
IsoStack – Highly Efficient Network Processing on Dedicated Cores

Leah Shalev, Julian Satran, Eran Borovik, Muli Ben-Yehuda

leah@il.ibm.com, Julian_Satran@il.ibm.com, borove@il.ibm.com, muli@il.ibm.com

IBM Research – Haifa

Abstract

Sharing data between the processors becomes increasingly expensive as the number of cores in a system grows. In
particular, the network processing overhead on larger systems can reach tens of thousands of CPU cycles per TCP
packet, for just hundreds of "useful" instructions. Most of these cycles are spent waiting – when the CPU is stalled
while accessing “bouncing” cache lines of network control data shared by all processors in the system – and
synchronizing access to this shared state. In many cases, the resulting excessive CPU utilization limits the overall
system performance. We describe an IsoStack architecture which eliminates the unnecessary sharing of network
control state at all stack layers, from the low-level device access, through the transport protocol, to the socket
interface layer. The IsoStack "offloads" network stack processing to a dedicated processor core; multiple
applications running on the rest of the cores invoke the IsoStack services in parallel, using a thin access layer that
emulates the standard sockets API, without introducing new dependencies between the processors. We present a
prototype implementation of this architecture, and provide detailed performance analysis. We demonstrate the ability
to scale up the number of application threads and scale down the size of messages. In particular, we show an order of
magnitude performance improvement for short messages, reaching the 10Gb/s line speed at 40% CPU utilization
even for 64 byte messages, while the unmodified system is choked when driving 11 times less throughput.

1. Introduction
While networking demands in data centers continue to
grow, and the networking infrastructure continues to
provide improved bandwidth and latency, single
processor performance remains the same and in some
cases even decreases. Recently, increasing the number
of CPU cores became the only way to perform more
instructions per cycle. However, the overhead due to
interaction between these cores also goes up, and naïve
data-sharing may inhibit performance scaling as the
number of cores grows. Nevertheless, the familiar
shared memory programming model is still commonly
used for both application programming and
implementation of OS services.

Since the days of uniprocessor systems, network
processing has been carried out in a "multithreaded"
fashion: some portions of the stack are executed during
the socket system calls (in the context of calling
applications), others during receive packet processing
(in the context of interrupt handlers or kernel threads
owned by the network stack), and yet others in the
context of timeout handler routines. As multiprocessors
were introduced, it was natural to distribute these stack

processing elements symmetrically on the multiple
processors in order to keep pace with the growing
networking speeds. As the number of processors grows,
the cost of sharing the network control structures
between the processors becomes extremely high;
meanwhile, cores become so abundant that sparing a
few becomes feasible. This has provided an opportunity
to re-think the network stack architecture and take
advantage of the changing landscape of computer
systems.

The IsoStack is a different approach for integrating
network processing within a multicore system. Instead
of using the cores symmetrically, the IsoStack uses
dedicated cores for network processing, and leaves the
rest of the cores for running applications. Since the
network processing is confined to dedicated processors,
the stack can be optimized – executed serially without
interrupts and locks. Since the CPUs are not shared
between applications and the stack, there are fewer
context switches, and the cache behavior is improved.
The IsoStack provides applications with a high-level
interface (similar to a TCP Offload Engine interface),
which can also allow efficient virtualization support
using simple HW devices.

Figure 1. Native stack vs. IsoStack

The contributions of this paper are:

� The architecture of an isolated network stack
that allows independent, contention-free,
execution of TCP/IP control operations on a
dedicated core, and application data processing
on the other cores;

� The prototype implementation of such a stack
in AIX 6.1 on Power6, providing a standard
synchronous socket API built upon an
asynchronous internal interconnect;

� Implementation of an optimized message
queue mechanism for internal communication
between a large number of applications
(producers) and a consumer running on a
dedicated core;

� The performance evaluation for a 10 Gb/s link,
demonstrating a significant increase of
bandwidth and/or decrease of total CPU
utilization compared to the native stack, in
some cases yielding an order-of-magnitude
improvement.

The rest of the paper is organized as follows: Section 2
discusses the related work. Section 3 describes the
system architecture, and Section 4 depicts the prototype
implementation. We present the experimental results in
Section 5, and conclude the paper in Section 6.

2. Background and Related Work
For decades, TCP performance optimizations were
introduced gradually to address the performance hot
spots of contemporary systems ([1, 2, 5]). The most
widely adopted optimizations include checksum
calculation offload, interrupt mitigation to decrease the
number of interrupt requests from networking devices,

and techniques that decrease the number of packets to
be processed for bulk data transfer. Some of these
techniques for decreasing the number of packets include
jumbo frames ([5]), Large Send Offload (LSO [31]),
also called TCP segmentation offload (TSO), and,
recently, Large Receive Offload (LRO [21, 25]).
Nevertheless, the resulting improvements merely
succeeded to compensate for the rapidly growing
networking demands, combined with relatively slow
growth of CPU speed and even slower improvement of
memory bandwidth and latency ([6, 16]).

With the advent of multiprocessor and (later) multicore
systems, stack parallelization became necessary to keep
pace with the growing network bandwidth. However,
efficient parallelization remains challenging, as the
parallel stack architectures implemented in the modern
operating systems incur additional locking overhead,
cache inefficiencies, and scheduling overhead ([23]).

Receive-Side Scaling ([18]) and similar techniques let a
NIC classify the incoming packets to determine the
affinity between these packets and CPU cores. On the
basis of the packet classification result, received packets
are dispatched to the appropriate receive queue, which
is usually served by a particular processor. This
technique allows more efficient low-level device
sharing, as it relieves the bottleneck associated with
sharing a single receive queue, and instead allows the
stack to process received packets in truly parallel way
when the packets are independent (i.e., belong to
different sets of network flows). On special-purpose
systems (such as embedded network appliances),
running customized applications, this could potentially
allow to confine all TCP processing for a particular
connection to a single processor core. However, on
general-purpose systems (running regular sockets
applications), if the rest of the sharing issues are not
addressed, RSS (as well as other receive-side
optimizations such as NAPI) only allow to eliminate a
small part of the multiprocessing overhead. This is
because the receive processing, the transmit processing
and the timer processing for the same TCP connection
are still likely to be executed on different processors. In
particular, application-triggered data transmission is
executed in application thread context, while ACK
handling and ACK-triggered data transmission are
executed by the receive handler. The transmit thread
either does not have any CPU affinity, or its affinity is
configured by the application, while the affinity of the
receive handler is configured by the operating system,
transparently to the application. Also, an application
thread can handle multiple connections, that can be
mapped by RSS to different CPUs. Accordingly, such

un-coordinated execution still necessitates locking to
protect access to the TCP connection and the associated
socket state, and may cause cache line bouncing when
accessing this state.

