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Abstract

Sharing data between the processors becomes imgjyasxpensive as the number of cores in a sygws. In
particular, the network processing overhead onelagystems can reach tens of thousands of CPUscpele TCP
packet, for just hundreds of "useful" instructioMost of these cycles are spent waiting — whenGR#& is stalled
while accessing “bouncing” cache lines of netwodateol data shared by all processors in the systeand
synchronizing access to this shared state. In noasgs, the resulting excessive CPU utilizationtéirthie overall
system performance. We describe an IsoStack actiniee which eliminates the unnecessary sharingetfvark
control state at all stack layers, from the loweledevice access, through the transport protocothé socket
interface layer. The IsoStack "offloads" networlackt processing to a dedicated processor core; plaulti
applications running on the rest of the cores imvtile IsoStack services in parallel, using a tlsiteas layer that
emulates the standard sockets API, without introduoew dependencies between the processors. Véernra
prototype implementation of this architecture, gnolvide detailed performance analysis. We dematesthe ability
to scale up the number of application threads aatkglown the size of messages. In particular,hegvsan order of
magnitude performance improvement for short messagaching the 10Gb/s line speed at 40% CPU atiitia
even for 64 byte messages, while the unmodifietbayss choked when driving 11 times less throughput

processing elements symmetrically on the multiple
} : i ) processors in order to keep pace with the growing
While networking demands in data centers contimmue tnetworking speeds. As the number of processorsgrow
grow, and the networking infrastructure continues t ihe cost of sharing the network control structures
provide improved bandwidth and latency, singlepepyeen the processors becomes extremely high:
processor performance remains the same and in SOMeanwhile, cores become so abundant that sparing a
cases even decreases. Recently, increasing theenumBy,,, pecomes feasible. This has provided an oppidytun

of CPU cores became the only way to perform morg, (e think the network stack architecture and take

instructions per cycle. However, the overhead due tadvantage of the changing landscape of computer
interaction between these cores also goes up, a@iive n systems.

data-sharing may inhibit performance scaling as the

number of cores grows._NevertheIgss,_the familiafrhe 1soStack is a different approach for integmatin
shared memory programming model is still commonly,enyork processing within a multicore system. ladte
used for both application programming and ¢ ,sing the cores symmetrically, the IsoStack uses
implementation of OS services. dedicated cores for network processing, and lethes

) , rest of the cores for running applications. Sinbe t
Since the days of uniprocessor systems, networkenyork processing is confined to dedicated pramsss
processing has been carried out in a "multithreadedi,e stack can be optimized — executed seriallyouith
fashion: some portions of the stack are executeh@lu jnerrypts and locks. Since the CPUs are not shared
the socket system calls (in the context of callinghenyeen applications and the stack, there are fewer
applications), others during receive packet prangss coniext switches, and the cache behavior is imptove
(in the context of interrupt handlers or kerneletids 116 |soStack provides applications with a highleve

owned by the network stack), and yet others in theyierface (similar to a TCP Offload Engine integc
context of timeout handler routines. As multipr&m®S  \\hich can also allow efficient virtualization suppo
were introduced, it was natural to distribute thsek using simple HW devices.

1. Introduction
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Figure 1. Native stack vs. IsoStack

The contributions of this paper are:

and techniques that decrease the number of patkets
be processed for bulk data transfer. Some of these
techniques for decreasing the number of packelsdac
jumbo frames [6]), Large Send Offload (LS(31]),
also called TCP segmentation offload (TSO), and,
recently, Large Receive Offload (LRO [21, 25]).
Nevertheless, the resulting improvements merely
succeeded to compensate for the rapidly growing
networking demands, combined with relatively slow
growth of CPU speed and even slower improvement of
memory bandwidth and latency ([6, 16]).

With the advent of multiprocessor and (later) noglte
systems, stack parallelization became necessdeyep
pace with the growing network bandwidth. However,
efficient parallelization remains challenging, dset
parallel stack architectures implemented in the enod
operating systems incur additional locking overhead

= The architecture of an isolated network stackcache inefficiencies, and scheduling overhgag]y.

that allows independent, contention-free,

execution of TCP/IP control operations on aReceive-Side Scaling18]) and similar techniques let a
dedicated core, and application data processin§lIC classify the incoming packets to determine the

on the other cores;

= The prototype implementation of such a stack
in AIX 6.1 on Power6, providing a standard .
synchronous socket API built upon an

asynchronous internal interconnect;

affinity between these packets and CPU cores. @n th
basis of the packet classification result, recepadkets
are dispatched to the appropriate receive queuighwh
is usually served by a particular processor. This
technique allows more efficient low-level device
sharing, as it relieves the bottleneck associatéd w

= Implementation of an optimized messagesharing a single receive queue, and instead altbess
queue mechanism for internal communicationstack to process received packets in truly paratbef
between a large number of applicationswhen the packets are independent (i.e., belong to
(producers) and a consumer running on adifferent sets of network flows). On special-puos

dedicated core;

= The performance evaluation for a 10 Gb/s link,
demonstrating a significant increase of
bandwidth and/or decrease of total CPU
utilization compared to the native stack, in

some cases Yyielding an order-of-magnitud
improvement.

