto frontier, but no one point on

the Pareto frontier can be considered better than any other point on the frontier. Whereas a

performance-optimized operating system is designed to find the “best” (throughput, latency)

point for all cases, nom profit-maximizing applications pick the working point on the Pareto

frontier that maximizes their profit at any given time given current price and load. When the

price and/or load change, they may pick a different working point. Our experiments with nom

show that there is no single “best” setting for all applications, scenarios and prices.

32

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



 60

 65

 70

 75

 80

 85

 90

 95

 100

 105

 110

 24  26  28  30  32  34  36  38  40

la
te

n
cy

 [
u
se

c]

throughput [1K ops/s]

0
24

6
8

10
12
14

32

Figure 6.13: The memcached throughput and latency Pareto frontier

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 5  5.5  6  6.5  7  7.5  8

la
te

n
cy

 [
u
se

c]

throughput [1K ops/s]

0 6

10

12

Figure 6.14: The nhttpd throughput and latency Pareto frontier

 20

 25

 30

 35

 40

 45

 50

 55

 60

 160  180  200  220  240  260  280  300  320

la
te

n
cy

 [
u
se

c]

throughput [Mb/s]

0

Figure 6.15: The NetPIPE throughput and latency Pareto frontier

33

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



34

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 7

Discussion

There are two ways one could go about building a profit-maximizing operating system: based

on an existing operating system or from scratch. To turn Linux, for example, into a profit-

maximizing operating system, one could have it run applications in virtual machines using a

mechanism such as Dune [18] and provide applications with direct access using direct device

assignment [71] or VFIO [68]. The applications themselves would need to be modified to adapt

to the changing prices of resources and would still need userspace stacks and device drivers.

The primary difference between building a profit-maximizing operating system from scratch

and basing it on an existing operating system is how one constructs the kernel.

We felt that going the Linux route would have constrained the design space, so we decided

to implement nom from scratch to allow a wider and deeper investigation of the design space.

Additionally, at its core, the profit-maximizing kernel is a nonkernel: a kernel that does as little

as possible. Basing it on Linux seemed wasteful.

In addition to maximizing profits and improving performance, the nom approach has several

advantages when compared with traditional kernels and exokernels. These include reduced

driver complexity, since drivers now run completely in userspace, each driver instance serving a

single application; easier debugging, development and verification of drivers and I/O stacks, for

the same reason; a simpler and easier to verify trusted-computing-base in the form of the nom

kernel itself [46]; and a system that we hope is more secure overall, for the same reason. The

nom approach can also be useful for systems where operating power is a concern, by letting

applications tune their resource requirements to the current thermal envelope limits.

The main disadvantages of the nom approach are that it forsakes legacy architectures and

applications. It is designed and implemented for the kind of modern hardware available on

cloud servers and will not run on older bare-metal machines. Likewise, it is not at its best when

running legacy applications; realizing its benefits to the fullest extent requires some level of

cooperation and effort on the part of the application developer. We believe that in the cloud,

breaking away from legacy is no longer unthinkable.

35

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



36

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 8

Related work

The nom design draws inspiration from several ideas in operating system and hypervisor

construction. In addition to the original MIT exokernel [26, 27] and single address space

operating systems [36, 50], nom also borrows from past work on userspace I/O (e.g., [69, 64, 22,

21, 29]), virtual machine device assignment (e.g., [71, 51, 52]), multi-core aware and extensible

operating systems (e.g., [17, 47]), and library operating systems (e.g., [59, 14, 67]). It shares the

underlying philosophy of specializing applications for the cloud with Mirage [55, 54] and the

underlying philosophy of a minimal kernel/hypervisor with NoHype [41]. OSv [45] is a single

application operating system designed for running in cloud environments. Arrakis [58] and

IX [19] both provide applications with direct access to their I/O devices on bare-metal servers.

All of these operating systems, however, optimize for performance. As far as we are aware, nom

is the first and only operating system that maximizes profit by optimizing for both performance

and cost.

The case for clouds with dynamic resource pricing (RaaS clouds) was first made by Agmon

Ben-Yehuda et al. [8, 9]. On the basis of existing trends in the current IaaS industry, they

deduced that the cloud business model must change: resources must be allocated on an economic

basis, using economic mechanisms inside each physical machine. Ginseng [10] was the first

implementation of a RaaS cloud for allocating memory. It showed that running elastic memory

applications inside a traditional operating system such as Linux can be problematic due to the

kernel abstracting away the hardware.

A common theme in cloud research is optimizing for cost. ExPERT [11] and Cloudyn [1]

schedule workloads on clouds by taking into account both performance and cost. Optimizing for

multiple goals was also previously explored in the context of power consumption. Lo et al. [53]

balanced power consumption and latency. Ding et al. [23] optimized the energy-delay product.