A radical solution to the fast-network, slow-host
phenomenon is offered by RDMA approach ([10]). It
offloads the protocol to an RDMA-enabled adapter,
which allows zero-copy operation due to RDMA
semantics, and eliminates per-packet overhead due to
offloaded transport processing. Although this approach
is suitable for high-performance computing applications
running in a closed environment and using MPI or
explicit RDMA semantics API, it is not feasible for
data-center applications using sockets API,
implementing standard protocols (such as HTTP)
directly over TCP, and interacting with legacy clients.
For this latter class of applications, pure TCP offload
(without RDMA semantics) has been proposed.

TCP offload for socket applications has been pursued
for a long time ([8, 11, 12, 13, 19]), and remains
controversial. Its potential advantage is the improved
performance due to a higher-level interface that
decreases the amount of interaction between the
software and the TCP Offload Engine (TOE) adapter,
since the internal events are handled by the TOE
adapter and do not disrupt application execution.
However, in practice, the performance potential of TOE
materializes only under various limitations. For
example, it may be necessary to modify the existing
applications in order to achieve improved performance.
Also, due to high complexity and low volumes, TOE
solutions tend to have high cost and longer development
cycle comparing to the rest of the system components,
which can make a TOE engine obsolete by the time it is
released. In addition, TOE solutions lack the flexibility
in protocol processing that is needed to support future
protocol changes, and are prone to bugs that cannot be
easily fixed. Even if the internal implementation is
programmable, the changes can only be done by the
adapter vendor, leaving the OS very little control over
the protocol behavior. This impedes TOE support in
some operating systems, and hinders TOE acceptance in
general.

“TCP onload” using a dedicated CPU was proposed for
multiprocessor systems as an alternative to TCP
offload, without the disadvantages of hardware-based
TCP offload ([14, 15, 17, 20]). The concept is based on
an asymmetric multi-processing mode, where at least
one of the CPUs on a multiprocessor system is
dedicated to network stack processing, serving as an
integrated TCP offload engine. This architecture allows

a significant reduction in overhead when compared to
naïve parallelization approaches. The TCP Servers
project ([7]) also demonstrates the value of a similar
approach. However, the previous solutions for CPU-
based TCP offload made simplifying assumptions on
the interaction between the applications and the
onloaded stack, and did not demonstrate performance
improvement for inconveniently small message sizes or
for high number of applications sharing the "onloaded"
services. The IsoStack work is focused on improving
these aspects of the onload concept.

Loosely coupled TCP acceleration ([22]) is a hybrid
approach that combines the benefits of both offload and
onload. Similar to the offload approach, the application
CPU uses a lightweight interface to interact with an
“offloaded” network stack. However, network stack
processing is not fully offloaded to the network
interface adapter. Instead, only the data processing is
performed by a hardware acceleration engine on the
adapter, while the protocol control operations are done
by software on a dedicated main CPU. The software
and hardware components are loosely coupled; the
parallelization is done in a way that allows
asynchronous and independent operation of both parts.
In particular, the control information that has to be
accessed by both entities is replicated rather than
shared, using message queues to explicitly exchange
state changes.

The same principle of dividing up responsibilities was
also applied in the Scalable I/O project ([26]), which
showed that efficient and scalable I/O virtualization
becomes possible by complete separation of the I/O and
compute functions. Moreover, the OS structure itself
can be revisited to reduce unnecessary sharing, as in the
Corey operating system for many cores ([27]); or to
eliminate the sharing altogether, as in the Multikernel
architecture ([28]). Asymmetrical OS structure was also
employed in the Piglet operating system ([4]) which
used dedicated processors to implement "intelligent
device" functions.

3. IsoStack Architecture
In this section we present the IsoStack architecture, in
which we confine the network protocol processing to
dedicated processors and isolate it from the application
execution environment.

The IsoStack architecture is guided by the following
design principles:

� Serialized, event-driven, lock-free, and
interrupt-free implementation of the IsoStack
on one or more dedicated logical processors.
In particular, adapter control structures are not
shared between processors.

� Asynchronous interaction between applications
and the IsoStack, through explicit messaging,
without the sharing of state.

� The isolation is transparent to applications; in
particular, the underlying asynchronous
protocol does not affect the latency of
synchronous operations.

The first two design principles allow more efficient
implementation of the network stack, with better
utilization of multiple processors. This is due to
elimination of the overhead caused by access to shared
data structures from different processors and better use
of each processor’s resources (e.g., decreased cache
pollution). The last principle allows unmodified
applications to benefit from the improved stack
performance, without having to switch to a different
API or make any other changes.

Figure 2. IsoStack architecture

The IsoStack architecture is depicted in Figure 2.
Applications access network services using a socket
front-end layer that implements the standard socket API
and replaces the legacy sockets layer. The socket front-
end handles the API peculiarities and delegates the
execution of networking operations to the socket back-
end. The socket front-end and the socket back-end
interact using an asynchronous protocol over an internal
interconnect. The architecture allows different types of
internal interconnects. In our earlier work ([26]), we
used Infiniband ([9]) for communication between the
socket front-end and back-end. This work focuses on a
message queue mechanism using the available general-
purpose hardware; namely, cache-coherent memory; the
detailed discussion is in Section 4.1.

Socket back-end receives network commands from
socket front-end, executes the commands
asynchronously and sends the command status in the
opposite direction. The commands include socket
transmit/receive/control commands, and buffer
registration commands. Different APIs, such as standard
synchronous BSD sockets or various flavors of
asynchronous sockets, can be implemented using the
same underlying command/status mechanism. For
example, the asynchronous Extended Sockets API
([33]), which exposes explicit memory registration of
application buffers, allows transmit implementation
with true zero-copy. The standard socket API can be
implemented with a single data copy into the socket
transmit buffer, using in-advance registration of that
internal socket buffer, as described in Section 4.2.

The IsoStack uses a dedicated logical CPU, and is
solely responsible for all network processing for a
particular network interface, which eliminates
contention on access to network control data structures
and allows a wide range of optimizations. Since the
processor is not shared with other components, context
switching overhead is reduced, and polling-mode
interrupt-free execution becomes possible, eliminating
the interrupt handler overhead. Since the data structures
are not shared with other processors, single-threaded,
serialized execution enables lock-free operation, thus
eliminating the locking overhead. Consequently, all
major sources of stack inefficiency are removed.