The rest of the paper is organized as follows: iBe&
discusses the related work. Secti8ndescribes the
system architecture, and Sectibrlepicts the prototype
implementation. We present the experimental results
Sectionb, and conclude the paper in Sectfon

2. Background and Related Work

e

systems (such as embedded network appliances),
running customized applications, this could potlti
allow to confine all TCP processing for a particula
connection to a single processor core. However, on
general-purpose systems (running regular sockets
applications), if the rest of the sharing issues ot
addressed, RSS (as well as other receive-side
optimizations such as NAPI) only allow to eliminae
small part of the multiprocessing overhead. This is
because the receive processing, the transmit Binges
and the timer processing for the same TCP conmectio
are still likely to be executed on different proa@s. In
particular, application-triggered data transmissisn
executed in application thread context, while ACK
handling and ACK-triggered data transmission are
executed by the receive handler. The transmit threa

For decades, TCP performance optimizations Werihar does not have any CPU affinity, or its affiris
introduced gradually to address the performance ho&onfigured by the application, while the affinity the

spots of contemporary systems ([1, 2, 5]). The mos}

widely adopted optimizations
calculation offload, interrupt mitigation to decseathe
number of interrupt requests from networking desjce

eceive handler is configured by the operatingesyst

include  checksumyansnarently to the application. Also, an appiérat

thread can handle multiple connections, that can be
mapped by RSS to different CPUs. Accordingly, such



un-coordinated execution still necessitates locking a significant reduction in overhead when compared t
protect access to the TCP connection and the adedci naive parallelization approaches. The TCP Servers
socket state, and may cause cache line bouncing wheroject (7]) also demonstrates the value of a similar
accessing this state. approach. However, the previous solutions for CPU-
based TCP offload made simplifying assumptions on
A radical solution to the fast-network, slow-hostthe interaction between the applications and the
phenomenon is offered by RDMA approagh0{). It  onloaded stack, and did not demonstrate performance
offloads the protocol to an RDMA-enabled adapterimprovement for inconveniently small message stres
which allows zero-copy operation due to RDMA for high humber of applications sharing the "onledd
semantics, and eliminates per-packet overhead @lue services. The IsoStack work is focused on improving
offloaded transport processing. Although this applo  these aspects of the onload concept.
is suitable for high-performance computing appiarat
running in a closed environment and using MPI orLoosely coupled TCP acceleratiof24]) is a hybrid
explicit RDMA semantics API, it is not feasible for approach that combines the benefits of both offlaadi
data-center  applications using sockets  APlonload. Similar to the offload approach, the agtian
implementing standard protocols (such as HTTP)CPU uses a lightweight interface to interact with a
directly over TCP, and interacting with legacy nte  “offloaded” network stack. However, network stack
For this latter class of applications, pure TCHoaffli  processing is not fully offloaded to the network
(without RDMA semantics) has been proposed. interface adapter. Instead, only the data procgssin
performed by a hardware acceleration engine on the
TCP offload for socket applications has been putsueadapter, while the protocol control operations doae
for a long time ([8, 11, 12, 13, 19]), and remainsby software on a dedicated main CPU. The software
controversial. Its potential advantage is the imptb and hardware components are loosely coupled; the
performance due to a higher-level interface thafparallelization is done in a way that allows
decreases the amount of interaction between thasynchronous and independent operation of botls.part
software and the TCP Offload Engine (TOE) adapter|n particular, the control information that has be
since the internal events are handled by the TORccessed by both entities is replicated rather than
adapter and do not disrupt application executionshared, using message queues to explicitly exchange
However, in practice, the performance potentiasf OE  state changes.
materializes only under various limitations. For
example, it may be necessary to modify the existingrhe same principle of dividing up responsibilitiwas
applications in order to achieve improved perforogan also applied in the Scalable I/O projef2§]), which
Also, due to high complexity and low volumes, TOE showed that efficient and scalable /O virtualiaati
solutions tend to have high cost and longer devedot  becomes possible by complete separation of thauD
cycle comparing to the rest of the system companentcompute functions. Moreover, the OS structure fitsel
which can make a TOE engine obsolete by the tirige it can be revisited to reduce unnecessary sharirig,the
released. In addition, TOE solutions lack the fdity Corey operating system for many cor¢27{); or to
in protocol processing that is needed to suppduréu eliminate the sharing altogether, as in the Multileé
protocol changes, and are prone to bugs that cdrenot architecture [8]). Asymmetrical OS structure was also
easily fixed. Even if the internal implementatios i employed in the Piglet operating systepd]) which
programmable, the changes can only be done by thesed dedicated processors to implement "intelligent
adapter vendor, leaving the OS very little contreér  device" functions.
the protocol behavior. This impedes TOE support in
some operating systems, and hinders TOE accepitance
general.

“TCP onload” using a dedicated CPU was proposed fop" I_SOSta_Ck Architecture o
multiprocessor systems as an alternative to TCP this section we present the IsoStack architectur
offload, without the disadvantages of hardware-base'Which we confine the network protocol processing to
TCP offload ([14, 15, 17, 20]). The concept is liasa ded|ca_ted processors and isolate it from the agiidic

an asymmetric multi-processing mode, where at leaXecution environment.

one of the CPUs on a multiprocessor system is ) ) ) )
dedicated to network stack processing, servingras al he IsoStack architecture is guided by the follawin

integrated TCP offload engine. This architectuteved ~ d€Sign principles:



