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Abstract 
 

Sharing data between the processors becomes increasingly expensive as the number of cores in a system grows. In 
particular, the network processing overhead on larger systems can reach tens of thousands of CPU cycles per TCP 
packet, for just hundreds of "useful" instructions. Most of these cycles are spent waiting – when the CPU is stalled 
while accessing “bouncing” cache lines of network control data shared by all processors in the system – and 
synchronizing access to this shared state. In many cases, the resulting excessive CPU utilization limits the overall 
system performance. We describe an IsoStack architecture which eliminates the unnecessary sharing of network 
control state at all stack layers, from the low-level device access, through the transport protocol, to the socket 
interface layer. The IsoStack "offloads" network stack processing to a dedicated processor core; multiple 
applications running on the rest of the cores invoke the IsoStack services in parallel, using a thin access layer that 
emulates the standard sockets API, without introducing new dependencies between the processors. We present a 
prototype implementation of this architecture, and provide detailed performance analysis. We demonstrate the ability 
to scale up the number of application threads and scale down the size of messages. In particular, we show an order of 
magnitude performance improvement for short messages, reaching the 10Gb/s line speed at 40% CPU utilization 
even for 64 byte messages, while the unmodified system is choked when driving 11 times less throughput.  

 

1. Introduction 
While networking demands in data centers continue to 
grow, and the networking infrastructure continues to 
provide improved bandwidth and latency, single 
processor performance remains the same and in some 
cases even decreases. Recently, increasing the number 
of CPU cores became the only way to perform more 
instructions per cycle. However, the overhead due to 
interaction between these cores also goes up, and naïve 
data-sharing may inhibit performance scaling as the 
number of cores grows. Nevertheless, the familiar 
shared memory programming model is still commonly 
used for both application programming and 
implementation of OS services.  

Since the days of uniprocessor systems, network 
processing has been carried out in a "multithreaded" 
fashion: some portions of the stack are executed during 
the socket system calls (in the context of calling 
applications), others during receive packet processing 
(in the context of interrupt handlers or kernel threads 
owned by the network stack), and yet others in the 
context of timeout handler routines. As multiprocessors 
were introduced, it was natural to distribute these stack 

processing elements symmetrically on the multiple 
processors in order to keep pace with the growing 
networking speeds. As the number of processors grows, 
the cost of sharing the network control structures 
between the processors becomes extremely high; 
meanwhile, cores become so abundant that sparing a 
few becomes feasible. This has provided an opportunity 
to re-think the network stack architecture and take 
advantage of the changing landscape of computer 
systems. 

The IsoStack is a different approach for integrating 
network processing within a multicore system. Instead 
of using the cores symmetrically, the IsoStack uses 
dedicated cores for network processing, and leaves the 
rest of the cores for running applications. Since the 
network processing is confined to dedicated processors, 
the stack can be optimized – executed serially without 
interrupts and locks. Since the CPUs are not shared 
between applications and the stack, there are fewer 
context switches, and the cache behavior is improved. 
The IsoStack provides applications with a high-level 
interface (similar to a TCP Offload Engine interface), 
which can also allow efficient virtualization support 
using simple HW devices. 



 

Figure 1. Native stack vs. IsoStack 

The contributions of this paper are: 

� The architecture of an isolated network stack 
that allows independent, contention-free, 
execution of TCP/IP control operations on a 
dedicated core, and application data processing 
on the other cores; 

� The prototype implementation of such a stack 
in AIX 6.1 on Power6, providing a standard 
synchronous socket API built upon an 
asynchronous internal interconnect; 

� Implementation of an optimized message 
queue mechanism for internal communication 
between a large number of applications 
(producers) and a consumer running on a 
dedicated core; 

� The performance evaluation for a 10 Gb/s link, 
demonstrating a significant increase of 
bandwidth and/or decrease of total CPU 
utilization compared to the native stack, in 
some cases yielding an order-of-magnitude 
improvement. 

The rest of the paper is organized as follows: Section  2 
discusses the related work. Section  3 describes the 
system architecture, and Section  4 depicts the prototype 
implementation. We present the experimental results in 
Section  5, and conclude the paper in Section  6.  

2. Background and Related Work 
For decades, TCP performance optimizations were 
introduced gradually to address the performance hot 
spots of contemporary systems ([1, 2, 5]). The most 
widely adopted optimizations include checksum 
calculation offload, interrupt mitigation to decrease the 
number of interrupt requests from networking devices, 

and techniques that decrease the number of packets to 
be processed for bulk data transfer. Some of these 
techniques for decreasing the number of packets include 
jumbo frames ( [5]), Large Send Offload (LSO  [31]), 
also called TCP segmentation offload (TSO), and, 
recently, Large Receive Offload (LRO [21, 25]). 
Nevertheless, the resulting improvements merely 
succeeded to compensate for the rapidly growing 
networking demands, combined with relatively slow 
growth of CPU speed and even slower improvement of 
memory bandwidth and latency ([6, 16]).  

With the advent of multiprocessor and (later) multicore 
systems, stack parallelization became necessary to keep 
pace with the growing network bandwidth. However, 
efficient parallelization remains challenging, as the 
parallel stack architectures implemented in the modern 
operating systems incur additional locking overhead, 
cache inefficiencies, and scheduling overhead ( [23]). 