Although this paper focuses on the case of a single
IsoStack processor and a single network interface
assigned to it, this is not an architectural limitation. It is
possible to run multiple independent IsoStack instances,
where each IsoStack instance is responsible for one or
more network interfaces. Moreover, since hardware
support for packet classification (with multiple receive
queues) is common, throughput scaling for a single
network interface can be achieved by using several
independent instances of the IsoStack, each responsible
for a subset of network traffic flows on that interface, as
discussed in Section 6.

On the other hand, it is not necessary to consume
completely a processor core under light load. In order to
save power when the traffic rate is low, the IsoStack can
temporarily enable the interrupts and stop the polling
until it is notified on a new event. The interrupt handlers
in this case are used only to resume the polling, hence
this type of interrupt-driven execution does not re-
introduce the shortcomings of the regular stack
implementation.

IsoStack CPU

Socket
back-end

TCP/IP

Shared mem
queue server

Internal
interconnect

App CPU #2

app

Socket
front-end

front-end Shared mem
queue client

app

Socket
front-end

Shared mem
queue client

App CPU #1

app

Socket
front-end

Shared mem
queue client

Internal
interconnect

4. Prototype Implementation
The IsoStack prototype is based on the AIX 6.1
operating system, running on a Power6 system using the
HEA 10Gb/s adapter. We modified several kernel
components to allow the isolated-mode operation of the
network stack as a single kernel thread, added new
kernel extension modules to support "delegation" of
socket operations to the IsoStack, and implemented a
user-space library that intercepts socket operations and
passes them to the IsoStack instead of invoking the
socket system calls. Figure 3 depicts the high-level
system design.

The socket layer is split into socket front-end and socket
back-end to accomplish the delegation of socket
operations. In particular, the state of each socket is split
into its socket delegation state at the front-end, while
the actual socket object (including the network protocol
control information) is maintained at the socket back-
end. The socket front-end consists of a socket intercept
library that primarily provides user-space
implementation of standard socket calls, and a socket
helper kernel module that facilitates communication
between the socket front-end and back-end when
kernel-level privileges are required (for example, to
access shared notification queues, as explained in
Section 4.1). The socket back-end is a part of the
IsoStack; it receives socket commands from the socket

front-end, and executes them using the asynchronous in-
kernel socket APIs adapted for single-thread, interrupt-
free operation.

Section 4.1 describes the design of the messaging
mechanism used for the interaction between the socket
front-end and back-end. Sections 4.2 and 4.3 provide
details of the transmit and receive operations,
respectively. Section 4.4 describes the event-driven
operation of the IsoStack. Section 4.5 lists the lock
elimination optimizations enabled by our architecture.

4.1 Message Queues
An efficient mechanism for interaction between the
application and the IsoStack is critical for realizing the
performance improvement potential of our architecture.
Clearly, executing the network processing on a separate
CPU, without the overhead of locks or interrupts,
reduces the stack overhead. However, the separation
introduces a new overhead, which must be kept very
low in order to make the overall solution worthwhile. In
particular, this necessitates a highly efficient many-to-
one producer-consumer mechanism, to pass commands
to the IsoStack from multiple applications.

The design of such a mechanism was one of the main
challenges of this work. Our early experiments showed
that the existing IPC services are too expensive in terms

App CPU #1

Isolated Stack CPU

NIC

tx packet
descriptors

rx packet
descriptors

notification queue #1

notification queue #2

app

Socket
front-end

App CPU #2

app

Socket
front-end

Socket
back-end

TCP/IP

polling-mode net dd

Per-CPU notification queues

Pre-registered socket
transmit buffer

User-
space

Kernel-
space

Socket intercept
library

Socket helper
kernel module

Anonymous
RX buffers Rx buffer

pointers

S
o

ck
 c

m
d

 q

S
o

ck
 s

ta
tu

s
q

Delegated Socket

Dispatcher

Figure 3. System Design

of both CPU utilization and latency. On the other hand,
the existing solutions for lock-free, producer-consumer
interaction via shared memory provide much better
performance for low numbers of producers, but do not
scale well as the number of producers grows, because
the consumer must poll large numbers of queues.
Ideally, a simple hardware mechanism could be
employed to safely serialize request submissions from
multiple non-cooperative, non-trusted clients to a single
request queue, which could then be polled by the server.
Such a mechanism could allow lock-free direct access
to the queue by multiple producers, with atomicity
handled by the hardware. Unfortunately, such a
mechanism is not yet available, which makes the single
queue approach unfeasible. The access to such a single
queue becomes very expensive under the heavy
contention due to the queue sharing by all socket
applications (and all processor cores) in the system.

To decrease the cost of queue sharing, we chose to use a
separate queue per logical processor (processor core or
thread if SMT is in use). Thus, the number of queues is
constant and small enough to allow efficient polling by
the consumer. Each thread accesses (atomically) the
queue of the processor on which it is running at the time
of the access; the queue is not shared by other
processors in the system, which allows contention-free
producer operation. Unfortunately, since these queues
are shared by different applications, they cannot be
accessed directly from user-space; kernel-space socket
helper provides protected access to the notification
queues.

The per-CPU queues are used to notify the IsoStack of
new application requests; the notification queue entries
include only the socket identification information. The
actual socket commands are kept in per-socket
command queues that reside in shared memory,
accessible to both socket front-end and socket back-
end; the command responses are returned through per-
socket status queues. The queues are implemented using
the coherent shared memory in a controlled way, where
each side maintains its view of the protocol state; all
memory locations used to exchange information
between the sides are allowed to be updated by a single
designated writer (i.e., each shared memory location can
be written by either the socket back-end or the socket-
front-end within the appropriate application). Each
application uses separate shared memory segment for
writeable and readable parts of the queue state. Also,
complete separation is maintained between the
applications.

The design is somewhat similar to direct-access TCP

offload solutions with interface comparable to Virtual
Interface Architecture (VIA [3]), when the notification
queues serve to emulate doorbells, and
command/response queues are implemented as lock-free
producer-consumer queues.

