
Abstract
We present a novel approach for scalable network

acceleration. The architecture uses limited hardware
support and preserves protocol processing flexibility,
combining the benefits of TCP offload and onload. The
architecture is based on decoupling the data movement
functions, accelerated by a hardware engine, from complex
protocol processing, controlled by an isolated software
entity running on a central CPU. These operate in parallel
and interact asynchronously. We describe a prototype
implementation which achieves multi-gigabit throughput
with extremely low CPU utilization.

1. Introduction

Server network stack performance problems are well
known, and so are the controversial solutions that involve
full protocol offload to the adapter. While partial offload
techniques have gained wide acceptance, full TCP offload
remains debatable. One of its main problems is lack of
durable advantage over the host CPU, both in terms of
performance and adequate protocol support. Solutions
based on embedded processors can be quickly outper-
formed by the host CPU, while solutions based on custom
hardware suffer from lack of flexibility in evolving protocol
processing. In addition, full offload significantly decreases
the OS control over the network processing, which is
perceived as a threat to system robustness. The same set of
problems exists for special forms of TCP offload adapters,
such as RDMA NICs and iSCSI HBAs.

An evolving alternative to TCP offload is TCP onload,
based on general-purpose hardware. With this approach, the
system operates in asymmetric multiprocessing mode,
where one of the main CPUs is dedicated to TCP/IP
processing. Although this approach can yield significant
performance improvement compared to a regular stack, it
does not solve network scalability problem, since it does not
address some of the fundamental limitations of current
stack architecture.

We present a novel scalable network acceleration archi-
tecture that combines the efficient data movement capabili-

ties of the offload approach with the protocol processing
flexibility of the onload. A hardware data placement engine
performs data-intensive operations and works in concert
with a software stack that handles complex protocol
processing, prone to future modifications. These compo-
nents are loosely-coupled, i.e., they exchange state informa-
tion asynchronously, without waiting for each other. The
architecture is applicable to plain TCP offload, as well as
RDMA or iSCSI implementation. 

We prototyped the architecture using a programmable
adapter with flexible multi-channel DMA capabilities that
emulated the hardware engine and provided an efficient
application interface. The protocol processing was imple-
mented on one of the main CPUs of an SMP system, while
applications executed on another CPU. Our results show
that this architecture achieves high throughput with CPU
utilization that is an order of magnitude lower than that of a
standard stack, and several times lower than that of TCP
onload ([15]).

This paper is structured as follows: Section 2 surveys full
TCP offload, onload and other related work. Section 3
describes our architecture in detail. Section 4 presents a
prototype implementation, and Section 5 evaluates its
performance. Finally, we present our conclusions and future
directions in Section 6.

2. Background and Related Work

Performance limitations of server TCP/IP networking are
well-known ([3, 11, 12]). Increasing TCP/IP performance
and scalability has been a major research area for the
systems and networking communities ([1, 2]). Many incre-
mental improvements, such as TCP checksum offload, were
introduced and have since become widely adopted.
However, these improvements only serve to keep the
problem from getting worse over time, as they do not solve
the network scalability problem caused by increasing
disparity of improvement of CPU speed, memory band-
width, memory latency and network bandwidth. At multi-
gigabit data rates, TCP/IP processing is still a major source
of system overhead. Moreover, this overhead in effect limits
the achievable network bandwidth and server utilization.
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For example, a recent work [15] indicates that TCP/IP
processing on state-of-the-art platforms consumes one
entire CPU to achieve 1 Gbit/s of throughput when trans-
mitting data, or 750 Mbit/s when receiving data. 

There are several recognized elements of TCP/IP
processing that require improvement on modern systems
([8, 15]). One area for improvement is the cost of integra-
tion with OS mechanisms such as system calls and interrupt
processing. A significant portion of this overhead is contrib-
uted by network buffer management and other per-packet
overhead. On SMP systems, locking is also an important
source of overhead.

Another issue is inefficient operation of memory
subsystem, related to the overall stack architecture, and
affecting both the software implementation and interaction
between the CPU and the network adapter. Poor cache
locality and excessive data copy operations, combined with
high memory latency, make the existing stack architecture
unsuitable for the server networking.

Three approaches to the problems described above are
TCP/IP offload engines (TOE), Remote Direct Memory
Access (RDMA), and TCP onload.