37

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



38

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Chapter 9

Conclusions and future work

Clouds with dynamic pricing pose new challenges but also provide an opportunity to rethink

how we build system software. We propose the nom profit-maximizing operating system, a new

kind of operating system that is designed and optimized for both performance and cost. The

current nom prototype shows that there is no single “best” network stack or driver. Instead, nom

applications maximize their profits by having private application-specific software stacks and

changing their behavior on the fly in response to changing resource prices and load conditions.

The current nom prototype focuses specifically on network-intensive applications in clouds

with dynamic bandwidth pricing. We are continuing to investigate profit-maximizing operating

systems along several dimensions. First, we are investigating how to extract maximal value

from every resource: CPU, memory, network, storage, and power. Second, we are investigat-

ing software and hardware mechanisms that can help applications change their behavior on

the fly, while also achieving high performance. And third, we are investigating how to con-

struct application-specific profit-maximizing I/O stacks and device drivers—preferably through

automatic code synthesis [62].

39

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



40

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



Bibliography

[1] Cloudyn Use Cases (Online). https://www.cloudyn.com/use-cases/.

[2] GoGrid Service Level Agreement (Online). http://www.gogrid.com/legal/service-level-

agreement-sla.

[3] Intel Xeon processor E5 v3 family. http://www.intel.com/content/dam/www/public/us/en/

documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

[4] NTT Service Level Agreement (Online). http://www.us.ntt.net/support/sla/network.cfm.

[5] Verizon Service Level Agreement (Online). http://www.verizonenterprise.com/about/

network/latency/.

[6] ADAMS, K., AND AGESEN, O. A comparison of software and hardware techniques

for x86 virtualization. In ACM Architectural Support for Programming Languages

& Operating Systems (ASPLOS) (2006), pp. 2–13.

[7] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,

D. Deconstructing Amazon EC2 spot instance pricing. In IEEE International

Conference on Cloud Computing Technology and Science (CloudCom) (2011).

[8] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,

D. The Resource-as-a-Service (RaaS) cloud. In USENIX Conference on Hot Topics

in Cloud Computing (HotCloud) (2012).

[9] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER, A., AND TSAFRIR,

D. The rise of RaaS: The Resource-as-a-Service cloud. Communications of the

ACM (CACM) 57, 7 (July 2014), 76–84.

[10] AGMON BEN-YEHUDA, O., POSENER, E., BEN-YEHUDA, M., SCHUSTER, A.,

AND MU’ALEM, A. Ginseng: Market-driven memory allocation. In Proceedings of

the 10th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments (2014), VEE ’14.

[11] AGMON BEN-YEHUDA, O., SCHUSTER, A., SHAROV, A., SILBERSTEIN, M.,

AND IOSUP, A. Expert: Pareto-efficient task replication on grids and clouds. In

IEEE International Parallel & Distributed Processing Symposium (IPDPS) (2012).

41

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5

https://www.cloudyn.com/use-cases/
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.gogrid.com/legal/service-level-agreement-sla
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.us.ntt.net/support/sla/network.cfm
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/


[12] AMAR, L., BARAK, A., DREZNER, Z., AND OKUN, M. Randomized gossip algo-

rithms for maintaining a distributed bulletin board with guaranteed age properties.

Concurrency and Computation: Practice and Experience 21, 15 (2009), 1907–1927.

[13] AMIT, N., BEN-YEHUDA, M., TSAFRIR, D., AND SCHUSTER, A. vIOMMU:

efficient IOMMU emulation. In USENIX Annual Technical Conference (ATC)

(2011).

[14] AMMONS, G., SILVA, D. D., KRIEGER, O., GROVE, D., ROSENBURG, B.,

WISNIEWSKI, R. W., BUTRICO, M., KAWACHIYA, K., AND HENSBERGEN, E. V.

Libra: A library operating system for a JVM in a virtualized execution environment.

In ACM/USENIX International Conference on Virtual Execution Environments

(VEE) (2007).

[15] BARAK, A., GUDAY, S., AND WHEELER, R. G. The MOSIX Distributed Operating

System: Load Balancing for UNIX. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 1993.

[16] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,

NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and the art of virtualization.

In ACM Symposium on Operating Systems Principles (SOSP) (2003).

[17] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS, R., PETER,

S., ROSCOE, T., SCHÜPBACH, A., AND SINGHANIA, A. The multikernel: a new

OS architecture for scalable multicore systems. In ACM Symposium on Operating

Systems Principles (SOSP) (2009).