4.2 Socket Send Operation
One of the key issues in the design of efficient data
transfer (for any type of I/O) is memory management.
This issue is particularly complicated for
communication services based on legacy, streaming-
mode, synchronous socket API, due to inherent data
copy semantics and unpredictable patterns of
application operation. In particular, a large data transfer
is likely to be implemented as a sequence of multiple
smaller transfers, invoked synchronously, passing data
residing at arbitrary locations. This observation,
together with the fact that the data copying overhead
becomes less pronounced on modern systems ([24]),
underlies our decision to avoid zero-copy design for
socket send operations – even though such a decision
seems counter-intuitive, as zero-copy property is
considered a holy-grail of network acceleration
solutions. Zero-copy solutions tend to offer improved
performance at the cost of application modification
(e.g., through new asynchronous APIs), and are only
beneficial for a subset of workloads. We, on the other
hand, strive to improve performance for a broad range
of existing unmodified applications. In particular, one
of our design goals was to keep (or improve) the low
latency of the synchronous send call. Thus, we chose to
keep the single data copy, performed on the application
side.

In our solution, the synchronous API is implemented
using socket transmit buffers that are pre-allocated and
pre-registered for the DMA access. This significantly
reduces buffer management overhead and allows
efficient aggregation of small data chunks. The socket
back-end allocates DMA-able memory segments for
each socket application; during socket initialization, the
socket front-end (kernel helper) allocates per-socket
transmit buffers out of the DMA-able chunk and maps
them for user-space access. When the application sends
data, the socket front-end copies the data from the
application buffers into the socket transmit buffer
(mapped into the application address space) used as a
contiguous cyclic buffer. Afterwards, the socket front-
end writes a transmit command to the socket command
queue, specifying the location of new transmit data
within the socket buffer. To simplify memory
protection, it does not use pointers to identify the data
in the transmit buffer, and instead uses offsets relative

to the buffer start. When the socket back-end receives
the command, it uses the buffer registration information
and the specified offset to construct the DMA address
to be passed to the device driver. The socket back-end
does not access the transmit buffers; it just serves as an
intermediary that facilitates the buffer sharing between
the socket front-end and the NIC.

The implementation of the send call copies the
application data to the transmit buffer; the space
occupied by the copied data is reused after the socket
back-end reports that it was delivered to the remote
receiver. The buffer space is used to facilitate the
batching of multiple small requests in case the sender is
faster than the local stack or the receiver. The socket
front-end does not necessarily notify the socket back-
end about each new piece of data that was copied to the
transmit buffer. Instead, it aggregates data if the amount
of previously posted pending data becomes high, until
the socket back-end reports sufficient progress on the
data transmission, or until a large amount of data has
accumulated. Thus, the data aggregation does not
increase latency; it occurs only when the previously
submitted data starts piling up.

In turn, the socket back-end performs additional
aggregation, postponing the TCP processing of newly
submitted data when the TCP connection state does not
allow immediate segment generation (i.e., when the
TCP send window or congestion window is full). Like
the aggregation at the socket front-end, the aggregation
at the socket back-end does not introduce unnecessary
delays; it decreases the TCP overhead and the overhead
of the interaction with the device, due to better
utilization of its TCP segmentation capabilities.

4.3 Socket Receive Operation
Handling incoming network traffic using a regular NIC
is a known challenge. Due to unpredictable patterns of
packet arrival, the packets received by a stateless NIC
must land into anonymous buffers that are not
associated with a particular connection. The packet data
must be copied from the anonymous kernel buffers to
the application buffers, which may be provided by the
application after an arbitrary delay; thus, complex
bookkeeping of the packet data structures is needed.
The main design choice we had to make was the context
for performing the data copy operation.

One choice would be asynchronous copy by the socket
back-end, which seems to offload a maximal number of
CPU cycles from the application CPUs. However, this
approach has numerous drawbacks. It causes thrashing

of the IsoStack resources such as cache, TLB, and SLB,
and it may actually decrease the application
performance due to increased latency of receive
operation and decreased cache locality; this occurs
when the application tries to access the newly received
data, which was brought to the wrong cache during the
copy. Accordingly, we decided to copy the data on the
application CPU, within the socket front-end.

Applications (or their writers) expect the latency of the
receive socket call to be very low if the data already
arrived. In order to minimize this latency, our
implementation strives to perform the copy during the
synchronous execution of the receive call, without
interacting with the socket back-end. To achieve that,
the socket front-end "prefetches" receive buffers from
the socket back-end in advance, independently of the
receive calls invoked by the application, using
asynchronous requests. Upon such request, the socket
back-end hands over to the socket front-end the
ownership on the data buffers that contain the receive
data stream of the socket (when these are available).
Multiple buffers corresponding to multiple network data
segments can be reported at once, decreasing the
interaction between the socket front-end and the back-
end. If the previously posted request is completed
before the application invokes socket receive function,
socket receive implementation in the socket front-end
copies the data immediately; otherwise, the application
blocks until the previously requested data buffers are
available. The socket front-end uses a heuristic to
decide when to request more buffers.

Since the packet buffers reside in kernel space and
cannot be mapped in advance to the relevant
application, the receive pointers queue is maintained in
the kernel by the socket helper kernel module, which
also copies the data during the socket receive call
invoked by the application. This necessitates a kernel
boundary crossing upon each receive operation, thus
incurring a higher overhead than the send. However, the
overhead is still lower than the native implementation
because the socket front-end state is only accessed
locally, unlike the regular socket object in the native
stack, which is shared between different stack
components running in different contexts.

4.4 Event-Driven IsoStack Operation
The IsoStack is implemented as a single-threaded non-
preemptive processing loop, serially handling
asynchronous events. A dispatcher component of the
IsoStack polls event queues to detect the new work to
be done such as new packet arrivals, new application

requests to be executed, or timeout expiration; it then
invokes appropriate event handlers sequentially. The
device is configured to operate in polling mode; a new
device driver entry point is used to poll periodically for
new packet arrival. The message queue mechanism also
allows periodic polling of the socket command queues
(or, more precisely, event notifications queues). The
polling is done by reading from a cache-coherent
memory location, thus busy-wait polling on empty
queues is inexpensive, because it is usually
accomplished by access to the local cache only.

The socket back-end running within the IsoStack
executes the commands delegated by the socket front-
end. If it cannot execute a command immediately, it
postpones the command execution until an appropriate
change of state occurs (e.g., until incoming data is
buffered, in the case of the receive command). Each
such command is implemented as a separate state
machine. For example, if the socket front-end is
requested to send data on a socket when the transmit
window is full, the command handler puts aside the
command state and marks the socket to enable
asynchronous notification when transmission becomes
possible. It then returns, allowing the dispatcher to
proceed with other work. When an ACK packet arrives
on the appropriate connection, the adapter's polling
receive handler (invoked by the dispatcher) passes the
packet up the stack; the TCP processing layer performs
its regular processing and then generates an internal
event indicating that the window space is freed. Later,
the dispatcher detects the internal event and passes it to
the socket back-end, which resumes execution of the
send command.