Receive-Side Scaling ( [18]) and similar techniques let a 
NIC classify the incoming packets to determine the 
affinity between these packets and CPU cores. On the 
basis of the packet classification result, received packets 
are dispatched to the appropriate receive queue, which 
is usually served by a particular processor. This 
technique allows more efficient low-level device 
sharing, as it relieves the bottleneck associated with 
sharing a single receive queue, and instead allows the 
stack to process received packets in truly parallel way 
when the packets are independent (i.e., belong to 
different sets of network flows). On special-purpose 
systems (such as embedded network appliances), 
running customized applications, this could potentially 
allow to confine all TCP processing for a particular 
connection to a single processor core. However, on 
general-purpose systems (running regular sockets 
applications), if the rest of the sharing issues are not 
addressed,  RSS (as well as other receive-side 
optimizations such as NAPI) only allow to eliminate a 
small part of the multiprocessing overhead. This is 
because the receive processing, the transmit processing 
and the timer processing for the same TCP connection 
are still likely to be executed on different processors. In 
particular, application-triggered data transmission is 
executed in application thread context, while ACK 
handling and ACK-triggered data transmission are 
executed by the receive handler. The transmit thread 
either does not have any CPU affinity, or its affinity is 
configured by the application, while the affinity of the 
receive handler is configured by the operating system, 
transparently to the application. Also, an application 
thread can handle multiple connections, that can be 
mapped by RSS to different CPUs. Accordingly, such 



un-coordinated execution still necessitates locking to 
protect access to the TCP connection and the associated 
socket state, and may cause cache line bouncing when 
accessing this state. 

A radical solution to the fast-network, slow-host 
phenomenon is offered by RDMA approach ( [10]). It 
offloads the protocol to an RDMA-enabled adapter, 
which allows zero-copy operation due to RDMA 
semantics, and eliminates per-packet overhead due to 
offloaded transport processing. Although this approach 
is suitable for high-performance computing applications 
running in a closed environment and using MPI or 
explicit RDMA semantics API, it is not feasible for 
data-center applications using sockets API, 
implementing standard protocols (such as HTTP) 
directly over TCP, and interacting with legacy clients. 
For this latter class of applications, pure TCP offload 
(without RDMA semantics) has been proposed.  

TCP offload for socket applications has been pursued 
for a long time ([8, 11, 12, 13, 19]), and remains 
controversial. Its potential advantage is the improved 
performance due to a higher-level interface that 
decreases the amount of interaction between the 
software and the TCP Offload Engine (TOE) adapter, 
since the internal events are handled by the TOE 
adapter and do not disrupt application execution. 
However, in practice, the performance potential of TOE 
materializes only under various limitations. For 
example, it may be necessary to modify the existing 
applications in order to achieve improved performance. 
Also, due to high complexity and low volumes, TOE 
solutions tend to have high cost and longer development 
cycle comparing to the rest of the system components,  
which can make a TOE engine obsolete by the time it is 
released. In addition, TOE solutions lack the flexibility 
in protocol processing that is needed to support future 
protocol changes, and are prone to bugs that cannot be 
easily fixed. Even if the internal implementation is 
programmable, the changes can only be done by the 
adapter vendor, leaving the OS very little control over 
the protocol behavior. This impedes TOE support in 
some operating systems, and hinders TOE acceptance in 
general. 

“TCP onload” using a dedicated CPU was proposed for 
multiprocessor systems as an alternative to TCP 
offload, without the disadvantages of hardware-based 
TCP offload ([14, 15, 17, 20]). The concept is based on 
an asymmetric multi-processing mode, where at least 
one of the CPUs on a multiprocessor system is 
dedicated to network stack processing, serving as an 
integrated TCP offload engine. This architecture allows 

a significant reduction in overhead when compared to 
naïve parallelization approaches. The TCP Servers 
project ( [7]) also demonstrates the value of a similar 
approach. However, the previous solutions for CPU-
based TCP offload made simplifying assumptions on 
the interaction between the applications and the 
onloaded stack, and did not demonstrate performance 
improvement for inconveniently small message sizes or 
for high number of applications sharing the "onloaded" 
services. The IsoStack work is focused on improving 
these aspects of the onload concept.  

Loosely coupled TCP acceleration ( [22]) is a hybrid 
approach that combines the benefits of both offload and 
onload. Similar to the offload approach, the application 
CPU uses a lightweight interface to interact with an 
“offloaded” network stack. However, network stack 
processing is not fully offloaded to the network 
interface adapter. Instead, only the data processing is 
performed by a hardware acceleration engine on the 
adapter, while the protocol control operations are done 
by software on a dedicated main CPU. The software 
and hardware components are loosely coupled; the 
parallelization is done in a way that allows 
asynchronous and independent operation of both parts. 
In particular, the control information that has to be 
accessed by both entities is replicated rather than 
shared, using message queues to explicitly exchange 
state changes.  

The same principle of dividing up responsibilities was 
also applied in the Scalable I/O project ( [26]), which 
showed that efficient and scalable I/O virtualization 
becomes possible by complete separation of the I/O and 
compute functions. Moreover, the OS structure itself 
can be revisited to reduce unnecessary sharing, as in the 
Corey operating system for many cores ( [27]); or to 
eliminate the sharing altogether, as in the Multikernel 
architecture ( [28]). Asymmetrical OS structure was also 
employed in the Piglet operating system ( [4]) which 
used dedicated processors to implement "intelligent 
device" functions. 

 

3. IsoStack Architecture 
In this section we present the IsoStack architecture, in 
which we confine the network protocol processing to 
dedicated processors and isolate it from the application 
execution environment.  