[18] BELAY, A., BITTAU, A., MASHTIZADEH, A., TEREI, D., MAZIERES, D., AND

KOZYRAKIS, C. Dune: Safe user-level access to privileged cpu features. In

Symposium on Operating Systems Design & Implementation (OSDI) (2012).

[19] BELAY, A., PREKAS, G., KLIMOVIC, A., GROSSMAN, S., KOZYRAKIS, C., AND

BUGNION, E. Ix: A protected dataplane operating system for high throughput and

low latency. In Symposium on Operating Systems Design & Implementation (OSDI)

(2014).

[20] BEN-YEHUDA, M., DAY, M. D., DUBITZKY, Z., FACTOR, M., HAR’EL, N.,

GORDON, A., LIGUORI, A., WASSERMAN, O., AND YASSOUR, B.-A. The

Turtles project: Design and implementation of nested virtualization. In Symposium

on Operating Systems Design & Implementation (OSDI) (2010).

[21] CAULFIELD, A. M., MOLLOV, T. I., EISNER, L. A., DE, A., COBURN, J., AND

SWANSON, S. Providing safe, user space access to fast, solid state disks. In ACM

Architectural Support for Programming Languages & Operating Systems (ASPLOS)

(2012).

42

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



[22] CHEN, Y., BILAS, A., DAMIANAKIS, S. N., DUBNICKI, C., AND LI, K. UTLB:

a mechanism for address translation on network interfaces. SIGPLAN Not. 33

(October 1998), 193–204.

[23] DING, Y., KANDEMIR, M., RAGHAVAN, P., AND IRWIN, M. J. A helper thread

based EDP reduction scheme for adapting application execution in cmps. In IEEE

International Parallel & Distributed Processing Symposium (IPDPS) (2008).

[24] DOVROLIS, C., THAYER, B., AND RAMANATHAN, P. HIP: hybrid interrupt-polling

for the network interface. ACM SIGOPS Operating Systems Review (OSR) 35 (2001),

50–60.

[25] DUNKELS, A. Design and implementation of the lwIP TCP/IP stack. In Swedish

Institute of Computer Science (2001), vol. 2, p. 77.

[26] ENGLER, D. R., AND KAASHOEK, M. F. Exterminate all operating system abstrac-

tions. In USENIX Workshop on Hot Topics in Operating Systems (HOTOS) (1995),

IEEE Computer Society, pp. 78–83.

[27] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE JR., J. Exokernel: an

operating system architecture for application-level resource management. In ACM

Symposium on Operating Systems Principles (SOSP) (1995).

[28] FITZPATRICK, B. Distributed caching with memcached. Linux J. 2004, 124 (Aug.

2004), 5–.

[29] GANGER, G. R., ENGLER, D. R., KAASHOEK, M. F., BRICENO, H. M., HUNT,

R., AND PINCKNEY, T. Fast and flexible application-level networking on exokernel

systems. ACM Transactions on Computer Systems (TOCS) 20, 1 (February 2002),

49–83.

[30] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M., LANDAU, A.,

TSAFRIR, D., AND SCHUSTER, A. ELI: Bare-metal performance for I/O virtual-

ization. In ACM Architectural Support for Programming Languages & Operating

Systems (ASPLOS) (2012).

[31] GORDON, A., HAR’EL, N., LANDAU, A., BEN-YEHUDA, M., AND TRAEGER,

A. Towards exitless and efficient paravirtual I/O. In The 5th Annual International

Systems and Storage Conference (SYSTOR) (2012).

[32] GORDON, A., HINES, M., DA SILVA, D., BEN-YEHUDA, M., SILVA, M., AND

LIZARRAGA, G. Ginkgo: Automated, application-driven memory overcommitment

for cloud computing. In Runtime Environments/Systems, Layering, & Virtualized

Environments workshop (ASPLOS RESOLVE) (2011).

43

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



[33] HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY, S. Megapipe: A new

programming interface for scalable network i/o. In Symposium on Operating Systems

Design & Implementation (OSDI) (Hollywood, CA, 2012), USENIX, pp. 135–148.

[34] HAND, S. M. Self-paging in the Nemesis operating system. In Symposium on

Operating Systems Design & Implementation (OSDI) (Berkeley, CA, USA, 1999),

USENIX Association, pp. 73–86.

[35] HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA, M., TRAEGER, A.,

AND LADELSKY, R. Efficient and scalable paravirtual I/O system. In USENIX

Annual Technical Conference (ATC) (2013).

[36] HEISER, G., ELPHINSTONE, K., VOCHTELOO, J., RUSSELL, S., AND LIEDTKE,

J. The mungi single-address-space operating system. Software: Practice and

Experience 28, 9 (1998), 901–928.