4.5 Lock Elimination
Our architecture allows elimination of locks that were
introduced within the network stack as a part of support
for multiprocessor systems. Since the socket back-end
objects and the network interface data structures are
accessed sequentially in the context of the IsoStack
thread, there is no need to worry about mutually
exclusive access for these resources, which are private
to the IsoStack. We made minimal modifications to the
appropriate stack components to bypass the
locking/unlocking code when touching the device or
socket resources that belong exclusively to the IsoStack.

Many other stack resources, such as the hash table of
TCP connections or IP routing table, are shared across
the system. To better utilize the advantages of our
architecture, it is desirable to avoid this sharing and
allow local-only access instead. These structures can be

split into independent instances, each holding the
relevant portion of information, potentially replicated
and updated only using explicit "messages" delivered as
internal events. For example, the generic Ethernet
handling layer uses a lock to protect access to shared
device configuration information that is changed rarely,
if ever, using management interfaces. In our
architecture, the IsoStack must be the exclusive owner
of configuration information for the devices assigned to
it; the management interfaces need to be intercepted,
and execution of configuration changes need to be
delegated to the IsoStack. This would make locking
unnecessary, since the device configuration is accessed
serially. Our experiments show that even uncontended
locks incur a high overhead; thus, elimination of these
remaining locks can yield an additional tangible
performance improvement.

5. Experimental Results
This section demonstrates the performance
improvement that can be achieved using the IsoStack
approach. We use several micro-benchmarks to emulate
different workloads, and evaluate the performance of
several variants of the IsoStack, using the native
(unmodified) stack as a baseline.

5.1 Experimental Setup
Our system under test is a Power6 machine, connected
back-to-back to a "remote" system over a 10Gb/s link.
Both machines have an additional NIC used for remote
access. The Power6 system is a 4-way (8 core) system,
running at 3.5 GHz, with 16 GB of RAM, equipped
with a 10Gb/s HEA (Host Ethernet Adapter). All
physical resources are assigned to a single logical
partition (LPAR), which runs the AIX 6.1 operating
system. Since the cores provide two-way SMT
(symmetrical multithreading) capabilities, the machine
appears to have 16 logical processors from the point of
view of the OS. The remote system is a quad core AMD
Opteron machine with 2GB RAM, equipped with 10G
Broadcom NetXtreme II BCM57710 NIC, running Red
Hat Enterprise Linux 5.3 (2.6.18 kernel).

Our experiments compare the AIX native TCP/IP stack
with the IsoStack, using the same micro-benchmark
applications. To measure the IsoStack performance, we
ran the IsoStack socket back-end and the test
applications linked with the socket front-end. To obtain
AIX native results, we re-ran the same tests linked with
the regular socket library over the unmodified AIX
kernel and the unmodified network drivers with the

same adapter configuration parameters. To achieve
maximum bandwidth (on both types of systems), we
increased the dedicated interfaces' MTU to 9000,
disabled hardware flow control, and enabled TCP
checksum offload and TCP segmentation offload. The
AIX built-in Nmon tool ([32]) was used to measure
network throughput and CPU utilization.

In order to evaluate scalability of our implementation
for multiple application threads, we used a multi-
threaded TTCP-like application, where each thread
sends or receives data over a single socket. We
measured the achieved throughput, and the total CPU
utilization for all processors (i.e., 100% means all cores
are fully utilized; a single core accounts for 12.5%).
Note that the IsoStack core is always fully consumed,
because of polling-mode operation. CPU utilization of
IsoStack shown below includes the constant utilization
of the IsoStack core, and varying CPU utilization of the
IsoStack socket front-end on application cores.

5.2 IsoStack Variants
To analyze the design choices, in particular those
related to queuing and aggregation mechanisms, we
implemented different variants of the IsoStack:

� Iso-Kernel. This implementation is described
in Section 4. In particular, it supports transmit
data aggregation, and uses in-kernel per-CPU
notification queues; the socket back-end polls
only the notification queues.

� Iso-Basic. Each application thread has a
separate command/status queue in user-mode.
No aggregation is used; each socket command
translates to a message in the command queue.
The socket back-end polls all the command
queues.

� Iso-Aggregated. Uses the same queue structure
as the Iso-Basic; implements client and server
side transmit data aggregation.

� Iso-Lock. This variant is similar to Iso-Kernel;
it reintroduces some of the locks that were
eliminated in the other variants. The sole
purpose of this variant is to evaluate the impact
of un-contended locks, by an experiment
described in Section 5.5.

The Iso-Kernel variant is the implementation that we
used for most tests. In the rest of this section, unless
stated otherwise, the term "IsoStack" refers to Iso-
Kernel variant.

5.3 Throughput Evaluation
We used a multi-threaded TTCP-like application to
evaluate basic data streaming. We measured the
achieved throughput, and the total CPU utilization for
all processors.

Since maximal throughput of a single connection is
limited by end-to-end TCP behavior, the merit of
IsoStack becomes more evident as more TCP
connections are used. When the traffic amount is low,
the socket back-end dedicated CPU is underutilized,
and most of its cycles are wasted on polling empty
queues. The observed results in many of the tests with
low number of connections showed that the overall
machine CPU utilization with the IsoStack
implementation is higher compared to the native stack.
However, when the number of connections starts to
grow, this effect is quickly mitigated and the IsoStack
shows not just an increased or identical bandwidth, but
also lower CPU utilization.

Figure 4. Receive performance for 64 connections

Figure 4 demonstrates receive performance for different
message sizes for 64 connections (and 64 application
threads). For small messages (64 bytes or 128 bytes),
the IsoStack achieves bandwidth that is about 300%
better than native, while both systems use almost all
available CPU cycles. Clearly, CPU cycles are better
used when CPUs are asymmetrically divided between
the applications' CPUs and TCP. As message sizes
increase, both stacks achieve the line speed with
declining CPU utilization, although the native stack still
uses more CPU cycles than the IsoStack to drive the
same bandwidth. For message sizes above 16 KB, the
performance improvement is less prominent: the
throughput remains maximal for both stacks, CPU
utilization of the IsoStack appears constant (although in
fact the dedicated CPU spends more time in polling

0
10
20
30
40
50
60
70
80
90

100

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Message size

C
P

U
 u

til
iz

at
io

n

0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t (

M
B

/s
)

Native CPU Iso CPU
Native Throughput Iso Throughput

empty queues), and the CPU utilization of the native
stack decreases, as there are fewer system calls for the
same amount of data.