The IsoStack architecture is guided by the following 
design principles: 



� Serialized, event-driven, lock-free, and 
interrupt-free implementation of the IsoStack 
on one or more dedicated logical processors. 
In particular, adapter control structures are not 
shared between processors. 

� Asynchronous interaction between applications 
and the IsoStack, through explicit messaging, 
without the sharing of state.  

� The isolation is transparent to applications; in 
particular, the underlying asynchronous 
protocol does not affect the latency of 
synchronous operations. 

The first two design principles allow more efficient 
implementation of the network stack, with better 
utilization of multiple processors. This is due to 
elimination of the overhead caused by access to shared 
data structures from different processors and better use 
of each processor’s resources (e.g., decreased cache 
pollution). The last principle allows unmodified 
applications to benefit from the improved stack 
performance, without having to switch to a different 
API or make any other changes. 

 

Figure 2. IsoStack architecture 

The IsoStack architecture is depicted in Figure 2. 
Applications access network services using a socket 
front-end layer that implements the standard socket API 
and replaces the legacy sockets layer. The socket front-
end handles the API peculiarities and delegates the 
execution of networking operations to the socket back-
end. The socket front-end and the socket back-end 
interact using an asynchronous protocol over an internal 
interconnect. The architecture allows different types of 
internal interconnects. In our earlier work ( [26]), we 
used Infiniband ( [9]) for communication between the 
socket front-end and back-end. This work focuses on a 
message queue mechanism using the available general-
purpose hardware; namely, cache-coherent memory; the 
detailed discussion is in Section  4.1. 

Socket back-end receives network commands from 
socket front-end, executes the commands 
asynchronously and sends the command status in the 
opposite direction. The commands include socket 
transmit/receive/control commands, and buffer 
registration commands. Different APIs, such as standard 
synchronous BSD sockets or various flavors of 
asynchronous sockets, can be implemented using the 
same underlying command/status mechanism. For 
example, the asynchronous Extended Sockets API 
( [33]), which exposes explicit memory registration of 
application buffers, allows transmit implementation 
with true zero-copy. The standard socket API can be 
implemented with a single data copy into the socket 
transmit buffer, using in-advance registration of that 
internal socket buffer, as described in Section  4.2. 

The IsoStack uses a dedicated logical CPU, and is 
solely responsible for all network processing for a 
particular network interface, which eliminates 
contention on access to network control data structures 
and allows a wide range of optimizations. Since the 
processor is not shared with other components, context 
switching overhead is reduced, and polling-mode 
interrupt-free execution becomes possible, eliminating 
the interrupt handler overhead. Since the data structures 
are not shared with other processors, single-threaded, 
serialized execution enables lock-free operation, thus 
eliminating the locking overhead. Consequently, all 
major sources of stack inefficiency are removed.  

Although this paper focuses on the case of a single 
IsoStack processor and a single network interface 
assigned to it, this is not an architectural limitation. It is 
possible to run multiple independent IsoStack instances, 
where each IsoStack instance is responsible for one or 
more network interfaces. Moreover, since hardware 
support for packet classification (with multiple receive 
queues) is common, throughput scaling for a single 
network interface can be achieved by using several 
independent instances of the IsoStack, each responsible 
for a subset of network traffic flows on that interface, as 
discussed in Section  6. 

On the other hand, it is not necessary to consume 
completely a processor core under light load. In order to 
save power when the traffic rate is low, the IsoStack can 
temporarily enable the interrupts and stop the polling 
until it is notified on a new event. The interrupt handlers 
in this case are used only to resume the polling, hence 
this type of interrupt-driven execution does not re-
introduce the shortcomings of the regular stack 
implementation.  
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4. Prototype Implementation 
The IsoStack prototype is based on the AIX 6.1 
operating system, running on a Power6 system using the 
HEA 10Gb/s adapter. We modified several kernel 
components to allow the isolated-mode operation of the 
network stack as a single kernel thread, added new 
kernel extension modules to support "delegation" of 
socket operations to the IsoStack, and implemented a 
user-space library that intercepts socket operations and 
passes them to the IsoStack instead of invoking the 
socket system calls. Figure 3 depicts the high-level 
system design. 

The socket layer is split into socket front-end and socket 
back-end to accomplish the delegation of socket 
operations.  In particular, the state of each socket is split 
into its socket delegation state at the front-end, while 
the actual socket object (including the network protocol 
control information) is maintained at the socket back-
end. The socket front-end consists of a socket intercept 
library that primarily provides user-space 
implementation of standard socket calls, and a socket 
helper kernel module that facilitates communication 
between the socket front-end and back-end when 
kernel-level privileges are required (for example, to 
access shared notification queues, as explained in 
Section  4.1). The socket back-end is a part of the 
IsoStack; it receives socket commands from the socket 

front-end, and executes them using the asynchronous in-
kernel socket APIs adapted for single-thread, interrupt-
free operation. 

Section  4.1 describes the design of the messaging 
mechanism used for the interaction between the socket 
front-end and back-end. Sections  4.2 and  4.3 provide 
details of the transmit and receive operations, 
respectively. Section  4.4 describes the event-driven 
operation of the IsoStack. Section  4.5 lists the lock 
elimination optimizations enabled by our architecture. 

4.1 Message Queues 
An efficient mechanism for interaction between the 
application and the IsoStack is critical for realizing the 
performance improvement potential of our architecture. 
Clearly, executing the network processing on a separate 
CPU, without the overhead of locks or interrupts, 
reduces the stack overhead. However, the separation 
introduces a new overhead, which must be kept very 
low in order to make the overall solution worthwhile. In 
particular, this necessitates a highly efficient many-to-
one producer-consumer mechanism, to pass commands 
to the IsoStack from multiple applications. 