[37] HINES, M., GORDON, A., SILVA, M., SILVA, D. D., RYU, K. D., AND BEN-

YEHUDA, M. Applications know best: Performance-driven memory overcommit

with ginkgo. In IEEE International Conference on Cloud Computing Technology

and Science (CloudCom) (2011).

[38] Intel virtualization technology for directed I/O, architecture specification.

ftp://download.intel.com/technology/computing/vptech/Intel(r) VT for Direct IO.pdf,

Feb 2011. Revision 1.3. Intel Corporation. (Accessed Apr 2011).

[39] ITZKOVITZ, A., AND SCHUSTER, A. MultiView and MilliPage—fine-grain sharing

in page-based DSMs. In Symposium on Operating Systems Design & Implementation

(OSDI) (1999).

[40] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM, S., HAN, D., AND PARK,

K. mtcp: a highly scalable user-level tcp stack for multicore systems. USENIX

Association, pp. 489–502.

[41] KELLER, E., SZEFER, J., REXFORD, J., AND LEE, R. B. Nohype: virtualized

cloud infrastructure without the virtualization. In ACM/IEEE International Sympo-

sium on Computer Architecture (ISCA) (New York, NY, USA, 2010), ACM.

[42] KELLY, F. Charging and rate control for elastic traffic. European Transactions on

Telecommunications 8 (1997).

[43] KESSLER, R. E., AND HILL, M. D. Page placement algorithms for large real-

indexed caches. ACM Transactions on Computer Systems (TOCS) 10, 4 (Nov. 1992),

338–359.

[44] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND LIGUORI, A. KVM:

the Linux virtual machine monitor. In Ottawa Linux Symposium (OLS) (2007).

44

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf. (Accessed Apr,

2011).

[45] KIVITY, A., LAOR, D., COSTA, G., ENBERG, P., HAR’EL, N., MARTI, D., AND

ZOLOTAROV, V. Osv—optimizing the operating system for virtual machines. In

USENIX Annual Technical Conference (ATC) (2014).

[46] KLEIN, G., ELPHINSTONE, K., HEISER, G., ANDRONICK, J., COCK, D., DERRIN,

P., ELKADUWE, D., ENGELHARDT, K., KOLANSKI, R., NORRISH, M., SEWELL,

T., TUCH, H., AND WINWOOD, S. seL4: formal verification of an os kernel. In

ACM Symposium on Operating Systems Principles (SOSP) (2009).

[47] KRIEGER, O., AUSLANDER, M., ROSENBURG, B., WISNIEWSKI, R. W., XENI-

DIS, J., DA SILVA, D., OSTROWSKI, M., APPAVOO, J., BUTRICO, M., MERGEN,

M., WATERLAND, A., AND UHLIG, V. K42: building a complete operating system.

In ACM SIGOPS European Conference on Computer Systems (EuroSys) (2006).

[48] LANDAU, A., BEN-YEHUDA, M., AND GORDON, A. SplitX: Split guest/hypervisor

execution on multi-core. In USENIX Workshop on I/O Virtualization (WIOV) (2011).

[49] LEE, C. B., AND SNAVELY, A. E. Precise and realistic utility functions for user-

centric performance analysis of schedulers. In International Symposium on High

Performance Distributed Computer (HPDC) (2007).

[50] LESLIE, I., MCAULEY, D., BLACK, R., ROSCOE, T., BARHAM, P., EVERS,

D., FAIRBAIRNS, R., AND HYDEN, E. The design and implementation of an

operating system to support distributed multimedia applications. Selected Areas in

Communications, IEEE Journal on 14, 7 (Sep 1996), 1280–1297.

[51] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Unmodified device driver

reuse and improved system dependability via virtual machines. In Symposium on

Operating Systems Design & Implementation (OSDI) (2004).

[52] LIU, J., HUANG, W., ABALI, B., AND PANDA, D. K. High performance VMM-

bypass I/O in virtual machines. In USENIX Annual Technical Conference (ATC)

(2006), pp. 29–42.

[53] LO, D., CHENG, L., GOVINDARAJU, R., BARROSO, L. A., AND KOZYRAKIS,

C. Towards energy proportionality for large-scale latency-critical workloads. In

Proceeding of the 41st Annual International Symposium on Computer Architecuture

(Piscataway, NJ, USA, 2014), ACM/IEEE International Symposium on Computer

Architecture (ISCA), IEEE Press, pp. 301–312.