= Serialized, event-driven, lock-free, and Socket back-end receives network commands from
interrupt-free implementation of the IsoStack socket  front-end, executes the  commands
on one or more dedicated logical processorsasynchronously and sends the command status in the
In particular, adapter control structures are nobpposite direction. The commands include socket
shared between processors. transmit/receive/control  commands, and  buffer
. : ... registration commands. Different APIs, such asddath
= Asynchronous interaction between applications .
L . —synchronous BSD sockets or various flavors of
and the IsoStack, through explicit messaging, . .
: ; asynchronous sockets, can be implemented using the
without the sharing of state. ; .
same underlying command/status mechanism. For
= The isolation is transparent to applications; inexample, the asynchronous Extended Sockets API
particular, the underlying asynchronous ([33]), which exposes explicit memory registratioh o
protocol does not affect the latency of application buffers, allows transmit implementation
synchronous operations. with true zero-copy. The standard socket API can be

The first two design principles allow more efficien |mplemented with a smgle data copy_mto_the socket
transmit buffer, using in-advance registration bétt

'mP'eme”t""“O” Of. the network stack_, V.V'th betterinternal socket buffer, as described in Sectich
utilization of multiple processors. This is due to

elimination of the overhead caused by access tedha
data structures from different processors and bate
of each processor’'s resources (e.g., decreaseck ca
pollution). The last principle allows unmodified
applications to benefit from the improved stack
performance, without having to switch to a diffaren
API or make any other changes.

The IsoStack uses a dedicated logical CPU, and is
C?_Iolely responsible for all network processing for a
particular network interface, which eliminates
contention on access to network control data sirast
and allows a wide range of optimizations. Since the
processor is not shared with other componentsegbnt
switching overhead is reduced, and polling-mode
interrupt-free execution becomes possible, elinmigat

| IsoStack CPU the interrupt handler overhead. Since the dat&tsires
App CPU #1 TCP/IP are not shared vyith other processors, single-_tlmde,ad
p— serialized execution enables lock-free operatitis t
ocKe L . )
app back-end ellmlnatmg the Iocklng ov_e_rhead. Consequently, all
Internal major sources of stack inefficiency are removed.
Socket interconne SURLRE S

front-end

queue server Although this paper focuses on the case of a single

4
int'grtfgr‘]‘:‘]'ect Iso$tack processor and a sin_gle netV\_/o_r_k int_erface
assigned to it, this is not an architectural linita. It is
k\] V{ possible to run multiple independent IsoStack imsts,
where each IsoStack instance is responsible foroone
more network interfaces. Moreover, since hardware
Figure 2. IsoStack architecture support for packet classification (with multipleceive

The IsoStack architecture is depicted in Figure 20dueues) is common, throughput scaling for a single
Applications access network services using a sockdt€twork interface can be achieved by using several
front-end layer that implements the standard soaRdt independent instances of the IsoStack, each reip®ns
and replaces the legacy sockets layer. The sonket: f for a subset of network traffic flows on that ifgere, as
end handles the API peculiarities and delegates thdiscussed in Sectidh

execution of networking operations to the socketkba o

end. The socket front-end and the socket back-en@n the other hand, it is not necessary to consume
interact using an asynchronous protocol over sl COmpletely a processor core under light load. tieoto
interconnect. The architecture allows differentelyf ~ Save power when the traffic rate is low, the IsoStan
internal interconnects. In our earlier wor]), we  t€mporarily enable the interrupts and stop theimll
used Infiniband [0]) for communication between the _untll _|t is notified on a new event. The |nterrth1atr_1dlers
socket front-end and back-end. This work focuses on in this case are used only to resume the polliegcé
message queue mechanism using the available generHliS type Of interrupt-driven execution does not re
purpose hardware; namely, cache-coherent memay; tHntroduce the shortcomings of the regular stack
detailed discussion is in Sectidril. implementation.
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queue clien
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Figure 3. System Design

front-end, and executes them using the asynchraneus

4. Prototype Implementatlon kernel socket APIs adapted for single-thread, iofr
The lIsoStack prototype is based on the AIX 6.1feqe operation.

operating system, running on a Power6 system ubking
HEA 10Gb/s adapter. We modified several kernelgection 4.1 describes the design of the messaging

components to allow the isolated-mode operatiothef 1 achanism used for the interaction between theesock

network stack as a single kernel thread, added neW,nt.end and back-end. Sectiod< and4.3 provide
kernel extension modules to support "delegation” Ofyetails of the transmit and receive operations,

socket operations to the IsoStack, and implemeated regpectively. Sectiond.4 describes the event-driven
user-space library that intercepts socket operat®@m  heration of the IsoStack. Secti@h lists the lock

passes them to the IsoStack instead of invoking thgjimination optimizations enabled by our architeetu
socket system calls. Figure 3 depicts the highHeve

system design.

4.1 Message Queues
The socket layer is split into socket front-end andket  An efficient mechanism for interaction between the
back-end to accomplish the delegation of socketpplication and the IsoStack is critical for reimligthe
operations. In particular, the state of each soiskeplit  performance improvement potential of our architextu
into its socket delegation state at the front-emtdile  Clearly, executing the network processing on arstpa
the actual socket object (including the networktpecol  CPU, without the overhead of locks or interrupts,
control information) is maintained at the socketiba reduces the stack overhead. However, the separation
end. The socket front-end consists of a socketdapg  introduces a new overhead, which must be kept very
library  that primarily  provides  user-space low in order to make the overall solution worthvehiln
implementation of standard socket calls, and a etock particular, this necessitates a highly efficientngrto-
helper kernel module that facilitates communicationone producer-consumer mechanism, to pass commands
between the socket front-end and back-end wheto the IsoStack from multiple applications.
kernel-level privileges are required (for example,
access shared notification queues, as explained ihhe design of such a mechanism was one of the main
Section 4.1). The socket back-end is a part of thechallenges of this work. Our early experiments stwbw
IsoStack; it receives socket commands from the etock that the existing IPC services are too expensiterims



of both CPU utilization and latency. On the othanth, offload solutions with interface comparable to Wat

the existing solutions for lock-free, producer-aeamgr  Interface Architecture (VIA3]), when the notification
interaction via shared memory provide much bettequeues serve to emulate  doorbells, and
performance for low numbers of producers, but do hocommand/response queues are implemented as lack-fre
scale well as the number of producers grows, becauproducer-consumer queues.

the consumer must poll large numbers of queues.