The design of such a mechanism was one of the main 
challenges of this work. Our early experiments showed 
that the existing IPC services are too expensive in terms 
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of both CPU utilization and latency. On the other hand, 
the existing solutions for lock-free, producer-consumer 
interaction via shared memory provide much better 
performance for low numbers of producers, but do not 
scale well as the number of producers grows, because 
the consumer must poll large numbers of queues. 
Ideally, a simple hardware mechanism could be 
employed to safely serialize request submissions from 
multiple non-cooperative, non-trusted clients to a single 
request queue, which could then be polled by the server. 
Such a mechanism could allow lock-free direct access 
to the queue by multiple producers, with atomicity 
handled by the hardware. Unfortunately, such a 
mechanism is not yet available, which makes the single 
queue approach unfeasible. The access to such a single 
queue becomes very expensive under the heavy 
contention due to the queue sharing by all socket 
applications (and all processor cores) in the system.  

To decrease the cost of queue sharing, we chose to use a 
separate queue per logical processor (processor core or 
thread if SMT is in use). Thus, the number of queues is 
constant and small enough to allow efficient polling by 
the consumer. Each thread accesses (atomically) the 
queue of the processor on which it is running at the time 
of the access; the queue is not shared by other 
processors in the system, which allows contention-free 
producer operation. Unfortunately, since these queues 
are shared by different applications, they cannot be 
accessed directly from user-space; kernel-space socket 
helper provides protected access to the notification 
queues.  

The per-CPU queues are used to notify the IsoStack of 
new application requests; the notification queue entries 
include only the socket identification information. The 
actual socket commands are kept in per-socket 
command queues that reside in shared memory, 
accessible to both socket front-end and socket back-
end; the command responses are returned through per-
socket status queues. The queues are implemented using 
the coherent shared memory in a controlled way, where 
each side maintains its view of the protocol state; all 
memory locations used to exchange information 
between the sides are allowed to be updated by a single 
designated writer (i.e., each shared memory location can 
be written by either the socket back-end or the socket-
front-end within the appropriate application). Each 
application uses separate shared memory segment for 
writeable and readable parts of the queue state. Also, 
complete separation is maintained between the 
applications. 

The design is somewhat similar to direct-access TCP 

offload solutions with interface comparable to Virtual 
Interface Architecture (VIA  [3]), when the notification 
queues serve to emulate doorbells, and 
command/response queues are implemented as lock-free 
producer-consumer queues.   

4.2 Socket Send Operation 
One of the key issues in the design of efficient data 
transfer (for any type of I/O) is memory management. 
This issue is particularly complicated for 
communication services based on legacy, streaming-
mode, synchronous socket API, due to inherent data 
copy semantics and unpredictable patterns of 
application operation. In particular, a large data transfer 
is likely to be implemented as a sequence of multiple 
smaller transfers, invoked synchronously, passing data 
residing at arbitrary locations. This observation, 
together with the fact that the data copying overhead 
becomes less pronounced on modern systems ( [24]), 
underlies our decision to avoid zero-copy design for 
socket send operations – even though such a decision 
seems counter-intuitive, as zero-copy property is 
considered a holy-grail of network acceleration 
solutions. Zero-copy solutions tend to offer improved 
performance at the cost of application modification 
(e.g., through new asynchronous APIs), and are only 
beneficial for a subset of workloads. We, on the other 
hand, strive to improve performance for a broad range 
of existing unmodified applications. In particular, one 
of our design goals was to keep (or improve) the low 
latency of the synchronous send call. Thus, we chose to 
keep the single data copy, performed on the application 
side.  

In our solution, the synchronous API is implemented 
using socket transmit buffers that are pre-allocated and 
pre-registered for the DMA access. This significantly 
reduces buffer management overhead and allows 
efficient aggregation of small data chunks. The socket 
back-end allocates DMA-able memory segments for 
each socket application; during socket initialization, the 
socket front-end (kernel helper) allocates per-socket 
transmit buffers out of the DMA-able chunk and maps 
them for user-space access. When the application sends 
data, the socket front-end copies the data from the 
application buffers into the socket transmit buffer 
(mapped into the application address space) used as a 
contiguous cyclic buffer. Afterwards, the socket front-
end writes a transmit command to the socket command 
queue, specifying the location of new transmit data 
within the socket buffer. To simplify memory 
protection, it does not use pointers to identify the data 
in the transmit buffer, and instead uses offsets relative 



to the buffer start. When the socket back-end receives 
the command, it uses the buffer registration information 
and the specified offset to construct the DMA address 
to be passed to the device driver. The socket back-end 
does not access the transmit buffers; it just serves as an 
intermediary that facilitates the buffer sharing between 
the socket front-end and the NIC. 

The implementation of the send call copies the 
application data to the transmit buffer; the space 
occupied by the copied data is reused after the socket 
back-end reports that it was delivered to the remote 
receiver. The buffer space is used to facilitate the 
batching of multiple small requests in case the sender is 
faster than the local stack or the receiver. The socket 
front-end does not necessarily notify the socket back-
end about each new piece of data that was copied to the 
transmit buffer. Instead, it aggregates data if the amount 
of previously posted pending data becomes high, until 
the socket back-end reports sufficient progress on the 
data transmission, or until a large amount of data has 
accumulated. Thus, the data aggregation does not 
increase latency; it occurs only when the previously 
submitted data starts piling up. 