[54] MADHAVAPEDDY, A., MORTIER, R., ROTSOS, C., SCOTT, D., SINGH, B., GAZA-

GNAIRE, T., SMITH, S., HAND, S., AND CROWCROFT, J. Unikernels: Library

45

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



operating systems for the cloud. In ACM Architectural Support for Programming

Languages & Operating Systems (ASPLOS) (2013).

[55] MADHAVAPEDDY, A., MORTIER, R., SOHAN, R., GAZAGNAIRE, T., HAND,

S., DEEGAN, T., MCAULEY, D., AND CROWCROFT, J. Turning down the lamp:

software specialisation for the cloud. In USENIX Conference on Hot Topics in Cloud

Computing (HotCloud) (2010).

[56] MOGUL, J. C., AND RAMAKRISHNAN, K. K. Eliminating receive livelock in an

interrupt-driven kernel. ACM Transactions on Computer Systems (TOCS) 15 (1997),

217–252.

[57] PCI SIG. Single root I/O virtualization and sharing 1.0 specification, 2007.

[58] PETER, S., LI, J., ZHANG, I., PORTS, D. R. K., WOOS, D., KRISHNAMURTHY,

A., ANDERSON, T., AND ROSCOE, T. Arrakis: The operating system is the control

plane. In Symposium on Operating Systems Design & Implementation (OSDI)

(2014).

[59] PORTER, D. E., BOYD-WICKIZER, S., HOWELL, J., OLINSKY, R., AND HUNT,

G. C. Rethinking the library OS from the top down. In ACM Architectural Support

for Programming Languages & Operating Systems (ASPLOS) (2011).

[60] RIZZO, L. Netmap: a novel framework for fast packet I/O. In USENIX Annual

Technical Conference (ATC) (2012).

[61] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O devices. ACM

SIGOPS Operating Systems Review (OSR) 42, 5 (2008), 95–103.

[62] RYZHYK, L., WALKER, A., KEYS, J., LEGG, A., RAGHUNATH, A., STUMM, M.,

AND VIJ, M. User-guided device driver synthesis. In Symposium on Operating

Systems Design & Implementation (OSDI) (Broomfield, CO, Oct. 2014), USENIX

Association, pp. 661–676.

[63] SALIM, J. H., OLSSON, R., AND KUZNETSOV, A. Beyond Softnet. In Anual Linux

Showcase & Conference (2001).

[64] SCHAELICKE, L., AND DAVIS, A. L. Design Trade-Offs for User-Level I/O

Architectures. IEEE Trans. Comput. 55 (August 2006), 962–973.

[65] SNELL, Q. O., MIKLER, A. R., AND GUSTAFSON, J. L. Netpipe: A network

protocol independent performance evaluator. IASTED International Conference on

Intelligent Information Management and Systems 6 (1996).

[66] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MARTINS, F. C. M.,

ANDERSON, A. V., BENNETT, S. M., KAGI, A., LEUNG, F. H., AND SMITH, L.

Intel virtualization technology. Computer 38, 5 (2005), 48–56.

46

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



[67] VAN HENSBERGEN, E. P.R.O.S.E.: partitioned reliable operating system environ-

ment. SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006), 12–15.

[68] VFIO driver: non-privileged user level PCI drivers. http://lwn.net/Articles/391459/,

Jun 2010. (Accessed Feb., 2015).

[69] VON EICKEN, T., BASU, A., BUCH, V., AND VOGELS, W. U-Net: a user-level

network interface for parallel and distributed computing. In ACM Symposium on

Operating Systems Principles (SOSP) (New York, NY, USA, 1995).

[70] WILLMANN, P., RIXNER, S., AND COX, A. L. Protection strategies for direct

access to virtualized I/O devices. In USENIX Annual Technical Conference (ATC)

(2008).

[71] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O. Direct device

assignment for untrusted fully-virtualized virtual machines. Tech. Rep. H-0263,

IBM Research, 2008.

47

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



מנהלי ועם פרטי רשת מכלול עם לרוץ תוכנה לכל מאפשרת זו ישירה גישה שלהן. הקלט/פלט למשאבי

משמשת תוכנה כל של הפרטית התועלת פונקציית עבורה. במיוחד שתוכננו פרטיים קלט/פלט התקני

מקסימליים, רווחים לה שמשיא וריצוד, השהיה הספק, של באיזון נתון רגע בכל לבחור מנת על אותה

הפס. רוחב של הנוכחי במחיר כתלות

טובים״. ״הכי חומרה התקני מנהלי ואין טוב״ ״הכי רשת מכלול שאין מראים נום עם שערכנו הניסויים

לאפשר הפעלה, מערכות בוני עלינו, זאת במקום אחרת. לתוכנה טוב דווקא לאו אחת לתוכנה שטוב מה