2.1 TCP Offload and RDMA NICs

Full TCP offload attempts to solve the problem by
moving all TCP/IP processing to the network interface
adapter. This technique has been pursued for a long time,
but has not gained acceptance so far. Even though some
encouraging results were reported (e.g., QPIP [13]), the
approach remains highly controversial ([6, 7]). A summary
of the criticisms of TCP offload can be found in [4]; a
detailed response can be found in [8]. 

One particular point of the TOE debate is the issue of a
potential bottleneck created by an offload adapter. TOE
implementations range from mostly-firmware to hardware-
only solutions, with varying levels of special-purpose hard-
ware on the adapter. TCP offload adapters that make exten-
sive use of embedded CPUs typically suffer more
performance problems, in particular because they face scal-
ability problems similar to those of the host CPU. On the
other hand, a hardware state machines implementation is
potentially more efficient and less power-consuming, but
also more expensive to develop and not flexible enough to
support protocol modifications and bug fixes. 

The lack of flexibility in the protocol processing hinders
the acceptance of TOE implementations. Even if the
adapter’s internal implementation is flexible, only the
device vendor can utilize this flexibility. Most operating
systems do not even provide a standard way to integrate a
full offload solution with the native OS stack.

RDMA NIC (RNIC) approach can be viewed as an exten-
sion of the TOE technique. TCP processing is done within
the adapter, where the adapter is operated through a stan-

dardized interface, which simplifies the integration with the
OS. The RDMA adapter interface is an asynchronous
direct-access interface, similar to the Infiniband interface
[14]. In RDMA mode, instead of using streaming seman-
tics, the applications use message semantics and memory
semantics. Boundaries of messages posted by the host on
transmit side are identified on the wire and correspond to
boundaries of messages delivered to the receiver. In addi-
tion, the sender can specify the destination in the receiver
memory. This allows a much more efficient interface
between the applications and the adapter, as compared to
plain TCP offload. 

The main drawback of this approach is lack of interopera-
bility with “legacy” TCP applications. Also, as in the case
of TOE, RDMA solutions may suffer from a lack of flexi-
bility or a lack of OS control over TCP processing.

2.2 TCP Onload

Recently, “TCP onload” was proposed as a new approach
to improve the “conventional” implementation of a network
stack ([9, 10, 15]). The concept is based on an asymmetric
multi-processing mode, when at least one of the CPUs on a
multiprocessor system is dedicated to network stack
processing. The TCP Servers project [5] is an earlier work
that demonstrated the value of a similar approach.

A significant drawback of the onload approach is that it
does not reduce the load on the memory subsystem; in
particular, it does not eliminate receive data copy. At most,
it can hide its latency, for example by using a general-
purpose DMA engine, which executes the memory copy
asynchronously. This can solve the problem of CPU stalls
and pollution of the cache. However, the copy operations,
although executed in the background, still affect the
memory bus performance, which in turn affects the CPU
performance, and ultimately limits the ability to scale both
the number of CPUs and achievable network bandwidth.

3. Asynchronous Split Architecture

We propose a hybrid approach that combines the benefits
of both offload and onload while eliminating their draw-
backs. As in the offload approach, the application CPU uses
a hardware interface to interact with an “offloaded” network
stack. However, network stack processing is not fully
offloaded to the network interface adapter. Instead, we use
an “asynchronous split” stack architecture. All data
processing is performed by a dedicated hardware accelera-
tion engine, while the protocol control operations are done
by software, executed on a dedicated main CPU, resem-
bling the onload approach.

The adapter provides hardware support to achieve true
zero copy operation, which involves minimal protocol
awareness. Most of the protocol processing, prone to future



changes, is performed by assisting software, loosely
coupled with the hardware. The split of responsibilities
allows independent operation of both parts, thus avoiding
bottlenecks related to their interaction. In particular, the
architecture allows lock-free operation. 

3.1 Major Components

The architecture, shown in Figure 1, includes three major
components: consumer interface, hardware acceleration
engine called Streamer, and TCP Control Engine (TCE)
software.

Figure 1. System Architecture 
• Consumer interface - the interface used by the user or

kernel space applications. It is implemented as an
access library, which may provide different types of
semantics. An asynchronous queue-based mechanism
is used to submit application work requests directly to
the Streamer, and to receive completion notifications. 