In turn, the socket back-end performs additional 
aggregation, postponing the TCP processing of newly 
submitted data when the TCP connection state does not 
allow immediate segment generation (i.e., when the 
TCP send window or congestion window is full). Like 
the aggregation at the socket front-end, the aggregation 
at the socket back-end does not introduce unnecessary 
delays; it decreases the TCP overhead and the overhead 
of the interaction with the device, due to better 
utilization of its TCP segmentation capabilities. 

4.3 Socket Receive Operation 
Handling incoming network traffic using a regular NIC 
is a known challenge. Due to unpredictable patterns of 
packet arrival, the packets received by a stateless NIC 
must land into anonymous buffers that are not 
associated with a particular connection. The packet data 
must be copied from the anonymous kernel buffers to 
the application buffers, which may be provided by the 
application after an arbitrary delay; thus, complex 
bookkeeping  of the packet data structures is needed. 
The main design choice we had to make was the context 
for performing the data copy operation.  

One choice would be asynchronous copy by the socket 
back-end, which seems to offload a maximal number of 
CPU cycles from the application CPUs. However, this 
approach has numerous drawbacks.  It causes thrashing 

of the IsoStack resources such as cache, TLB, and SLB, 
and it may actually decrease the application 
performance due to increased latency of receive 
operation and decreased cache locality; this occurs 
when the application tries to access the newly received 
data, which was brought to the wrong cache during the 
copy. Accordingly, we decided to copy the data on the 
application CPU, within the socket front-end.  

Applications (or their writers) expect the latency of the 
receive socket call to be very low if the data already 
arrived.  In order to minimize this latency, our 
implementation strives to perform the copy during the 
synchronous execution of the receive call, without 
interacting with the socket back-end. To achieve that, 
the socket front-end "prefetches" receive buffers from 
the socket back-end in advance, independently of the 
receive calls invoked by the application, using 
asynchronous requests. Upon such request, the socket 
back-end hands over to the socket front-end the 
ownership on the data buffers that contain the receive 
data stream of the socket (when these are available). 
Multiple buffers corresponding to multiple network data 
segments can be reported at once, decreasing the 
interaction between the socket front-end and the back-
end. If the previously posted request is completed 
before the application invokes socket receive function, 
socket receive implementation in the socket front-end 
copies the data immediately; otherwise, the application 
blocks until the previously requested data buffers are 
available. The socket front-end uses a heuristic to 
decide when to request more buffers. 

Since the packet buffers reside in kernel space and 
cannot be mapped in advance to the relevant 
application, the receive pointers queue is maintained in 
the kernel by the socket helper kernel module, which 
also copies the data during the socket receive call 
invoked by the application. This necessitates a kernel 
boundary crossing upon each receive operation, thus 
incurring a higher overhead than the send. However, the 
overhead is still lower than the native implementation 
because the socket front-end state is only accessed 
locally, unlike the regular socket object in the native 
stack, which is shared between different stack 
components running in different contexts. 

4.4 Event-Driven IsoStack Operation 
The IsoStack is implemented as a single-threaded non-
preemptive processing loop, serially handling 
asynchronous events. A dispatcher component of the 
IsoStack polls event queues to detect the new work to 
be done such as new packet arrivals, new application 



requests to be executed, or timeout expiration; it then 
invokes appropriate event handlers sequentially. The 
device is configured to operate in polling mode; a new 
device driver entry point is used to poll periodically for 
new packet arrival. The message queue mechanism also 
allows periodic polling of the socket command queues 
(or, more precisely, event notifications queues). The 
polling is done by reading from a cache-coherent 
memory location, thus busy-wait polling on empty 
queues is inexpensive, because it is usually 
accomplished by access to the local cache only. 

The socket back-end running within the IsoStack 
executes the commands delegated by the socket front-
end. If it cannot execute a command immediately, it 
postpones the command execution until an appropriate 
change of state occurs (e.g., until incoming data is 
buffered, in the case of the receive command). Each 
such command is implemented as a separate state 
machine. For example, if the socket front-end is 
requested to send data on a socket when the transmit 
window is full, the command handler puts aside the 
command state and marks the socket to enable 
asynchronous notification when transmission becomes 
possible. It then returns, allowing the dispatcher to 
proceed with other work. When an ACK packet arrives 
on the appropriate connection, the adapter's polling 
receive handler (invoked by the dispatcher) passes the 
packet up the stack; the TCP processing layer performs 
its regular processing and then generates an internal 
event indicating that the window space is freed. Later, 
the dispatcher detects the internal event and passes it to 
the socket back-end, which resumes execution of the 
send command.  

4.5 Lock Elimination 
Our architecture allows elimination of locks that were 
introduced within the network stack as a part of support 
for multiprocessor systems. Since the socket back-end 
objects and the network interface data structures are 
accessed sequentially in the context of the IsoStack 
thread, there is no need to worry about mutually 
exclusive access for these resources, which are private 
to the IsoStack. We made minimal modifications to the 
appropriate stack components to bypass the 
locking/unlocking code when touching the device or 
socket resources that belong exclusively to the IsoStack.  