Ideally, a simple hardware mechanism could be .
employed to safely serialize request submissioom fr 4.2 Socket Se_nd Op_eratlon ) o
One of the key issues in the design of efficientada

multiple non-cooperative, non-trusted clients tsirggle _
request queue, which could then be polled by theese ~ ransfer (for any type of I/O) is memory management
This issue is particularly complicated for

Such a mechanism could allow lock-free direct agces >SUE ) )
to the queue by multiple producers, with atomicitycommunlcatlon services based on legacy, streaming-
handled by the hardware. Unfortunately, such 4node, synchronous socket API, due to inherent data
mechanism is not yet available, which makes thglsin COPY Semantics and unpredictable patterns  of
queue approach unfeasible. The access to suclyle sin @pplication operation. In particular, a large dagasfer

queue becomes very expensive under the hea\}§ likely to be implemented as a sequence of mialtip

contention due to the queue sharing by all socketmaller transfers, invoked synchronously, passiat d

applications (and all processor cores) in the syste residing at arbitrary locations. This observation,
together with the fact that the data copying ovadhe

becomes less pronounced on modern systgg#),(
underlies our decision to avoid zero-copy design fo

thread if SMT is in use). Thus, the number of qsese socket send operations — even though such a decisio

constant and small enough to allow efficient pgilly ~ SE€MS  counter-intuitive, - as  zero-copy ~property is
the consumer. Each thread accesses (atomically) tfgonsidered a holy-grail ~of network acceleration
queue of the processor on which it is running atttime solutions. Zero-copy solutions tend to offer impdv

of the access; the queue is not shared by othdierformance at the cost of application modification
processors in the system, which allows contentiea-f (€-9- through new asynchronous APIs), and are only

producer operation. Unfortunately, since these gseu Peneficial for a subset of workloads. We, on theeot
are shared by different applications, they cannet phand, strive to improve performance for a broadjean

accessed directly from user-space; kernel-spadeesoc ©f €xisting unmodified applications. In particulame
helper provides protected access to the notifinatio ©f OUr design goals was to keep (or improve) the lo
queues. latency of the synchronous send call. Thus, we ehos

keep the single data copy, performed on the apjuita

The per-CPU queues are used to notify the IsoSiaick Side:
new application requests; the notification queugien

include only the socket identification informatiohhe [N our solution, the synchronous API is implemented
actual socket commands are kept in per-socketSing socket transmit buffers that are pre-allataed

command queues that reside in shared memorﬁre-registered for the DMA access. This signifibant
accessible to both socket front-end and socket-backeduces buffer management overhead and allows
end; the command responses are returned through pé&fiicient aggregation of small data chunks. Thekebc
socket status queues. The queues are implemeriteyd usPack-end allocates DMA-able memory segments for
the coherent shared memory in a controlled way evhe each socket application; during socket initialiaatithe
each side maintains its view of the protocol staie; SOcket front-end (kernel helper) allocates per-sbck
memory locations used to exchange informationff@nsmit buffers out of the DMA-able chunk and maps
between the sides are allowed to be updated hygtesi them for user-space access. When the applicatioisse
designated writer (i.e., each shared memory locatim ~ data, the socket front-end copies the data from the
be written by either the socket back-end or thespc ~2@Pplication buffers into the socket transmit buffer
front-end within the appropriate application). Each(Mmapped into the application address space) used as

application uses separate shared memory segment foPntiguous cyclic buffer. Afterwards, the sockeirir
writeable and readable parts of the queue stato, Al end writes a transmit command to the socket command

complete separation is maintained between th&Ueue specifying the location of new transmit data
applications. within the socket buffer. To simplify memory
protection, it does not use pointers to identifg thata

The design is somewhat similar to direct-access TCH the transmit buffer, and instead uses offsetative

To decrease the cost of queue sharing, we chasgeta
separate queue per logical processor (processeracor



