
1. Introduction
Today in both virtualized and non-virtualized systems the

entire I/O functionality is based on device drivers. They are
central to any system structure; both anecdotal and
informed evidence indicates device drivers as a major
source of trouble in the classical OS and a source of scaling
and performance issues in virtual I/O.

In conventional I/O, the I/O functionality is achieved
through a combination of simple hardware with only two
basic operations supported by the processor/memory
complex - namely register transfer and DMA. The structure
used to be appealing as the platform hardware support for
the I/O was reduced to a minimum. Unfortunately, it
brought on very large amount of vendor-specific device
driver code, which can no longer be thoroughly tested for
each system.

Virtualization brings with it another challenge (and an
opportunity for paradigm change). The solutions proposed
until now are based on the conventional device driver archi-
tecture; they use either dedicated devices directly attached
to a specific OS or a “trusted intermediary” for the shared
I/O. This position paper suggests an alternative.

We propose an architecture which virtualizes and isolates
the entire I/O subsystem rather than each I/O device, and
provides device-independent I/O at higher level of abstrac-
tion than the traditional I/O interfaces. Similar types of
architecture have been used on very large machines, based
on substantial specialized hardware (the Channel of the
IBM mainframes [1] and I/O processors of the large Control
Data and Cray machines). However, those machines had a
monolithic structure and scaling them was expensive. In our
suggested architecture scaling becomes possible by a
complete separation of the I/O and compute function and
introducing a protection model that does not require a
trusted intermediary for I/O.

2. Existing I/O Virtualization Approaches
The traditional device driver model was extended to

support I/O virtualization in several different ways:
• Legacy device drivers are used in fully virtualized sys-

tems, based on device emulation [2]. The hypervisor
traps the device accesses (such as memory-mapped IO
operations) and converts them to operations on a real
device, which may be different from the emulated
device. This approach does not require changes to the
guest OS, at the cost of significant performance degra-
dation due to frequent context switches between the
VM and the hypervisor.

• Para-virtualized (``virtual'') I/O drivers are hypervisor-
aware I/O drivers, installed in the guest OS [3, 4, 5]. A
paravirtualized driver communicates with the real
device driver running outside the guest; the level of
abstraction is raised from low-level bus operations
(such as MMIO) to device-level operations (such as
“send a packet”). The performance of paravirtual solu-
Scalable I/O - a Well-Architected Way to Do Scalable, Secure and Virtualized I/O

Julian Satran Leah Shalev Muli Ben-Yehuda Zorik Machulsky
satran@il.ibm.com leah@il.ibm.com muli@il.ibm.com machulsk@il.ibm.com

IBM Haifa Research Lab, Haifa, Israel

Abstract

Today in both virtualized and non-virtualized systems the entire I/O functionality is based on device drivers. They are
central to any system structure; both anecdotal and informed evidence indicates device drivers as a major source of trouble
in the classical OS and a source of scaling and performance issues in virtual I/O, due to “trusted intermediary” required for
the shared I/O. We propose an architecture which virtualizes the entire I/O subsystem rather than each I/O device, and
provides device-independent I/O at higher level of abstraction than the traditional I/O interfaces. In our suggested
architecture the system robustness is increased by isolating drivers; efficient and scalable virtualization becomes possible by
a complete separation of the I/O and compute function and introducing a protection model that does not require a trusted
intermediary for I/O.

tions is significantly better compared to device emula-
tion, but still far from native [6].

• Direct access (also known as pass-through access)
device drivers provide guest access to real hardware. A
device is dedicated to the guest, which interacts
directly with the device, without a software intermedi-
ary. This significantly improves performance compared
to device emulation or para-virtualized drivers. How-
ever, this approach in fact does not virtualize the I/O.
The vendor-specific device driver is executed within
the guest, which preserves the traditional driver-related
problems (such as high development cost and stability
issues). Direct access also poses challenges to many
aspects of virtualization, in particular it significantly
complicates live migration [7, 8, 21].

• Self-virtualizing devices [9, 10, 18, 20] allow direct
access interface to multiple VMs; logically, several
devices of the same type are packaged together. Since
the device driver within the quest OS interacts with the
hardware directly, a self-virtualizing device (as a
direct-access device) does not really virtualize the I/O.
In addition, even though the hardware allows I/O shar-
ing, the supported number of the virtual devices (and
accordingly the number of VMs sharing the device) is
typically very low, since the self-virtualization support
has significant impact on hardware size per virtual
interface. Accordingly, this solution scales poorly,
while the device cost is significantly increased.

3. Scalable I/O Architecture
Our architecture virtualizes the entire I/O subsystem, and

separates I/O execution environment from the VM. The
architecture resembles para-virtualization approach [5], but
takes it several steps farther: it provides higher level of I/O
abstraction, conceals I/O interconnect type, and makes I/O
performance improvements possible.