Many other stack resources, such as the hash table of 
TCP connections or IP routing table, are shared across 
the system. To better utilize the advantages of our 
architecture, it is desirable to avoid this sharing and 
allow local-only access instead. These structures can be 

split into independent instances, each holding the 
relevant portion of information, potentially replicated 
and updated only using explicit "messages" delivered as 
internal events. For example, the generic Ethernet 
handling layer uses a lock to protect access to shared 
device configuration information that is changed rarely, 
if ever, using management interfaces. In our 
architecture, the IsoStack must be the exclusive owner 
of configuration information for the devices assigned to 
it; the management interfaces need to be intercepted, 
and execution of configuration changes need to be 
delegated to the IsoStack. This would make locking 
unnecessary, since the device configuration is accessed 
serially. Our experiments show that even uncontended 
locks incur a high overhead; thus, elimination of these 
remaining locks can yield an additional tangible 
performance improvement. 

5. Experimental Results 
This section demonstrates the performance 
improvement that can be achieved using the IsoStack 
approach. We use several micro-benchmarks to emulate 
different workloads, and evaluate the performance of 
several variants of the IsoStack, using the native 
(unmodified) stack as a baseline. 

5.1 Experimental Setup 
Our system under test is a Power6 machine, connected 
back-to-back to a "remote" system over a 10Gb/s link. 
Both machines have an additional NIC used for remote 
access. The Power6 system is a 4-way (8 core) system, 
running at 3.5 GHz, with 16 GB of RAM, equipped 
with a 10Gb/s HEA (Host Ethernet Adapter). All 
physical resources are assigned to a single logical 
partition (LPAR), which runs the AIX 6.1 operating 
system. Since the cores provide two-way SMT 
(symmetrical multithreading) capabilities, the machine 
appears to have 16 logical processors from the point of 
view of the OS. The remote system is a quad core AMD 
Opteron machine with 2GB RAM, equipped with 10G 
Broadcom NetXtreme II BCM57710 NIC, running Red 
Hat Enterprise Linux 5.3 (2.6.18 kernel). 

Our experiments compare the AIX native TCP/IP stack 
with the IsoStack, using the same micro-benchmark 
applications. To measure the IsoStack performance, we 
ran the IsoStack socket back-end and the test 
applications linked with the socket front-end.  To obtain 
AIX native results, we re-ran the same tests linked with 
the regular socket library over the unmodified AIX 
kernel and the unmodified network drivers with the 



same adapter configuration parameters. To achieve 
maximum bandwidth (on both types of systems), we 
increased the dedicated interfaces' MTU to 9000, 
disabled hardware flow control, and enabled TCP 
checksum offload and TCP segmentation offload. The 
AIX built-in Nmon tool ( [32]) was used to measure 
network throughput and CPU utilization. 

In order to evaluate scalability of our implementation 
for multiple application threads, we used a multi-
threaded TTCP-like application, where each thread 
sends or receives data over a single socket. We 
measured the achieved throughput, and the total CPU 
utilization for all processors (i.e., 100% means all cores 
are fully utilized; a single core accounts for 12.5%). 
Note that the IsoStack core is always fully consumed, 
because of polling-mode operation. CPU utilization of 
IsoStack shown below includes the constant utilization 
of the IsoStack core, and varying CPU utilization of the 
IsoStack socket front-end on application cores. 

5.2 IsoStack Variants 
To analyze the design choices, in particular those 
related to queuing and aggregation mechanisms, we 
implemented different variants of the IsoStack: 

� Iso-Kernel. This implementation is described 
in Section  4. In particular, it supports transmit 
data aggregation, and uses in-kernel per-CPU 
notification queues; the socket back-end polls 
only the notification queues.  

� Iso-Basic. Each application thread has a 
separate command/status queue in user-mode. 
No aggregation is used; each socket command 
translates to a message in the command queue. 
The socket back-end polls all the command 
queues. 

� Iso-Aggregated. Uses the same queue structure 
as the Iso-Basic; implements client and server 
side transmit data aggregation.  

� Iso-Lock. This variant is similar to Iso-Kernel; 
it reintroduces some of the locks that were 
eliminated in the other variants. The sole 
purpose of this variant is to evaluate the impact 
of un-contended locks, by an experiment 
described in Section  5.5. 

The Iso-Kernel variant is the implementation that we 
used for most tests. In the rest of this section, unless 
stated otherwise, the term "IsoStack" refers to Iso-
Kernel variant. 

5.3 Throughput Evaluation 
We used a multi-threaded TTCP-like application to 
evaluate basic data streaming. We measured the 
achieved throughput, and the total CPU utilization for 
all processors. 

Since maximal throughput of a single connection is 
limited by end-to-end TCP behavior, the merit of 
IsoStack becomes more evident as more TCP 
connections are used. When the traffic amount is low, 
the socket back-end dedicated CPU is underutilized, 
and most of its cycles are wasted on polling empty 
queues. The observed results in many of the tests with 
low number of connections showed that the overall 
machine CPU utilization with the IsoStack 
implementation is higher compared to the native stack. 
However, when the number of connections starts to 
grow, this effect is quickly mitigated and the IsoStack 
shows not just an increased or identical bandwidth, but 
also lower CPU utilization. 

Figure 4. Receive performance for 64 connections 

Figure 4 demonstrates receive performance for different 
message sizes for 64 connections (and 64 application 
threads). For small messages (64 bytes or 128 bytes), 
the IsoStack achieves bandwidth that is about 300% 
better than native, while both systems use almost all 
available CPU cycles. Clearly, CPU cycles are better 
used when CPUs are asymmetrically divided between 
the applications' CPUs and TCP. As message sizes 
increase, both stacks achieve the line speed with 
declining CPU utilization, although the native stack still 
uses more CPU cycles than the IsoStack to drive the 
same bandwidth. For message sizes above 16 KB, the 
performance improvement is less prominent: the 
throughput remains maximal for both stacks, CPU 
utilization of the IsoStack appears constant (although in 
fact the dedicated CPU spends more time in polling 
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empty queues), and the CPU utilization of the native 
stack decreases, as there are fewer system calls for the 
same amount of data.  