to the buffer start. When the socket back-end vesei of the IsoStack resources such as cache, TLB, BBd S
the command, it uses the buffer registration inftion and it may actually decrease the application
and the specified offset to construct the DMA addre performance due to increased latency of receive
to be passed to the device driver. The socket badk- operation and decreased cache locality; this occurs
does not access the transmit buffers; it just seagean  when the application tries to access the newlyivede
intermediary that facilitates the buffer sharingween  data, which was brought to the wrong cache dutirg t
the socket front-end and the NIC. copy. Accordingly, we decided to copy the data lon t
application CPU, within the socket front-end.
The implementation of the send call copies the
application data to the transmit buffer; the spaceApplications (or their writers) expect the laterafythe
occupied by the copied data is reused after thkesoc receive socket call to be very low if the data adie
back-end reports that it was delivered to the remotarrived. In order to minimize this latency, our
receiver. The buffer space is used to facilitate thimplementation strives to perform the copy durihg t
batching of multiple small requests in case thelseis  synchronous execution of the receive call, without
faster than the local stack or the receiver. Thekab interacting with the socket back-end. To achiewet,th
front-end does not necessarily notify the socketkba the socket front-end "prefetches" receive buffecsnf
end about each new piece of data that was copidteto the socket back-end in advance, independently ®f th
transmit buffer. Instead, it aggregates data ifatmunt  receive calls invoked by the application, using
of previously posted pending data becomes highl untasynchronous requests. Upon such request, thetsocke
the socket back-end reports sufficient progresshen back-end hands over to the socket front-end the
data transmission, or until a large amount of deta  ownership on the data buffers that contain theivece
accumulated. Thus, the data aggregation does ndata stream of the socket (when these are avgilable
increase latency; it occurs only when the previpusl Multiple buffers corresponding to multiple netwatéta
submitted data starts piling up. segments can be reported at once, decreasing the
interaction between the socket front-end and thek-ba
In turn, the socket back-end performs additionalend. If the previously posted request is completed
aggregation, postponing the TCP processing of newlpefore the application invokes socket receive fongt
submitted data when the TCP connection state dotes nsocket receive implementation in the socket front-e
allow immediate segment generation (i.e., when theopies the data immediately; otherwise, the apjitina
TCP send window or congestion window is full). Like blocks until the previously requested data buffers
the aggregation at the socket front-end, the agdicdy available. The socket front-end uses a heuristic to
at the socket back-end does not introduce unnegessadecide when to request more buffers.
delays; it decreases the TCP overhead and theeagkrh
of the interaction with the device, due to betterSince the packet buffers reside in kernel space and
utilization of its TCP segmentation capabilities. cannot be mapped in advance to the relevant
application, the receive pointers queue is maipthim
the kernel by the socket helper kernel module, hic
also copies the data during the socket receive call
_ ; invoked by the application. This necessitates anéder
is @ known challenge. Due to unpredictable patteins 1, nqary crossing upon each receive operation, thus
packet arrival, the packets received by a statdld€5  jcyrring a higher overhead than the send. Howetler,
must land into anonymous buffers that are notyyerhead is still lower than the native implementat
associated with a particular connection. The padé&  hecause the socket front-end state is only accessed
must be copied from the anonymous kernel buffers tqycqly, unlike the regular socket object in thetivea
the application buffers, which may be provided b t gack which is shared between different stack

application after an arbitrary delay; thus, Complexcomponents running in different contexts.
bookkeeping of the packet data structures is rieede

The main design choice we had to make was the xonte
for performing the data copy operation. 4.4 Event-Driven IsoStack Operation

The IsoStack is implemented as a single-threaded no
One choice would be asynchronous copy by the sock@rreemptive  processing loop, serially handling
back-end, which seems to offload a maximal numlber oasynchronous events. A dispatcher component of the
CPU cycles from the application CPUs. However, thislsoStack polls event queues to detect the new wrk
approach has numerous drawbacks. It causes thgashibe done such as new packet arrivals, new applicatio

4.3 Socket Receive Operation
Handling incoming network traffic using a regularQN



requests to be executed, or timeout expiratiomhdén  split into independent instances, each holding the
invokes appropriate event handlers sequentiallye Threlevant portion of information, potentially remied
device is configured to operate in polling modaleav  and updated only using explicit "'messages” delda®
device driver entry point is used to poll periodicéor internal events. For example, the generic Ethernet
new packet arrival. The message queue mechanism alkandling layer uses a lock to protect access toegha
allows periodic polling of the socket command queue device configuration information that is changecklg
(or, more precisely, event notifications queueshe T if ever, using management interfaces. In our
polling is done by reading from a cache-coherentarchitecture, the IsoStack must be the exclusiveeow
memory location, thus busy-wait polling on empty of configuration information for the devices asgdrto
qgueues is inexpensive, because it is usuallyt; the management interfaces need to be interdepte
accomplished by access to the local cache only. and execution of configuration changes need to be
delegated to the IsoStack. This would make locking
The socket back-end running within the IsoStackunnecessary, since the device configuration issseck
executes the commands delegated by the socket frorgerially. Our experiments show that even unconténde
end. If it cannot execute a command immediately, ilocks incur a high overhead; thus, elimination loése
postpones the command execution until an appr@priatemaining locks can vyield an additional tangible
change of state occurs (e.g., until incoming data iperformance improvement.
buffered, in the case of the receive command). Each
such command is implemented as a separate st .
machine. For example, if the socket front-end is~: Experimental Results

requested to send data on a socket when the transmiiS ~ Section  demonstrates  the  performance
window is full, the command handler puts aside thdmprovement that can be achieved using the IsoStack

command state and marks the socket to enab@_pproach. We use several micro-benchmarks to eenulat
asynchronous notification when transmission becomedifferent workloads, and evaluate the performante o
possible. It then returns, allowing the dispatcher SE€veral variants of the IsoStack, using the native
proceed with other work. When an ACK packet arrivestunmodified) stack as a baseline.