Figure 5 demonstrates the transmit performance for
different message sizes using 128 connections. The
IsoStack reaches the line speed even for a message size
as small as 64 bytes, whereas the native stack can reach
the line speed only for message sizes of 16 KB and
above. Moreover, the IsoStack utilizes far fewer CPU
cycles than the native stack. The difference is more
dramatic for small messages, where the native stack
uses 200% more CPU cycles (while driving a fraction
of throughput) than the IsoStack. However, the
difference is still high even for large message sizes,
when both stacks achieve close to line-speed throughput
and the native stack consumes 50% more CPU cycles
when compared to the IsoStack.

Figure 5. Transmit performance for 128 connections

5.4 Request-Response Performance
In this section, we discuss performance of
request/response workloads. Each of the test application
threads repeatedly sends and receives a single message,
simulating typical client-server communication pattern.
This type of workload maximizes the overhead for
delegating socket operations to the IsoStack, since each
socket operation involves interaction with the stack as
no aggregation is taking place.

Figure 6. Request-Response test, one connection

Figure 6 demonstrates the request-response test
performance for different message sizes using one
connection. This allowed us to focus on the impact of
socket delegation, without any additional improvements
due to aggregation or reduced contention. In this
scenario, the IsoStack provides more operations per
second for all message sizes, although the difference
between the stacks diminishes as the message size
increases. Thus, the average latency of a single request-
response transaction improves when the IsoStack is
used, which may seem surprising because of the added
latency imposed by interaction between socket front-
end and socket back-end. However, this additional
latency of socket delegation is offset by the decreased
latency of the network processing, due to lock-free and
interrupt-free operation.

Because of the synchronous nature of this test (with just
one operation in-flight), the performance is very low for
both stacks, due to the delay caused by waiting to the
remote application. The CPU utilization for the
IsoStack appears to be higher than that of the native
stack, since the socket server CPU – although
underutilized – still uses 100% of its resources due to
wasted polling cycles.

To test the system scalability under the request/response
workload, we ran the request-response test with varying
numbers of connections (or, equivalently, application
threads). Figure 7 shows the CPU utilization and the
number of operations per second of both native stack
and IsoStack, for different connection numbers, using a
message size of 1KB. For up to eight connections, the
native stack and IsoStack achieve a similar number of
operations per second. For a higher number of
connections, the IsoStack CPU becomes fully utilized,
and turns into a bottleneck. The native stack allows
multiple threads to utilize all processors in the system,

0
10
20
30
40
50
60
70
80
90

100

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

Message size

C
p

u
U

til
iz

a
tio

n

0

200

400

600

800

1000

1200

T
h

ro
ug

h
p

ut
 (

M
B

/s
)

Native CPU Iso CPU Native Througput Iso Throughput

0
10
20
30
40
50
60
70
80
90

100

64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

Message size

C
P

U
 u

til
iz

at
io

n

0

2

4

6

8

10

12

14

16

18

K
O

ps
/S

ec

Native CPU Iso CPU
Native Op/s Iso Op/s

and each socket call is executed immediately, even if
relatively slowly, on the calling processor. On the other
hand, the IsoStack forces serialized execution of socket
operations invoked for different sockets on different
processors, and thus induces a queuing delay when
many processors submit their operations in parallel.
Thus, the native stack is able to make progress on each
connection faster than the IsoStack, even though its
CPU utilization per operation is higher.

Figure 7. Request-Response test, 1KByte messages

To analyze further the bottleneck imposed by the
IsoStack, we measured various code paths inside the
socket back-end CPU. We found that simply issuing the
kernel call that wakes up the socket application (waiting
to receive data) takes approximately 3µs. To compare,
the optimized TCP send operation (involving TCP, IP,
and MAC layers) also takes approximately 3µs, the
socket back-end operation (without the wakeup) takes
less than 1µs, and the whole request/response
transaction accounts for approximately 16µs. Analysis
of the wakeup call shows that the problem is mainly due
to contention on several scheduler locks. This indicates
that the IsoStack performance could be improved
further if a more efficient wakeup mechanism is used.

5.5 Impact of Uncontended Locks
It is a popular belief that reducing lock contention is
sufficient to address the problem of the lock overhead.
Our implementation went one step further, and
eliminated some of the locks completely, avoiding the
lock operations altogether for the locks that are only
taken on the IsoStack processor. To evaluate the impact
of this optimization, we tested an additional variant of
the IsoStack, called Iso-Lock, in which we re-
instantiated some of the locks – even though they are
not needed in our architecture and are only accessed by

the IsoStack CPU.

Figure 8. Impact of extra lock on transmit
performance for 64 byte messages

Figure 8 depicts the effect that re-instantiating the locks
had on the IsoStack performance. For this experiment,
we re-introduced the HEA device driver TX and RX
locks. These locks were acquired and released each
time the device driver transmit or receive handler were
called. Socket send throughput tests were performed
with a fixed message size of 64 bytes and a variable
number of connections. We used the native stack
results as the baseline. For a small number of
connections, the IsoStack achieves superior throughput
compared to the Iso-Lock version, while the CPU
utilization appears to be the same. The throughput
improvement due to the eliminated lock reaches
200MB/s for eight connections. As the connection
number increases, both implementations reach line-
speed. The CPU utilization of Iso-Lock is higher than
the regular IsoStack variant, which means, oddly, that
the socket front-end consumes more CPU. This stems
from the fact that additional locks (even though
uncontended) make the socket back-end CPU perform
slower; the socket transmit buffers then fill up more
frequently, causing the socket front-end to wait for free
space in the TX buffer. As a result, additional CPU
cycles are spent on the extra scheduling that is involved
in waking up the socket front-end.