Figure 5 demonstrates the transmit performance for 
different message sizes using 128 connections. The 
IsoStack reaches the line speed even for a message size 
as small as 64 bytes, whereas the native stack can reach 
the line speed only for message sizes of 16 KB and 
above. Moreover, the IsoStack utilizes far fewer CPU 
cycles than the native stack. The difference is more 
dramatic for small messages, where the native stack 
uses 200% more CPU cycles (while driving a fraction 
of throughput) than the IsoStack. However, the 
difference is still high even for large message sizes, 
when both stacks achieve close to line-speed throughput 
and the native stack consumes 50% more CPU cycles 
when compared to the IsoStack. 

Figure 5. Transmit performance for 128 connections 

5.4 Request-Response Performance 
In this section, we discuss performance of 
request/response workloads. Each of the test application 
threads repeatedly sends and receives a single message, 
simulating typical client-server communication pattern. 
This type of workload maximizes the overhead for 
delegating socket operations to the IsoStack, since each 
socket operation involves interaction with the stack as  
no aggregation is taking place. 

Figure 6. Request-Response test, one connection 

Figure 6 demonstrates the request-response test 
performance for different message sizes using one 
connection. This allowed us to focus on the impact of 
socket delegation, without any additional improvements 
due to aggregation or reduced contention. In this 
scenario, the IsoStack provides more operations per 
second for all message sizes, although the difference 
between the stacks diminishes as the message size 
increases. Thus, the average latency of a single request-
response transaction improves when the IsoStack is 
used, which may seem surprising because of the added 
latency imposed by interaction between socket front-
end and socket back-end. However, this additional 
latency of socket delegation is offset by the decreased 
latency of the network processing, due to lock-free and 
interrupt-free operation. 

Because of the synchronous nature of this test (with just 
one operation in-flight), the performance is very low for 
both stacks, due to the delay caused by waiting to the 
remote application. The CPU utilization for the 
IsoStack appears to be higher than that of the native 
stack, since the socket server CPU – although 
underutilized – still uses 100% of its resources due to 
wasted polling cycles. 

To test the system scalability under the request/response 
workload, we ran the request-response test with varying 
numbers of connections (or, equivalently, application 
threads). Figure 7 shows the CPU utilization and the 
number of operations per second of both native stack 
and IsoStack, for different connection numbers, using a 
message size of 1KB. For up to eight connections, the 
native stack and IsoStack achieve a similar number of 
operations per second. For a higher number of 
connections, the IsoStack CPU becomes fully utilized, 
and turns into a bottleneck. The native stack allows 
multiple threads to utilize all processors in the system, 
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and each socket call is executed immediately, even if 
relatively slowly, on the calling processor. On the other 
hand, the IsoStack forces serialized execution of socket 
operations invoked for different sockets on different 
processors, and thus induces a queuing delay when 
many processors submit their operations in parallel. 
Thus, the native stack is able to make progress on each 
connection faster than the IsoStack, even though its 
CPU utilization per operation is higher. 

 

Figure 7. Request-Response test, 1KByte messages 

To analyze further the bottleneck imposed by the 
IsoStack, we measured various code paths inside the 
socket back-end CPU. We found that simply issuing the 
kernel call that wakes up the socket application (waiting 
to receive data) takes approximately 3µs. To compare, 
the optimized TCP send operation (involving TCP, IP, 
and MAC layers) also takes approximately 3µs, the 
socket back-end operation (without the wakeup) takes 
less than 1µs, and the whole request/response 
transaction accounts for approximately 16µs. Analysis 
of the wakeup call shows that the problem is mainly due 
to contention on several scheduler locks. This indicates 
that the IsoStack performance could be improved 
further if a more efficient wakeup mechanism is used.  

5.5 Impact of Uncontended Locks 
It is a popular belief that reducing lock contention is 
sufficient to address the problem of the lock overhead. 
Our implementation went one step further, and 
eliminated some of the locks completely, avoiding the 
lock operations altogether for the locks that are only 
taken on the IsoStack processor. To evaluate the impact 
of this optimization, we tested an additional variant of 
the IsoStack, called Iso-Lock, in which we re-
instantiated some of the locks – even though they are 
not needed in our architecture and are only accessed by 

the IsoStack CPU. 

 

Figure 8. Impact of extra lock on transmit 
performance for 64 byte messages 

Figure 8 depicts the effect that re-instantiating the locks 
had on the IsoStack performance. For this experiment, 
we re-introduced the HEA device driver TX and RX 
locks. These locks were acquired and released each 
time the device driver transmit or receive handler were 
called.  Socket send throughput tests were performed 
with a fixed message size of 64 bytes and a variable 
number of connections.  We used the native stack 
results as the baseline. For a small number of 
connections, the IsoStack achieves superior throughput 
compared to the Iso-Lock version, while the CPU 
utilization appears to be the same. The throughput 
improvement due to the eliminated lock reaches 
200MB/s for eight connections. As the connection 
number increases, both implementations reach line-
speed. The CPU utilization of Iso-Lock is higher than 
the regular IsoStack variant, which means, oddly, that 
the socket front-end consumes more CPU. This stems 
from the fact that additional locks (even though 
uncontended) make the socket back-end CPU perform 
slower; the socket transmit buffers then fill up more 
frequently, causing the socket front-end to wait for free 
space in the TX buffer. As a result, additional CPU 
cycles are spent on the extra scheduling that is involved 
in waking up the socket front-end.  
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This experiment shows clearly that even un-contended 
locks are a significant source of overhead. This result 
may seem counterintuitive, as kernel lock 
implementation usually takes just a few instructions. 
Indeed, the locking instruction path length is short, and 
the atomic update instructions are cache-hits. However,  
the lock implementation is also required to use a 
memory barrier – heavy-weight sync instruction ( [34]), 
which causes long CPU stall. 