• Streamer - hardware acceleration engine which, in con-
junction with the TCE, provides network acceleration
services to the consumers. This engine is responsible
for handling data intensive operations. 

• TCP Control Engine (TCE) - a software component
that implements most of the protocol processing. It car-
ries out the decision-making part of the TCP protocol.
It is not involved in data movement for most data pack-
ets. It does not need to keep track of message or packet
boundaries, and does not maintain any equivalent of
mbuf or skbuf data structures.

The Streamer and the TCE use an asynchronous interface
to exchange information without handshake or locking.
This interface consists of two queues: Command Queue is
used to pass commands from the TCE to the Streamer and
Event Queue is used to pass information on the events
processed by the Streamer to the TCE. Also, the TCE does
not need to use locks internally, because it is executed as a
single loop; it polls for new entries in the Event Queue,
instead of using interrupt-based notifications. 

The Streamer and TCE perform TCP processing asyn-
chronously; each uses its own copy of the relevant connec-
tion context fields. Consider an event generated by the
Streamer that has to be processed by the TCE to accomplish
a part of TCP processing. The Streamer does not wait until
the TCE processes the event. Instead, it just updates its own
view of the (partial) connection state. The connection state
replicas are “weakly consistent”, where at any given time
the TCE view of connection state may be different from that
of the Streamer. Processing of independent TCP events may
be reordered, for example the Streamer can handle data that
arrives after an ACK before the TCE handled that ACK.
The architecture assumes that many commands or events,
possibly pertaining to the same connection, may be accu-
mulated before they are actually processed. The context
fields and the contents of Events and Commands exchanged
by the TCE and the Streamer were designed to allow
parallel TCP processing. In the sections below we describe
the split of responsibility between the Streamer and TCE,
separately for receive and transmit flows.

3.2 Transmit Flow

Data transmission requests originate from the consumer,
which posts the requests to its Send Queues and notifies the
Streamer of the new requests. The Streamer examines the
connection context, decides whether the connection should
be served, and schedules it for transmit execution. It then
calculates the amount of data that can be sent for the given
connection. This calculation is based on transmit window
and the amount of data available in the consumer buffers.
The transmit window information, namely the send window
and the congestion window, is kept in the connection
context, and is indirectly updated by the TCE via the
Command Queue, using context update commands. 

Once the connection is scheduled for actual transmit
operation, the Streamer fetches the required amount of data,
performs segment generation using a small subset of TCP
connection context, and transmits the generated segments
via the MAC interface. 

The Streamer may transmit more than one packet for the
selected connection; when it is done handling the connec-
tion, the Streamer provides to the TCE, via the Event
Queue, a transmit event for this connection, carrying the
connection ID and the TCP sequence numbers range of the
transmitted data. 

The TCE tracks transmitted data using the transmit events
described above, ACK receive events described in Section
3.3, and internal timer events. When the TCE detects a
retransmission condition, it passes a retransmit request to
the Streamer via the Command Queue, providing the
connection ID, the sequence number from which to perform
retransmit and the amount of data to retransmit. 
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3.3 Receive Flow

Each arriving packet is first handled by the Streamer,
which places the data either directly on the destination
buffers or on reassembly buffers, and passes a receive event
to the TCE. The TCE then completes the packet processing.

3.3.1 Streamer Receive Handling. For each arriving TCP
segment, the Streamer first performs its basic validation and
classification. This includes TCP checksum validation, TCP
four-tuple lookup, and identifying whether the received
segment belongs to the fast path. The meaning of fast-path
is much broader than in other systems, as described below.

A segment is identified as a fast-path segment if it passes
a basic TCP validation sequence, which includes the
following checks: the timestamp option is valid, the data
sequence number is within the receive window, the flags are
valid, and the Ack number is valid (i.e., acknowledges
recently sent data). This validation involves access to a
small subset of TCP connection context. It is sufficient to
allow data placement to consumer buffers and delivery to
the consumer without TCE involvement. Note that a valid
out-of-order segment is handled as a fast-path segment.
Note also that a valid packet that carries both data and new
ACK information is handled as a fast-path segment, unlike
in classical header prediction fast path.

The Streamer processes the TCP payload of a fast-path
segment without waiting for the TCE. It retrieves the loca-
tion of consumer buffers, places the payload on these
buffers, and generates a completion.