on the appropriate connection, the adapter's mpllin

receive handler (invoked by the dispatcher) patises )

packet up the stack; the TCP processing layer pesfo 9.1 EXxperimental Setup

its regular processing and then generates an aiternQur system under test is a Power6 machine, corshecte
event indicating that the window space is freedet,a back-to-back to a "remote" system over a 10Gbis lin
the dispatcher detects the internal event and pas&®2  Both machines have an additional NIC used for remot
the socket back-end, which resumes execution of theccess. The Power6 system is a 4-way (8 core)rsyste
send command. running at 3.5 GHz, with 16 GB of RAM, equipped
with a 10Gb/s HEA (Host Ethernet Adapter). All
physical resources are assigned to a single logical
partition (LPAR), which runs the AIX 6.1 operating
system. Since the cores provide two-way SMT
for multiprocessor systems. Since the socket badk-e ;sg;gwrestr;garl]ar\r/]g Ii?ﬁgg?ég?%éigggg':l:;b? ?hg]:xebti]n

objects gnd the r][_etl\llvor_k |tnhterfacet d?ta fS:LUCtIU':;t ayiew of the OS. The remote system is a quad cor®AM
accessec sequentially In the context of the 1S aCOpteron machine with 2GB RAM, equipped with 10G
thread, there is no need to worry about mutuall

; ) AYBroadcom NetXtreme Il BCM57710 NIC, running Red
exclusive access for these resources, which avatpri

to the IsoStack. We made minimal modificationshe t Hat Enterprise Linux 5.3 (2.6.18 kernel).
appropriate  stack components to bypass th
locking/unlocking code when touching the device o
socket resources that belong exclusively to th8tksck.

4.5 Lock Elimination
Our architecture allows elimination of locks thagres
introduced within the network stack as a part qipsrt

Our experiments compare the AIX native TCP/IP stack
"with the IsoStack, using the same micro-benchmark
applications. To measure the IsoStack performanee,
ran the IsoStack socket back-end and the test
applications linked with the socket front-end. dlmain

AlX native results, we re-ran the same tests linkiét

Uhe regular socket library over the unmodified AIX
kernel and the unmodified network drivers with the

Many other stack resources, such as the hash t¢dble
TCP connections or IP routing table, are sharedsacr
the system. To better utilize the advantages of o
architecture, it is desirable to avoid this sharamy
allow local-only access instead. These structuassbe



same adapter configuration parameters. To achiev§.3 Throughput Evaluation

maximum bandwidth (on both types of systems), weye used a multi-threaded TTCP-like application to
increased the dedicated interfaces' MTU to 90008va|uate basic data Streaming_ We measured the
disabled hardware flow control, and enabled TCPachieved throughput, and the total CPU utilization
checksum offload and TCP segmentation offload. They| processors.

AIX built-in Nmon tool (32]) was used to measure

network throughput and CPU utilization. Since maximal throughput of a single connection is
limited by end-to-end TCP behavior, the merit of
In order to evaluate scalability of our implemeimat |soStack becomes more evident as more TCP
for multiple application threads, we used a multi-connections are used. When the traffic amountis lo
threaded TTCP-like application, where each threadhe socket back-end dedicated CPU is underutilized,
sends or receives data over a single socket. Wgnd most of its cycles are wasted on polling empty
measured the achieved throughput, and the total Cphlueues_ The observed results in many of the tagts w
utilization for all processors (i.e., 100% mearisates  |ow number of connections showed that the overall
are fully utilized; a single core accounts for P2)5 machine CPU utilization with the IsoStack
Note that the IsoStack core is always fully consime jmplementation is higher compared to the nativeksta
because of polling-mode operation. CPU utilizata¥n  However, when the number of connections starts to
IsoStack shown below includes the constant utibrat grow, this effect is quickly mitigated and the 1saxk

of the IsoStack core, and varying CPU utilizatidth®  shows not just an increased or identical bandwidtt,

IsoStack socket front-end on application cores. also lower CPU utilization.

) 100 - 1200

5.2 IsoStack Variants 90 | 1000
To analyze the design choices, in particular those g 38 1 =
related to queuing and aggregation mechanisms, we Seo | 800 g
implemented different variants of the IsoStack: 550 - 600 =
240 =
. o . G304 400§
» [Iso-Kernel. This implementation is described ~ 5q | |00 8
in Section4. In particular, it supports transmit 10 1 =

Lo

data aggregation, and uses in-kernel per-CPU 0

I B IJI LS &8 8
notification queues; the socket back-end polls S8 B g 38F &5 B8
only the notification queues. Message size = o ©

i P P mmmm Native CPU = Iso CPU
= |so-Basic. Each application thread has a e Native Throughput l0 Throughput

separate command/status queue in user-mode.

No aggregation is used; each socket command. . .
gareg . Elgure 4. Receive performance for 64 connections

translates to a message in the command queue.

The socket back-end polls all the command

Figure 4 demonstrates receive performance forréiffie
queues.

message sizes for 64 connections (and 64 applicatio
» [so-Aggregated. Uses the same queue structuriireads). For small messages (64 bytes or 128)bytes
as the Iso-Basic; implements client and servethe IsoStack achieves bandwidth that is about 300%
side transmit data aggregation. better than native, while both systems use almbst a
» [Iso-Lock. This variant is similar to Iso-Kernel; available CPU cycles. Clearly, C.:PU cyf:l_es are bette
: . used when CPUs are asymmetrically divided between
it reintroduces some of the locks that were ST i
- ; . the applications' CPUs and TCP. As message sizes
eliminated in the other variants. The sole. : : )
. L . increase, both stacks achieve the line speed with
purpose of this variant is to evaluate the impact, ~ .. S : )
. declining CPU utilization, although the native $tatill
of un-contended locks, by an experiment ;
described in Sectios.5 uses more CPU cycles than the IsoStack to drive the
o same bandwidth. For message sizes above 16 KB, the
The Iso-Kernel variant is the implementation tha w performance improvement is less prominent: the
used for most tests. In the rest of this sectioless throughput remains maximal for both stacks, CPU
stated otherwise, the term "IsoStack" refers to- Isoutilization of the IsoStack appears constant (algfoin