מנהלי ושל שלה הרשת מכלול של שלה, ריצה בזמן ההתנהגות שינוי ידי על רווחיה את למקסם תוכנה לכל

התוכנה רק בו. נתונה שהיא והעומס המשאבים מחיר נמצאת, היא שבו במצב כתלות שלה, ההתקנים

עבורה. טוב הכי מה יודעת

iii

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



לספק מנת על ענן בשרתי שזמינה המודרנית בחומרה להשתמש ויוכלו שלהן, הרווחים את למקסם שלהן

עם בעננים שירוצו הפעלה ממערכות דרישות רשימת אלה משינויים גוזרים אנו שונות. תוכנות בין הפרדה

משתנה. מחיר

התכנון משתנים. מחירים עם עננים עבור וייעלנו מימשנו אלו, דרישות לפי שתכננו הפעלה מערכת היא נום

ומודעות קלט/פלט להתקני ישירה גישה הזיכרון, ניהול התהליכים, תזמון כולל נום, של השונים רכיביה של

משאבים, רוכשת תוכנה כל בנום האפשר. ככל גדולים רווחים להשיג שלה לתוכנות לאפשר מיועד למחיר,

שלמות ליבות רוכשות נום על שרצות תוכנות למשל כך עליהם. שתוותר עד שלה הם אותם, שרכשה ומרגע

וניגשות בעצמן, שלהן הזיכרון מיפויי את ומנהלות זיכרון דפי רוכשות בעצמן, שלהן החוטים את ומתזמנות

הקלט/פלט במסלולי נום של הליבה של מעורבות כל בלי רכשו, שאותם הקלט/פלט למשאבי בעצמן

המשאבים. של השונים למחירים מודעות מתוך זאת כל את עושות הן לביצועים. הרגישים

״מפתח ושרתי אינטרנט דפי שרתי כגון ברשת, אינטנסיבי שימוש המשתמשות בתוכנות התרכזנו זו בעבודה

חומרה התקן מנהל או אידיאלי אחד (TCP/IP stack) רשת מכלול אין בנום .memcached כמו וערך״

תוכנה עבור גרוע אחת לתוכנה שאידיאלי חומרה התקן מנהל או רשת שמכלול משום אידיאלי, אחד

מכלול גם ולכן שלה הקלט/פלט להתקני ישירה גישה יש נום על שרצה תוכנה לכל זאת במקום אחרת.

מאחר שלה. הכתובות מרחב בתוך הכלולים משלה פרטיים חומרה התקני ומנהלי משלה פרטי רשת

כל משתמשת, היא שבה הרשת של הפס רוחב של הרגעית בעלות היתר בין תלוי התוכנה של שהרווח

והתנהגות שלה, הרשת מכלול התנהגות התנהגותה, את ריצה כדי תוך לשנות יכולה נום על שרצה תוכנה

לשנות יכולות נום על שרצות תוכנות למשל כך משתנה. הפס רוחב כשעלות שלה החומרה התקני מנהלי

הפס. רוחב של הנוכחי במחירו כתלות ברשת חבילות ומקבלות שולחות הן שבהם והתזמון הקצב את

(latency) ההשהיה מספקות, שהן (throughput) הרשת הספק משתנים: מספר לפי נמדדות רשת תוכנות

מתורת בכלי משתמשות נום על שרצות תוכנות ההשהיה. של (jitter) והריצוד חווים, שלהן שהלקוחות

אנו זו בעבודה ריצה. בזמן התנהגותן את לשנות איך לדעת מנת על תועלת״ ״פונקציית שנקרא המשחקים

לקוחותיה את ומפצה נענשת התוכנה שבה עונשים, על המבוססת פונקציה תועלת: פונקציות שלוש חוקרים

מחזירה התוכנה שבה החזר, על המבוססת פונקציה וריצוד, השהיה לגבי בהתחייבויותיה עומדת כשאינה

ופונקציה יותר, גדולה ממנה סובלים שהם שההשהיה ככל ששלמו מהסכום וגדל הולך חלק ללקוחותיה

יותר. נמוכה להם מספקת שהיא שההשהיה ככל התוכנה את מתגמלים הלקוחות שבה תמריץ, מבוססת

השהיה הספק, בין רוצות הן איזון איזה להחליט יכולות נום על שרצות תוכנות התועלת, פונקציות בעזרת

של הנוכחי במחיר כתלות רווחיהן, את שימקסם האיזון את יבחרו רווחים ממקסמות אפליקציות וריצוד.