If a segment does not pass the validation, or buffers for
the direct data placement are not available, it is treated as a
slow-path segment. The Streamer places the payload of
slow-path segments on the reassembly area; the Streamer is
responsible for reassembly buffers management. The TCE
can later instruct the Streamer to process the valid data from
the reassembly buffer, i.e. place it to the consumer buffers
and deliver it to the consumer.

For both fast and slow paths, in parallel with the data
placement, the Streamer passes to the TCE a receive event
entry via the Event Queue. The event entry carries the TCP
header and additional information, such as the connection
ID and packet status.

3.3.2 TCE Receive Handling. The TCE retrieves the TCP
headers from the Event Queue, and performs control
processing, such as TCP congestion control, window
management and RTTM estimation. As a part of the ACK
processing, it can pass the Streamer a transmit context
update command. As a part of the data header processing, it
either passes the Streamer an ACK generation command or
schedules a delayed ACK.

For the slow-path segments, the TCE performs an
extended validation sequence, covering various corner

cases (e.g., ambiguous timestamp information). It also
implements reassembly control for valid slow-path
segments; when reassembly is completed, the TCE passes a
command to the Streamer via the Command Queue, asking
it to fetch the data from the reassembly buffers, process it,
and place it on the destination buffers. This relieves the
TCE from copying the data or alternatively waiting until an
asynchronous copy completes.

4. Prototype

In order to evaluate the architecture, we built a prototype
on an SMP machine with one of the processors dedicated
for TCP control processing. We used dual-CPU servers with
Xeon 1.8 GHz CPUs; hyperthreading was disabled to
simplify the analysis. The servers ran Redhat Linux,
patched in such a way as to dedicate a single CPU to TCP
Control Engine processing. We used the Linux setaffinity
system calls to bind all userspace tasks to CPU#0. Addition-
ally, we disabled the IRQ balancing code so that all inter-
rupts were delivered to CPU#0. CPU#1 was dedicated to
running the TCP Control Engine code.

Figure 2. Prototype environment 
To facilitate the prototyping, we used an available high-

speed programmable adapter with multi-channel DMA
capabilities. We implemented the missing hardware features
in the adapter firmware. The adapter which we used was a
dual port 4x1 Infiniband HCA. The microcode on the
adapter emulated Ethernet (i.e., packetized the data) and
provided the Streamer functions described in the previous
section, using the existing DMA support. 

4.1 TCE Implementation

We implemented the TCE as a kernel thread that took
over a CPU. It polled the protocol Event Queue and a timer
event queue in a loop. When the queues were empty, the
TCE stopped polling for 100 s to allow the queues to fill.
Conceptually, it could yield the CPU in such cases. In prac-
tice, in order to avoid scheduling problems, the TCE did not
actually yield the CPU, but just performed a busy wait. The

1.Single data rate 4X link that carries 10 Gbit/s of raw data, or 8 Gbit/s of 
user data due to 8/10 encoding.
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busy wait time was counted as idle time. 
The TCE supported a wide set of TCP features, as

expected from a modern TCP implementation. The features
affecting the regular path execution included retransmission
timers, delayed ack timer, NewReno congestion control,
windows scaling, timestamp option, and dynamic round-
trip time (RTT) estimation. The TCE implementation did
not directly use any kernel services, except infrequent timer
operations, as described below.

A timer handler routine was used to generate “TCP clock
ticks” each 100 ms; it placed the events to a timer queue,
implemented as a simple cyclic buffer. The TCE periodi-
cally checked for new “tick” events on the timer queue,
examined timeout control data structures and handled the
detected timeout expiration events. 

In the initial stages of the implementation, profiling
revealed that the TCP processing itself took much less time
than the interaction with the Streamer, due to cache misses.
Therefore, we paid special attention to optimization of the
Command Queue and Event Queue in terms of cache
behavior. For example, we found that writing commands
consumed a significant part of the TCE CPU (4.5% out of
approximately 16%). Cache misses upon the command
entry access caused CPU stalls because the number of fields
that were written to one command entry exceeded the
capacity of the CPU to handle multiple outstanding write
misses. To solve the problem, after filling a command entry,
we performed a seemingly needless write operation to the
next (free) command entry. This caused the CPU to initiate
a prefetch of the next entry in background. The overhead of
writing the commands dropped from 4.5% to less than
0.5%. This type of optimizations is possible because the
TCE “owns” the CPU, and its cache usage patterns are
nearly deterministic.