Figure 1. Scalable I/O Architecture
Device Controllers (DCs) implement the I/O services;

they control the I/O devices and isolate all device specific
code. DCs are logically distinct entities, implemented as

H ost1 Host2

dev dev

IP Network
I/O Interconnect

Infiniband
I/O Interconnect

devdev

DC

dev

dev

DC

dev

Shared m em
I/O Interconnect

I/O
C onsum er

HG HG

I/O
C onsum er

DC DC
separate physical or virtual machines. They can reside on a
separate machine in case of a scale-out environment, on a
different processor in an SMP, on a separate partition, or
even as a separate CPU thread in case of a low cost system.
They also can be implemented in hardware, bundled with
the device, e.g., as device firmware.

A single DC can provide I/O services to multiple IO
consumers simultaneously. An I/O consumer is a “client” of
the I/O services provided by DC. DCs execute I/O requests,
oblivious to the nature of the requester (i.e., whether it is a
VM or a user application). In order to allow secure device
sharing, DCs protect the devices from unauthorized access.
Device protection is achieved by appending to every I/O
request a device capability/credential (issued by a separate
I/O management entity), which the DC then enforces. The
device credentials involve cryptographic hashes with keys
shared between the issuer and the enforcer, and cannot be
forged by the I/O consumers. The mechanism is similar to
the OSD security protocol [14].

Any user-space or kernel-space application that holds a
valid device credential can access the DC services. Such an
application is called an I/O consumer; it accesses the I/O
services using a thin interface layer (an I/O access library).
The API may be either legacy API (such as the BSD sockets
API in case of network access), or a new API that can take
full advantage of the protocol flexibility. Different APIs can
be provided for the same class (and for the same device)
without any modifications at the device side.

Since the security model does not require a trusted inter-
mediary, I/O consumers can bypass kernel/hypervisor,
using techniques similar to existing user-space interface
techniques such as Virtual Interface Architecture (VIA [19])
or Infiniband [11].

The I/O consumers interact with DCs through a Host
Gateway (HG), which can be thought of as an enhanced
Infiniband Host Channel Adapter (HCA). The main func-
tion of the Host Gateway is to provide a generic protected
I/O mechanism to all I/O consumers on the host, i.e., protect
consumers from memory access by rogue DCs. An HG is an
elaborate DMA engine which provides DMA access to
regions of virtual memory of applications and/or VMs, as
described in Section 3.6. It is similar to DMA engines
included in many modern I/O adapters (such as Infiniband
adapters), although the memory protection mechanism is
different. The DMA operations are secured by address
protection code – a cryptographically enforced memory
credential, which is generated by the HG when an I/O
request is passed from a consumer to a DC, and then vali-
dated by the HG when the DC accesses the consumer
memory. The mechanism is called Protected DMA
(PDMA).

PDMA allows remote DMA over different types of inter-
connect; it allows also local DMA between partitions,
which is handled as remote DMA over a shared memory

interconnect. The interconnect network (whenever it is
present) is completely hidden from the I/O consumers.

Scalable I/O architecture suits ideally scale-out systems.
By splitting the function between compute and I/O nodes
we provide the OS a virtualized view of the I/O, allowing
great flexibility in tailoring the system characteristics to the
application: compute performance, I/O performance, and
energy efficiency tradeoff. For example in a cluster environ-
ment, an HPC system can be built by coupling high perfor-
mance compute nodes with low cost nodes for the I/O,
while a high performance database server can be built by
using high performance nodes as intelligent disk device
controllers.

3.1 Scalable I/O Protocol
Interaction between the I/O consumers and the I/O device

controllers is achieved using the Scalable I/O protocol,
depicted below.

Figure 2. Scalable I/O Protocol Stack
The protocol allows execution of remote I/O programs.

The protocol is asynchronous; it allows the consumer to
submit multiple I/O programs, to be executed in back-
ground. An I/O program consists of one or more I/O
commands, and includes general information such as target
device ID, unique program ID, and a device credential
(which grants appropriate device access rights).

The general structure of an I/O program is common to all
device classes, however each device class can “customize”
the commands, creating a well-defined class definition. For
example, we defined and prototyped a TCP class, which
allows efficient offloading of the TCP/IP stack to a DC.