Since our implementation did not eliminate all locks 
that became redundant, the remaining locks pose 
potential for additional improvement. 

5.6 Evaluating Different Queuing 
Mechanisms 

In this section, we try to analyze the performance of 
queuing mechanisms implemented in the different 
IsoStack variants. 

 

Figure 9. Transmit performance for three IsoStack 
variants, 64 byte messages 

In Figure 9, we compare the 64-byte transmit 
performance of Iso-Basic (per thread notification 
queues without aggregation), Iso-Aggregate (per-thread 
notification queues with aggregation of transmit 
operations) and Iso-Kernel (per-CPU notification 
threads with transmit aggregation), with the native stack 
as a baseline. All three IsoStack variants achieve better 
throughput with reduced CPU utilization, compared to 
the native stack. Iso-Aggregate and Iso-Kernel achieve 
up to eleven times (1000%) more bandwidth than the 

other variants due to the aggregation that both employ. 
As a result, they both use more CPU than Iso-Basic, 
although they still use remarkably less CPU than the 
native stack. Due to the high cost of using the kernel 
notification queues, Iso-Aggregate performs better than 
Iso-Kernel for a low number of connections, but as the 
number of connections (and application threads) grows, 
Iso-Aggregate throughput declines, while Iso-Kernel 
stays at the same throughput with decreased CPU 
utilization, and eventually out-performs the Iso-
Aggregate. 

The scalability advantages of the Iso-Kernel variant can 
be seen more clearly in Figure 10, which depicts the 
results of a request-response test for varying numbers of 
connections. The performance of Iso-Aggregate drops 
dramatically as the number of connections grows 
beyond 16, while the Iso-Kernel stack scales gracefully, 
i.e., increased number of clients does not cause 
performance degradation. This is due to the reduced 
polling overhead for the socket back-end in the Iso-
Kernel implementation, as it polls only the constant 
number of notification queues, unlike the Iso-Aggregate 
variant that polls a separate queue for each application 
thread. 

 

Figure 10. Request/Response Scalabilty 

6. Conclusions and Future Work 
Our work shows that the design principles of 
asynchronous interaction, non-shared state, and non-
shared processor resources for demanding tasks can be 
applied to network stack design, yielding significant 
performance improvements for most workloads. 
However, some workloads remain challenging. For 
example, we encountered scenarios where the serialized 
execution within the IsoStack introduces additional 
latency when processing particular events. The 
dispatching of network events handling is rather 
unsophisticated in our implementation, where the basic 
policy arbitration is weighted round-robin between the 
different event queues. Other arbitration policies need 
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to be evaluated, possibly involving a real-time 
scheduler. Also, it would be beneficial to identify 
latency-sensitive flows (automatically or with the help 
of application-provided quality-of-service hints), and 
prioritize their handling. 

We evaluated the system performance for a 10 Gb/s 
network port, using a single dedicated processor core. 
As network speed continues to grow, with emerging 
support for 40 Gb/s and 100 Gb/s, while the processor 
speed is not expected to increase, it will soon become 
necessary to employ multiple cores to handle network 
traffic for a single port in parallel. Fortunately, multi-
queue support and minimal packet classification 
capabilities, available in state-of-the-art adapters, allow 
parallelization of network processing without re-
introducing dependencies between the processors. The 
IsoStack can be parallelized using independent stack 
instances for disjoint subsets of network flows, using 
separate control data structures, and  interacting with 
the client applications through distinct queues. 

Our experience shows that dedicating processor cores to 
specific tasks can improve the overall system 
performance and scalability. However, the performance 
gains come at a price: a significant development effort 
is needed to integrate "isolated" components 
successfully within a system that was designed under a 
completely different paradigm. Our implementation had 
to refrain from using existing system services, as they 
brought back the very problems we were trying to solve. 
We believe these services should not be re-invented for 
every subsystem that can benefit from isolation; instead, 
the operating system should provide adequate support 
for isolated execution. Moreover, the underlying 
hardware should provide better support for inter-
processor communication within the system, to supply a 
better infrastructure for subsystem isolation.  

The implementation described in this paper addresses a 
single OS environment. However, one of the original 
goals of this work was to devise an architecture for 
efficient network virtualization. The general 
architecture described in  [26] allows multiple clients to 
share an isolated I/O subsystem which runs on a 
different physical machine in a cluster environment or 
on a different virtual machine within the same physical 
system. Ironically, interaction between physical 
machines over a cluster interconnect turned out to be 
more efficient than interaction between virtual machines 
within the same POWER system. To realize the 
performance potential of the IsoStack for virtualized 
systems, the hypervisor and the underlying hardware 
have to provide better support for efficient inter-

processor communication between processors assigned 
to different virtual machines. 
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