Kernel variant. fact the dedicated CPU spends more time in polling



empty queues), and the CPU utilization of the rmativ

100
stack decreases, as there are fewer system callsefo 90 -
same amount of data. 80
70

5 60 -

Figure 5 demonstrates the transmit performance for £ _° |
different message sizes using 128 connections. Th(%m,
IsoStack reaches the line speed even for a mesgage o 30 -
as small as 64 bytes, whereas the native stackeeah O 20 A
the line speed only for message sizes of 16 KB and 01
above. Moreover, the IsoStack utilizes far fewetUCP

KOps/Sec

. : ; I T B I3 I 288 F 3 8

cycles than the native stack. The difference isemor S & w9 9o Q d 85 9

. . - ™ ©
dramatic for small messages, where the native stacl Message size

uses 200% more CPU cycles (while driving a fraction mmm Native CPU == Iso CPU

—a— Native Op/s ——Iso Op/s

of throughput) than the IsoStack. However, the

difference is still high even for large messageesiz Figure 6. Request-Response test, one connection
when both stacks achieve close to line-speed thimutg

and the native stack consumes 50% more CPU cyclddgure 6 demonstrates the request-response  test
when compared to the IsoStack. performance for different message sizes using one

connection. This allowed us to focus on the impafct
socket delegation, without any additional improvatae

188 . due to aggregation or reduced contention. In this
s 38 é scenario, the IsoStack prpvides more operati_ons per
S 601 < second for all message sizes, although the dlfﬁeren_
S 501 2 between the stacks diminishes as the message size
s ‘3‘8: S increases. Thus, the average latency of a singleess-
© 504 = response transaction improves when the IsoStack is

used, which may seem surprising because of thedadde
latency imposed by interaction between socket front
end and socket back-end. However, this additional
latency of socket delegation is offset by the dased
latency of the network processing, due to lock-&zed
interrupt-free operation.

64
128
256
512

1024
2048
4096
8192
16384
32768
65536

Message size
‘- Native CPU 0 Iso CPU —— Native Througput —-1so0 Throughput‘

Figure 5. Transmit performance for 128 connections  Because of the synchronous nature of this tesh (it

one operation in-flight), the performance is veaw Ifor

5.4 Request-Response Performance

In this section, we discuss performance
request/response workloads. Each of the test apiolic
threads repeatedly sends and receives a singleagess
simulating typical client-server communication patt
This type of workload maximizes the overhead for
delegating socket operations to the IsoStack, shachk
socket operation involves interaction with the ktas

no aggregation is taking place.

of

both stacks, due to the delay caused by waitinth¢o
remote application. The CPU utilization for the
IsoStack appears to be higher than that of thevenati
stack, since the socket server CPU - although
underutilized — still uses 100% of its resources ¢t
wasted polling cycles.

To test the system scalability under the requestfnese
workload, we ran the request-response test withirvgr
numbers of connections (or, equivalently, applarati
threads). Figure 7 shows the CPU utilization argl th
number of operations per second of both nativekstac
and IsoStack, for different connection numbersngis
message size of 1KB. For up to eight connectidms, t
native stack and IsoStack achieve a similar nunober
operations per second. For a higher number of
connections, the IsoStack CPU becomes fully utilize
and turns into a bottleneck. The native stack alow
multiple threads to utilize all processors in tlystem,



and each socket call is executed immediately, efzen the IsoStack CPU.
relatively slowly, on the calling processor. On tither
hand, the IsoStack forces serialized executiorooket
operations invoked for different sockets on diffdre
processors, and thus induces a queuing delay whe
many processors submit their operations in parallel
Thus, the native stack is able to make progressach
connection faster than the IsoStack, even though it 2
CPU utilization per operation is higher. §

KOps/sec

1 2 4 8 16 32 64 128

CPU utilization

Number of connections

mEmmm Native

=1 Iso-Lock

[ Iso-Kernel CPU

1 2 4 8 16 32 64 128 —>— Native Throughput
—%— Iso-Kernel Throughput
—e— Iso-Lock Throughput

Number of connections
Bl Native CPU @ Iso CPU —+— Native Op/s —<1Iso Op/s ‘

Figure 8. Impact of extra lock on transmit

Figure 7. Request-Response test, 1KByte messages performance for 64 byte messages

To analyze further the bo_ttleneck |mposed. b_y theFigure 8 depicts the effect that re-instantiating locks
IsoStack, we measured various code paths inside the

. L ad on the IsoStack performance. For this expetimen
socket back-end CPU. We found that S|n.1ply_ 'S‘?’ngt we re-introduced thepHEA device driver TX a?nd RX
kernel (;all that wakes up the S0 cket applicatioaiting locks. These locks were acquired and released each
to receve data) takes approan_atelys 3T0.compare, time the device driver transmit or receive handlere
the optimized TCP send operation (myolvmg TCP, 1P called. Socket send throughput tests were perfdirme
and MAC layers) also _takes_approxmatelysSthe with a fixed message size of 64 bytes and a variabl
socket back-end operation (without the wakeup)stakenumber of connections. We used the native stack
less than s, and the whole request/response