The Protected DMA mechanism enables remoting of the
I/O program execution, i.e., shipping the I/O programs from
the host to a DC, followed by performing DMA operations
(access to consumer memory) requested by the DC. PDMA
does not depend on the device class; any class-specific
information is passed by the PDMA layer transparently.
PDMA is only concerned with I/O commands that access
the consumer memory. The PDMA layer appends memory

I/O class definition

Interconnect mapping
Protected DMA

In
fin

ib
an

d
in

te
rc

on
ne

ct
m

ap
pi

ng

sh
ar

ed
 m

em
in

te
rc

on
ne

ct
m

ap
pi

ng

IP
in

te
rc

on
ne

ct
m

ap
pi

ng

TC
P

cl
as

s
de

fin
iti

on

Fi
le

 s
ys

te
m

cl
as

s
de

fin
iti

on

IP
 c

la
ss

de
fin

iti
on

R
aw

 n
et

w
or

k
cl

as
s

de
fin

iti
on

Programmable I/O
protection bits (memory credentials) to the I/O programs,
and validates these credentials during subsequent DMA
operations.

PDMA is transport-independent, and can be mapped over
a variety of interconnects. Our prototype implements
mappings over TCP, Infiniband [11], HiperSockets [12],
and a shared memory queues mechanism; in general any
cluster interconnect or partition-to-partition interconnect
can be used to carry PDMA. The PDMA mapping to any
interconnect provides the same reliability guarantees and
the same RDMA semantics, which makes it possible to hide
the nature of the interconnect from the higher levels.

3.2 Execution Flow of a Scalable I/O Program
A high-level description of an I/O program execution

flow is provided below.
The I/O consumer first obtains from the management

infrastructure the appropriate device credentials. This oper-
ation can be encapsulated within the I/O access library and
hidden from the application.

Next, the I/O consumer invokes (through the I/O access
library) a simple or compound I/O operation. The I/O
access library builds a class-specific I/O program and
submits it to the HG (for execution on an appropriate DC).
The HG can be built to support submission of I/O programs
through it directly from user space, without kernel or hyper-
visor involvement.

The HG generates memory credentials (which are valid
during the lifetime of the program), and appends them to the
program, forming a PDMA I/O request. The HG then
decides which interconnect interface to use, and passes the
PDMA request to the appropriate transport implementation
(mapped over the selected interconnect).

The DC receives the I/O program encapsulated within the
PDMA I/O request from the interconnect. The DC inter-
prets the program, and invokes the appropriate class handler
to execute the I/O commands. The DC enforces the device
credentials provided with the program, and only allows
execution of an I/O operation if the credentials pass valida-
tion successfully. In addition to protection of I/O device
resources, the credential may be used also to protect DC
resources, for example to limit the amount of DC memory
used by the I/O programs executed on behalf of a particular
IO consumer.

Whenever the DC needs to access the consumer I/O
buffers, it invokes asynchronously PDMA memory access
operations at the HG, specifying the memory credentials
which were provided with the I/O program. The HG vali-
dates the memory credential before executing a PDMA
memory access request.

After the I/O program execution is done, the DC sends to
the consumer a status message. This message notifies the
consumer of program completion, and also notifies the HG

that the memory credentials associated with this program
are no longer valid.

3.3 High-Level I/O Interface
Many of the problems of the existing I/O virtualization

approaches are the result of the low level of I/O abstraction
in the commodity systems. A typical device normally
provides a low-level logical interface (such as “send a
network packet”), implemented by the vendor-specific
device driver using very-low-level hardware primitives
(bus-level memory-mapped I/O and DMA operations). The
existing virtualization techniques are based on either imple-
menting the former (para-virtualization), or emulating the
latter (full virtualization), both with significant overhead.

In contrast with the existing virtualization techniques, we
choose to raise the abstraction level, and to “offload” higher
layers of the I/O stacks. For example, handling network
devices in Scalable I/O is conceptually different than
conventional virtualization. While the current virtualization
approaches create a Virtual NIC that provides layer 2
services, we provide network (layer 3) or transport (layer 4)
services instead.

The high-level interface significantly reduces interaction
between the VM and its virtualized I/O implementation, and
thus significantly reduces the overhead of I/O virtualization.
In addition, it allows a more efficient implementation of the
I/O stack in modern multicore CPUs, by isolation the I/O
subsystem in its own environment. The high-level interface
allows us to allocate dedicated resources for demanding
high-level I/O tasks and avoid the very high cost of blind
CPU sharing (cache pollution, privilege-level boundary
crossing and locking). I/O stacks that consume a substantial
amount of computation on conventional architectures (e.g.,
the TCP/IP stack or a file system) can perform much better
in a confined environment (e.g., an isolated core or thread),
than in shared environment [16].

Unlike with other types of offload, such as a TOE (TCP
offload engine), in our approach the I/O stacks are not
moved to an inferior platform (such as an embedded plat-
form using a weak CPU and/or an accelerator with slow
access to the main memory). Also, multiple DCs can be
used, thus the isolated subsystem does not become a bottle-
neck.

We prototyped this concept for TCP/IP stack in two
different environments: using a dedicated CPU on an SMP,
and using a dedicated node in an Infiniband-connected
cluster. Significant performance improvement was achieved
in both cases. A detailed evaluation and performance anal-
ysis is under preparation.