0
10
20
30
40
50
60
70
80
90

100

1 2 4 8 16 32 64 128

Number of connections

C
P

U
 u

til
iz

at
io

n

0
20
40
60
80
100
120
140
160
180
200
220

K
O

ps
/s

ec

Native CPU Iso CPU Native Op/s Iso Op/s

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 32 64 128

Number of connections

C
P

U
 u

ti
liz

at
io

n

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Native
Iso-Lock
Iso-Kernel CPU
Native Throughput
Iso-Kernel Throughput
Iso-Lock Throughput

This experiment shows clearly that even un-contended
locks are a significant source of overhead. This result
may seem counterintuitive, as kernel lock
implementation usually takes just a few instructions.
Indeed, the locking instruction path length is short, and
the atomic update instructions are cache-hits. However,
the lock implementation is also required to use a
memory barrier – heavy-weight sync instruction ([34]),
which causes long CPU stall.

Since our implementation did not eliminate all locks
that became redundant, the remaining locks pose
potential for additional improvement.

5.6 Evaluating Different Queuing
Mechanisms

In this section, we try to analyze the performance of
queuing mechanisms implemented in the different
IsoStack variants.

Figure 9. Transmit performance for three IsoStack
variants, 64 byte messages

In Figure 9, we compare the 64-byte transmit
performance of Iso-Basic (per thread notification
queues without aggregation), Iso-Aggregate (per-thread
notification queues with aggregation of transmit
operations) and Iso-Kernel (per-CPU notification
threads with transmit aggregation), with the native stack
as a baseline. All three IsoStack variants achieve better
throughput with reduced CPU utilization, compared to
the native stack. Iso-Aggregate and Iso-Kernel achieve
up to eleven times (1000%) more bandwidth than the

other variants due to the aggregation that both employ.
As a result, they both use more CPU than Iso-Basic,
although they still use remarkably less CPU than the
native stack. Due to the high cost of using the kernel
notification queues, Iso-Aggregate performs better than
Iso-Kernel for a low number of connections, but as the
number of connections (and application threads) grows,
Iso-Aggregate throughput declines, while Iso-Kernel
stays at the same throughput with decreased CPU
utilization, and eventually out-performs the Iso-
Aggregate.

The scalability advantages of the Iso-Kernel variant can
be seen more clearly in Figure 10, which depicts the
results of a request-response test for varying numbers of
connections. The performance of Iso-Aggregate drops
dramatically as the number of connections grows
beyond 16, while the Iso-Kernel stack scales gracefully,
i.e., increased number of clients does not cause
performance degradation. This is due to the reduced
polling overhead for the socket back-end in the Iso-
Kernel implementation, as it polls only the constant
number of notification queues, unlike the Iso-Aggregate
variant that polls a separate queue for each application
thread.

Figure 10. Request/Response Scalabilty

6. Conclusions and Future Work
Our work shows that the design principles of
asynchronous interaction, non-shared state, and non-
shared processor resources for demanding tasks can be
applied to network stack design, yielding significant
performance improvements for most workloads.
However, some workloads remain challenging. For
example, we encountered scenarios where the serialized
execution within the IsoStack introduces additional
latency when processing particular events. The
dispatching of network events handling is rather
unsophisticated in our implementation, where the basic
policy arbitration is weighted round-robin between the
different event queues. Other arbitration policies need

0

10
20

30

40
50

60

70
80

90

100

1 2 4 8 16 32

Connection number

C
P

U
 u

til
iz

at
io

n

0

200

400

600

800

1000

1200

T
hr

ou
gh

pu
t (

M
B

/s
)

Native CPU
Iso-Basic CPU
Iso-Aggregate CPU
Iso-Kernel CPU
Native Throughput
Iso-Basic Throughput
Iso-Aggregate Throughput
Iso-Kernel Throughput

0

20

40

60

80

1 2 4 8 16 32 64 128

Connection number

K
O

p
s/

S
ec

o
n

d

Iso-Aggregate op/s Iso-Kernel op/s

to be evaluated, possibly involving a real-time
scheduler. Also, it would be beneficial to identify
latency-sensitive flows (automatically or with the help
of application-provided quality-of-service hints), and
prioritize their handling.

We evaluated the system performance for a 10 Gb/s
network port, using a single dedicated processor core.
As network speed continues to grow, with emerging
support for 40 Gb/s and 100 Gb/s, while the processor
speed is not expected to increase, it will soon become
necessary to employ multiple cores to handle network
traffic for a single port in parallel. Fortunately, multi-
queue support and minimal packet classification
capabilities, available in state-of-the-art adapters, allow
parallelization of network processing without re-
introducing dependencies between the processors. The
IsoStack can be parallelized using independent stack
instances for disjoint subsets of network flows, using
separate control data structures, and interacting with
the client applications through distinct queues.

Our experience shows that dedicating processor cores to
specific tasks can improve the overall system
performance and scalability. However, the performance
gains come at a price: a significant development effort
is needed to integrate "isolated" components
successfully within a system that was designed under a
completely different paradigm. Our implementation had
to refrain from using existing system services, as they
brought back the very problems we were trying to solve.
We believe these services should not be re-invented for
every subsystem that can benefit from isolation; instead,
the operating system should provide adequate support
for isolated execution. Moreover, the underlying
hardware should provide better support for inter-
processor communication within the system, to supply a
better infrastructure for subsystem isolation.

The implementation described in this paper addresses a
single OS environment. However, one of the original
goals of this work was to devise an architecture for
efficient network virtualization. The general
architecture described in [26] allows multiple clients to
share an isolated I/O subsystem which runs on a
different physical machine in a cluster environment or
on a different virtual machine within the same physical
system. Ironically, interaction between physical
machines over a cluster interconnect turned out to be
more efficient than interaction between virtual machines
within the same POWER system. To realize the
performance potential of the IsoStack for virtualized
systems, the hypervisor and the underlying hardware
have to provide better support for efficient inter-

processor communication between processors assigned
to different virtual machines.

7. Acknowledgements
We would like to thank Pratap Pattnaik for the idea to
evaluate the IsoStack architecture in AIX operating
system. Additionally, we thank Joefon Jann, R. S.
Burugula, Tom Mathews, Venkat Venkatsubra, G
Shantala, Rakesh Sharma and Dave Marquardt for
helpful discussions and for making it possible for us to
use the AIX development environment. We also thank
Herman Dierks for inspiring discussions on
performance evaluation, Alan Jiang for his expert input
on AIX services, and Shay Goikhman for his
participation in the implementation efforts.

8. References
[1] D. D. Clark, V. Jacobson, J. Romkey, and H.

Salwen. An analysis of TCP processing overhead.
IEEE Communications Magazine, 27(6):23–29,
June 1989.