) . . results as the baseline. For a small number of
transaction accounts for apprOX|materp§§AnalyS|s connections, the IsoStack achieves superior thiough
of the wak_eup call shows that the problem is mamly compared to the lIso-Lock version, while the CPU
to contention on several scheduler locks. Thlspmtd!s tilization appears to be the same. The throughput
that the IsoStack performance could be improve

further if Hicient wak hanism iscl mprovement due to the eliminated lock reaches
urtherita more eflicient wakeup mechanismISase — >0omp/s for eight connections. As the connection

number increases, both implementations reach line-

5.5 Impact of Uncontended Locks speed. The CPU utilization of Iso-Lock is highearth

It is a popular belief that reducing lock contentis ~ the regular IsoStack variant, which means, oddigf t
sufficient to address the problem of the lock oeexh the socket front-end consumes more CPU. This stems
Our implementation went one step further, angfrom the fact that additional locks (even though
eliminated some of the locks completely, avoidihg t Uncontended) make the socket back-end CPU perform
lock operations altogether for the locks that andyo Slower; the socket transmit buffers then fill up rmo
taken on the IsoStack processor. To evaluate thadm frequently, causing the socket front-end to waitffee

of this optimization, we tested an additional vatiaf ~ SPace in the TX buffer. As a result, additional CPU
the IsoStack, called Iso-Lock, in which we re-cycles are spent on the extra scheduling thavisived
instantiated some of the locks — even though tirey a in waking up the socket front-end.

not needed in our architecture and are only acddsge



This experiment shows clearly that even un-conténdeother variants due to the aggregation that bothl@mp
locks are a significant source of overhead. Th@ilte As a result, they both use more CPU than Iso-Basic,
may seem counterintuitive, as kernel lockalthough they still use remarkably less CPU tham th
implementation usually takes just a few instruction native stack. Due to the high cost of using then&ker
Indeed, the locking instruction path length is shand  notification queues, Iso-Aggregate performs betian
the atomic update instructions are cache-hits. Wewe Iso-Kernel for a low number of connections, butlaes
the lock implementation is also required to use anumber of connections (and application threadsyvgro
memory barrier -heavy-weight synmstruction [34]), Iso-Aggregate throughput declines, while Iso-Kernel
which causes long CPU stall. stays at the same throughput with decreased CPU
utilization, and eventually out-performs the Iso-
Since our implementation did not eliminate all Isck Aggregate.
that became redundant, the remaining locks pose
potential for additional improvement. The scalability advantages of the Iso-Kernel varam
be seen more clearly in Figure 10, which depicts th
. . . results of a request-response test for varying rusnbf
5.6 Evaluat'_ng Different Queuing connections. '(I]'he perfoprmance of Iso-Ag);/gr%gate drops
Mechanisms dramatically as the number of connections grows
In this section, we try to analyze the performanfe beyond 16, while the Iso-Kernel stack scales gralyef
queuing mechanisms implemented in the differenie., increased number of clients does not cause

IsoStack variants. performance degradation. This is due to the reduced
polling overhead for the socket back-end in the Iso
100 1200 Kernel implementation, as it polls only the constan
90 | number of notification queues, unlike the Iso-Agmie
80 1 o T 1000 variant that polls a separate queue for each agijuit
§ 70 1 800 g thread.
o 60 - M s
=50 - 1600 = 80
= >
540 | / % s
L, 4 —0—
c o}
10 H ] o /
B I O 20 4
0 - : ‘ ‘ 0 N4
1 2 4 8 16 32 0 T
Connection number L 2 4 8 16 32 64 128
mm Native CPU Connection number
=== Iso-Basic CPU ‘ —a— Iso-Aggregate op/s —e— Iso-Kernel op/s‘
—1Iso-Aggregate CPU
—1 Iso-Kernel CPU
—B— Native Throughput . .
—e— Iso-Basic Throughput Figure 10. Request/Response Scalabilty
—+— Iso-Aggregate Throughput
—#— Iso-Kernel Throughput 6. Conclusions and Future Work
Our work shows that the design principles of
Figure 9. Transmit performance for three IsoStack asynchronous interaction, non-shared state, and non
variants, 64 byte messages shared processor resources for demanding taskbecan

. _applied to network stack design, yielding significa
In Figure 9, we compare the 64-byte ransmitye formance  improvements for most  workloads.
performance of Iso-Basic (per thread notification,yever, some workloads remain challenging. For
queues without aggregation), Iso-Aggregate (pegattir - example, we encountered scenarios where the gedali
notification queues with aggregation of transmite,ocytion within the IsoStack introduces additional
operations) and Iso-Kernel (per-CPU nOt',f'Cat'onIatency when processing particular events. The
threads with transmit aggregation), with the nast&k  yisnatching of network events handling is rather
as a baseline. All three IsoStack variants achieteer unsophisticated in our implementation, where thsicba
throughput with reduced CPU utilization, compared t policy arbitration is weighted round-robin betwetie

the native stac_k. Iso-Aggregate and ISO'K?mela‘@“ different event queues. Other arbitration poliaezd
up to eleven times (1000%) more bandwidth than the



to be evaluated, possibly involving a

real-time processor communication between processors assigned

scheduler. Also, it would be beneficial to identify to different virtual machines.

latency-sensitive flows (automatically or with thelp
of application-provided quality-of-service hintsand
prioritize their handling.
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