טוענים זאת עם יחד אבל מסכימים, אנו שכאלה. פונקציות לבטא שקשה היא רווחת טענה הפס. רוחב

מספיק. גבוה הפוטנציאלי הרווח בהם במקרים זאת לעשות שכדאי

תוכנות שלוש מריץ זה טיפוס אב .KVM המשגוח תחת וירטואליות במכונות שרץ נום של טיפוס אב בנינו

רצות הן כאשר אלו, תוכנות שלוש רשת. ביצועי ובוחן וערך״, ״מפתח שרת אינטרנט, דפי שרת לדוגמה:

מערכת על הן רצות הן כאשר תוכנות אותן מאשר יותר גבוהים רווחים וגם ביצועים גם משיגות נום, על

שלוש נום על בפרט, לענן. המיועדת חדשה הפעלה מערכת ,OSv על והן לינוקס המיושנת ההפעלה

כדי עד טובה והשהיה 3.9 פי כדי עד טוב רשת הספק ,11.1 פי כדי עד טובים רווחים משיגות התוכנות

.9.1 פי

ולהמנע למשגוח״ ״ידידותיות להיות תוכננו הן כי יותר טובים ביצועים משיגות נום על שרצות תוכנות

ישירה גישה להן שיש מאחר יותר טובים רווחים משיגות הן המשגוח. לבין נום בין מיותרים ממעברים

ii

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



תקציר

,(Infrastructure-as-a-Service, IaaS) כשירות תשתית בענני נמצא העולמי המחשוב מכוח ויותר יותר

אשראי כרטיס עם ואחת אחד כל גוגל. חברת או אמזון חברת של כשירות התשתית ענני למשל כמו

הפעלה מערכות מריצים כשירות תשתית ענני מוגבל. בלתי מחשוב כח כשירות תשתית מענני לשכור יכולים

של אחסון) ויחידות רשת, זיכרון, (מעבדים, הפיזיים המשאבים בעזרת וירטואליות מכונות בתוך ותוכנות

הענן. מכונות

(Resource-as- כשירות משאב לענני יהפכו כשירות התשתית שענני מאמינים אנו שבעטיין מגמות שתי יש

תדירות. ומשתנה השוק כוחות ע״י הנשלט מחיר יהיה משאב לכל כשירות משאב בענני .a-Service, RaaS)

חלוקת של וקטנה ההולכת והגרעיניות במרחב משאבים חלוקת של וקטנה ההולכת הגרעיניות הן המגמות

בנויים. הם שממנה ובחומרה מסחריים בעננים היום כבר אלו מגמות שתי לראות ניתן בזמן. משאבים

מסוימים. משאבים עבור משתנה מחיר גובים מהעננים חלק היום כבר כן, על יתר

בה לגמרי חדשה דרך מייצגים כשירות, משאב ענני יותר, עוד רבה ובמידה כשירות, תשתית שענני למרות

את מריצה בענן היום שרצה וירטואלית מכונה כל כמעט מיחשוב, במשאבי ולהשתמש למכור, לקנות, ניתן

שהייתה החומרה עבור תוכננו אלו הפעלה מערכות וחלונות. לינוקס כגון מיושנות הפעלה מערכות אותן

שכבת עליהן שרצות לתוכנות מספקות הן בלבד. אחד פיזי מחשב על לעבוד ומיועדות עשורים לפני זמינה

הבלעדי לשימושן זמינים המחשב משאבי שכל ומניחות שמתחתיה החומרה את שמסתירה עבה הפשטה

בענן בהם משתמשות שהן שהמשאבים להן אכפת ולא יודעות לא הן אחרות, במילים עלות. כל ללא

למשאבים. ובדרישה הזמין בהיצע משינויים כתוצאה למשל רגע, בין להשתנות יכול ושמחירם כסף, עולים

אלו הפעלה מערכות להחליפן. וצריך לענן מתאימות אינן אלה מיושנות הפעלה שמערכות טוענים אנו

כל ללא עליון, כיעד ביצועים שיפור האפשר. ככל גבוהים ביצועים לספק ובראשונה, בראש מתוכננות,

המשאבים עלות כאשר רק הגיוני גבוהים, לביצועים להגיע מנת על הנדרשים המשאבים בעלות התחשבות

מה אין קבועה, העלות אם בחשבון. אותה מלהביא להרוויח מה אין זניחה, העלות אם קבועה. או זניחה

לא קבועים, ולא זניחים לא המחירים שבהם משתנים, מחירים עם שבעננים טוענים אנו לגביה. לעשות

רווחים. שממקסמות הפעלה מערכות להריץ צריך במקום, שכאלה. ישנות הפעלה מערכות להריץ כדאי