5. Experimental Results

We performed measurements for a single sender applica-
tion and a single receiver application, which pass equal-
sized messages of configurable size over 1-8 connections,
using an asynchronous API. In order to isolate consumer
interface costs from other overhead, we used an application
that performed only basic transfer operations and polled for
data transfer completions.

We measured the CPU utilization using oprofile ([16]), a
statistical profiler based on the Pentium performance
counters. Oprofile was configured to generate an interrupt
every 300000 clock ticks. We measured bandwidth by
having the application use a processor timestamp clock.
Measurements were taken only during data transfer phase,
after the connection setup.

The baseline standard stack performance on our
machines, over a state-of-the-art 1 Gbit/s Ethernet adapter,
was similar to that reported in [15]. For example, when

receiving 4 KB messages at 1 Gbit/s rate, CPU utilization of
both CPUs was 70% (140% total). 

Figure 3 demonstrates our prototype performance on the
receive side for different message sizes. The analysis is
somewhat complicated, due to throughput decline for
smaller messages which is caused by the emulated
Streamer, as described in Section 5.1. As expected, the
application CPU utilization is proportional to the number of
messages (not shown on the graph), i.e., it decreases when
message size is increased. The TCE CPU utilization is
proportional to the number of received data packets (MTU-
size segments). 

Figure 3. Receive Performance 
The CPU utilization of both CPUs is strikingly low. Total

utilization of both CPUs is an order of magnitude lower
than that of an application using a standard stack. The utili-
zation of the application CPU is consistent with the expec-
tations for a direct-access adapter. 

Figure 4 provides details on the time spent by the TCE for
different activities, when the achieved bandwidth is approx-
imately 3.7 Gb/s. The TCE “yields” the CPU 88% of time;
6.1% is spent on reading the events from memory or polling
for new events. 5.9% is spent on actual event processing,
which also includes posting of the ack generation
commands to the Streamer. This is a very low number for
such bandwidth, but it is consistent with the expectations
for pure TCP control implementation, which is not
burdened with the data movement or the application inter-
face.

Figure 4. Rx TCE Processing 
Figure 5 shows the CPU utilization on the transmit side.

The behavior of the application CPU is almost the same as
on the receive side. 

The transmit TCE CPU utilization is slightly different
from the receive case, due to a different pattern of Streamer
events, because the number of transmit events generated by
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the Streamer decreases for larger messages, since more
segment transmission indications are coalesced.

Figure 5. Transmit Performance 
Figure 6 provides more details on the TCE utilization for

transmit traffic.

Figure 6. Tx TCE Processing 

5.1 Prototype Limitations

Due to limitations of the available hardware, we could not
achieve throughput close to the wire speed. We emulated
the Streamer by extending the adapter microcode, which
was a bottleneck to begin with. For 32 KB messages, the
original microcode provided a throughput of 4.0 Gbit/s. The
microcode extensions, reduced the throughput further to
approximately 3.7 Gbit/s.

The throughput provided by the adapter decreased as the
message size decreased, because of per-message overhead
in the microcode. The throughput decline, which shows up
in our measurement results, closely correlates with the
throughput decline of the original adapter.

Despite these limitations, we were able to achieve multi-
gigabit throughput, that allowed us to estimate the software
scalability in our architecture.

6. Conclusions and Future Work

We built a highly efficient loosely coupled architecture
for TCP acceleration, which requires minimal hardware
support. It eliminates most of the OS integration costs due
to a direct access hardware interface, hardware-managed
data buffers and interrupt and lock-free processing. The
memory bus is relieved from data copy operations, and
cache performance is improved by decoupling the TCP
execution environment from the application execution envi-
ronment. The architecture preserves flexibility in protocol

implementation, and provides the ability to sustain protocol
modifications. Our prototype implementation achieves 3.7
Gb/s throughput using less than 20% of CPU time.

The ability to use a virtual CPU needs to be examined.
On single CPU systems, or on systems with highly variant
network bandwidth requirements, it may be impossible or
undesirable to dedicate an entire CPU to TCE processing. In
such systems, the TCE can be executed on a virtual CPU
implemented through one of the CPU virtualization tech-
niques. The prototype can be extended to operate in such an
environment, to check the impact of virtualization overhead
and of longer latencies of event processing.
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