[2] J. Kay and J. Pasquale. The importance of non-data
touching processing overheads in TCP/IP. In
Proceedings of the SIGCOMM Symposium on
Communications Architectures and Protocols,
pages 259–268. ACM, September 1993.

[3] P. Buonadonna, A. Geweke, D. Culler. An
Implementation and Analysis of the Virtual
Interface Architecture, In Proceedings of
SuperComputing '98.

[4] S. Muir and J. Smith. Functional divisions in the
Piglet multiprocessor operating system. In Eighth
ACM SIGOPS European Workshop, September
1998.

[5] J. S. Chase, A. J. Gallatin, and K. G. Yocum. End
system optimizations for high-speed TCP. IEEE
Communications, Special Issue on High-Speed
TCP, 39(4):68–74, April 2001.

[6] E. P. Markatos. Speeding-up TCP/IP: faster
processors are not enough. In Proceedings of the
21st IEEE International Performance, Computing,
and Communications Conference (IPCCC 2002),
April 2002, pages 341-345.

[7] M. Rangarajan, A. Bohra, K. Banerjee, E. V.
Carrera, R. Bianchini, L. Iftode, W. Zwaenepoel.
TCP Servers: Offloading TCP Processing in
Internet Servers–Design, Implementation and
Performance. Rutgers University Department of CS
TR, DCS-TR-481, 2002.

[8] P. Buonadonna and D. Culler. Queue-pair IP: A
hybrid architecture for system area networks. In

Proc. 29th Ann. Int'l Symp. on Computer
Architecture, pages 247--256, May 2002.

[9] The Infiniband Trade Association. The Infiniband
Architecture. http://www.infinibandta.org/specs.

[10] A. Romanow, and S. Bailey. An Overview of
RDMA over IP. In p roceedings of the First
International Workshop on Protocols for Fast
Long-Distance Networks (PFLDnet 2003),
Feburary 2003.

[11] J. Mogul. TCP offload is a dumb idea whose time
has come. In Workshop on Hot Topics in Operating
Systems (HotOS). May 2003.

[12] P. Sarkar, S. Uttamchandani, and K. Voruganti.
Storage over IP: When does hardware support
help? In 2nd USENIX Symposium on File and
Storage Technologies (FAST), March 2003.

[13] P. Shivam, J. S. Chase. Promises and reality: On
the elusive benefits of protocol offload. In ACM
SigComm Workshop on Network-IO Convergence
(NICELI), 2003.

[14] G. Regnier, D. Minturn, G. McAlpine, V. A.
Saletore, A. Foong: ETA: Experience with an Intel
Xeon Processor as a Packet Processing Engine. A
Symposium on High Performance Interconnects
(HOT Interconnects), 2003.

[15] D. McAuley and R. Neugebauer. A case for Virtual
Channel Processors. In Proceedings of the First
Workshop on Network-I/O Convergence:
Experience, Lessons, Implications (NICELI), 2003.

[16] A. Foong, T. Huff, H. Hum, J. Patwardhan. TCP
Performance Re-Visited. In Proc. 2003 IEEE Int'l
Symp. Performance Analysis of Systems and
Software (IPASS 03), 2003, pp. 70-79.

[17] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D.
Minturn, R. Huggahalli, D. Newell, L. Cline, and
A. Foong. TCP onloading for data center servers.
IEEE Computer, 37(11):48--58, November 2004.

[18] ‘‘Scalable Networking: Eliminating the Receive
Processing Bottleneck—Introducing RSS,’’ white
paper,WinHEC 2004,Microsoft.

[19] D. Freimuth, E. Hu, J. LaVoie, R. Mraz, E. Nahum,
P. Pradhan, and J. Tracey. Server Network
Scalability and TCP Offload. In USENIX Annual
Technical Conference, April 2005.

[20] V. Saletore, P. Stillwell Jr, J. Wiegert, P. Cayton, J.
Gray, G. Regnier. Efficient Direct User Level
Sockets for an Intel® Xeon™ Processor Based
TCP On-Load Engine. In Proceedings of 19th
IEEE International Parallel and Distributed
Processing Symposium, Apr. 2005.

[21] L. Grossman. Large Receive Offload
Implementation in Neterion 10 GbE Ethernet
Driver. Ottawa Linux Symposium, 2005.

[22] L. Shalev, V. Makhervaks, Z. Machulsky, G. Biran,
J. Satran, M. Ben-Yehuda, I. Shimony. Loosely
Coupled TCP Acceleration Architecture. In
Proceedings of 14th IEEE Symposium on High-
Performance Interconnects (HOTI'06), Aug. 2006.

[23] P. Willmann, S. Rixner, and A. L. Cox. An
evaluation of network stack parallelization
strategies in modern operating systems. In
Proceedings of Usenix Annual Technical
Conference, June 2006.

[24] S. Larsen, P. Sarangam, R. Huggahalli.
Architectural Breakdown of End-to-End Latency in
a TCP/IP Network. International Symposium on
Computer Architecture and High Performance
Computing, 2007.

[25] A. Menon , W. Zwaenepoel, Optimizing TCP
receive performance, USENIX 2008 ATC, p.85-98,
June 2008.

[26] J. Satran, L. Shalev, M. Ben-Yehuda, Z.
Machulsky. Scalable I/O - A Well-Architected Way
to Do Scalable, Secure and Virtualized I/O. In
Proceedings of Workshop on I/O Virtualization,
2008.

[27] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F.
Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu,
Y. Dai, Y. Zhang, and Z. Zhang. Corey: An
operating system for many cores. In Proceedings of
the 8th USENIX Symposium on Operating Systems
Design and Implementation, p. 43–57, Dec. 2008.

[28] J. Liu, B. Abali. Virtualization polling engine
(VPE): using dedicated CPU cores to accelerate
I/O virtualization. ICS 2009: 225-234

[29] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,
R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and
A. Singhania. The multikernel: A new OS
architecture for scalable multicore systems. In Proc.
ACM Symposium on OS Principles, Oct. 2009.

[30] LPAR, http://en.wikipedia.org/wiki/LPAR,
retrieved on December 22, 2009.

[31] Large segment offload,
http://en.wikipedia.org/wiki/Large_segment_offloa
d, retrieved on December 22, 2009.

[32] Nmon, http://en.wikipedia.org/wiki/Nmon,
retrieved on December 22, 2009.

[33] Extended Sockets API, www.opengroup.org,
retrieved on December 22, 2009.

[34] Power ISA, http://www.power.org/home.