נכון איזון ידי על מקסימליים רווחים בהן למשתמשים להשיג מתוכננות רווחים ממקסמות הפעלה מערכות

ממקסמות הפעלה שמערכות העבודה בהמשך מראים אנו עלויות. ובין ביצועים בין תועלת, ובין עלות בין

על ישיגו תוכנות שאותן מהרווח גודל בסדר גבוה רווח עליהן שרצות לתוכנות להביא יכולות רווחים

מיושנות. הפעלה מערכות

בין עליהם. שירוצו ההפעלה במערכות יחייבו כשירות משאב שענני השינויים את זו בעבודה סוקרים אנו

לתוכנות לאפשר חייבות יהיו שליטתן, תחת המשאבים שכל להניח יותר יוכלו לא הפעלה מערכות היתר,

i

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



המחשב. למדעי בפקולטה צפריר, דן פרופ׳ של בהנחייתו בוצע המחקר

ושותפיו המחבר מאת כמאמרים פורסמו עליהן מתבסס זה שחיבור ותוצאות זה בחיבור התוצאות מן חלק

ביותר העדכניות הגרסאות המחבר. של למאגיסטר המחקר תקופת במהלך ובכתבי־עת בכנסים למחקר

הינן: אלה מאמרים של

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. The rise of RaaS: The
Resource-as-a-Service cloud. Communications of the ACM (CACM), 57(7):76–84, July 2014.

Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster. vIOMMU: efficient IOMMU emulation.
In USENIX Annual Technical Conference (ATC), 2011.

Orna Agmon Ben-Yehuda, Eyal Posener, Muli Ben-Yehuda, Assaf Schuster, and Ahuva Mu’alem.
Ginseng: Market-driven memory allocation. In ACM/USENIX International Conference on Virtual
Execution Environments (VEE). 2014.

Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir. Deconstructing Amazon
EC2 spot instance pricing. ACM Transactions on Economics and Computation (TEAC), 1(3):16:1,
September 2013.

Muli Ben-Yehuda, Omer Peleg, Orna Agmon Ben-Yehuda, Igor Smolyar, and Dan Tsafrir. The nonkernel:
A kernel designed for the cloud. In Asia Pacific Workshop on Systems (APSYS), 2013.

Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda, Alex Landau, Dan Tsafrir, and Assaf
Schuster. ELI: Bare-metal performance for I/O virtualization. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS), 2012.

Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory overcommit with Ginkgo. In IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2011.

תודות

ולימדת ומנחה, עמיתה חברה, היית בן־יהודה. אגמון אורנה המדהימה, לאשתי להודות ברצוני ראשית

אור הביאו אשר וזאב, יעל המדהימים, לילדי להודות ברצוני שנית לתאר. פעם אי שאוכל ממה יותר אותי

האמונה את איבדו לא שמעולם כך על יהודה, בן ועירית יואל להורי, גם להודות ברצוני לחיי. ומשמעות

אותי לימדו אשר קריגר, ולאורן פקטור למייקל להודות ברצוני לבסוף, פתלתלה. הפכה כשהדרך גם בי,

מחקר. מהו

מאמרים כעשרים חיברתי אלו שנים במשך רבות. שנים זה חיבור ועל נום ההפעלה מערכת על עבדתי

עימכם! לעבוד מאוד לכולם−נהניתי להודות ברצוני רבים. מוכשרים אנשים עם ביחד

זה. מחקר של חלקי מימון על לטכניון מסורה תודה הכרת

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



״נום״ הרווחים ממקסמת ההפעלה מערכת

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

המחשב במדעי למדעים מגיסטר

בן־יהודה (מולי) שמואל

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2015 מאי חיפה התשע״ה אייר

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5



״נום״ הרווחים ממקסמת ההפעלה מערכת

בן־יהודה (מולי) שמואל

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 M

.S
c.

 T
he

si
s 

 M
SC

-2
01

5-
15

 -
 2

01
5


	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	2 Motivation
	2.1 Dynamic resource pricing is coming
	2.2 Dynamic pricing mandates change

	3 Design
	3.1 Requirements
	3.2 Principles
	3.3 CPU and scheduling
	3.4 Memory management
	3.5 I/O devices
	3.6 Networking
	3.7 Storage
	3.8 Price-awareness

	4 Economic model and utility of network bandwidth
	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Performance
	6.3 What makes nom fast?
	6.4 Profit
	6.5 What makes nom profitable?
	6.6 Effect of batching on throughput and latency
	6.7 Throughput/latency Pareto frontier

	7 Discussion
	8 Related work
	9 Conclusions and future work
	Bibliography
	Hebrew Abstract