3.4 Programmable I/O Interface
The Scalable I/O model allows execution of I/O programs

on the DCs. An IO program can be written using a limited
command set. For example, it can be a simple sequence of
basic I/O commands, similar to the compound operation in
NFSv4 [13]. It also can be a sequence of basic I/O opera-
tions and condition testing – similar to the channel
programs in mainframe Channel I/O [1] (this model was
implemented in our TCP class prototype). A more sophisti-
cated I/O program model can allow sandboxed execution of
code snippets (written in a full fledged programing
language) at the DC – similar to remote data processing
mechanisms such as MapReduce [17]. Unlike the Channel
model, we do not require a trusted intermediary; unlike the
other remote data processing mechanisms, we include an
effective protection mechanism for devices, DC resources
and host memory.

Executing I/O programs rather than simple I/O requests
has several benefits. First, it provides significant perfor-
mance improvement for any processing besides bulk data
transfers. Multiple control operations or control and data
operations can be combined, which reduces the interaction
overhead. Command combining also reduces latency, as it
eliminates the round-trip delay otherwise associated with
execution of a sequence of dependent operations. Complex
I/O programs can be used for analytical processing of data
(executed near the data), to offload significant amount of
work from the host, to decrease amount of data transferred
to or from the host, and ultimately to build more scalable
systems.

An additional advantage of programmable I/O is flexi-
bility to support future requirements. Without programma-
bility, it would be necessary to define comprehensive
command sets which would then need to be extended
frequently as new requirements evolve (as exemplified by
SCSI). Instead, we propose to use a limited command set
together with a means to combine the commands, to allow
far greater flexibility.

3.5 Making Remote Execution Efficient
A naive implementation of communication between the

I/O consumers and the I/O subsystem can be very ineffi-
cient. Our goal was not only to avoid the performance
impact, but moreover to improve performance. Even though
the architecture introduces a new layer (communication
channel between the I/O subsystem and I/O consumers), the
overall performance can be improved due to significant
reduction of direct and indirect costs imposed by the tradi-
tional I/O structure. In many scenarios, the savings due to
subsystem isolation can outweigh the cost of the (light-
weight) communication, as was shown previously for TCP
stack isolation [15, 16].

The communication overhead is kept low by using direct
access from the consumer to HG. Additionally, the amount
of interaction with the I/O subsystem is relatively low due
to high-level command interface to I/O devices (as

described in Section 3.3), and due to programmable I/O (as
described in Section 3.4).

Given an efficient communication channel, subsystem
isolation allows significant decrease in several types of
performance costs:

• The overhead of OS/hypervisor boundary crossings is
significantly reduced by a direct access interface to the
I/O communication channel, as described above.

• The cost of sharing the CPU between I/O subsystem
(driver, kernel services and higher level functions such as
a protocol stack) and the rest of the system is eliminated,
as each DC uses its own resources. Using dedicated
CPUs prevents cache pollution. It also allows to reduce
the amount of context switches due to interrupts, since
the isolated device controller can work in polling mode
most of the time.

• The overhead of DMA access setup (registration of I/O
buffers or copying I/O data) is decreased by using Pro-
tected DMA mechanism with “dynamic pinning” which
allows on the fly memory registration, as explained in
Section 3.6.

3.6 Efficient and Protected Memory Access
The setup of DMA operations is a complex and expensive

operation on traditional systems, and even more so on virtual-
ized systems. On many systems, the setup time can be high
enough to warrant a copy of consumer data to or from stati-
cally pre-registered memory areas used for I/O.

While CPU accesses to memory go through virtual memory
translation, a DMA operation usually accesses physical
memory directly1. In order to synchronize physical memory
accesses between CPUs and devices, consumers need to take
extra care when initiating and completing I/O operations. A
consumer must “pin” the portion of memory it is about to
access. Pinning locks a shared resource – physical memory –
for exclusive access by that consumer, for an unbounded
amount of time. Once the consumer is done using that portion
of physical memory, the consumer must “unpin” the memory
and release it back to the system.

Memory pinning wastes both CPU cycles and memory. It
wastes cycles, since it requires context-switching into privi-
leged software (such as an OS or a hypervisor), and it wastes
memory since once a portion of physical memory is pinned it
is no longer available to the rest of the system. In addition to
being wasteful, it is also complex to use and places an addi-
tional burden on the developer. Device driver errors, such as
unpinning memory before DMA is completed, can have
devastating effect on the whole system.

DMA setup is even more complicated when the DMA
addresses undergo translation, either by an IOMMU that
1.Bus addresses may be different from physical addresses on some architec-
tures, however we ignore simple bus-to-physical address transformations
such as a constant offset when discussing untranslated DMA access to physi-
cal address space.
provides access into one or more I/O address spaces, or by an
adapter that allows DMA to consumer virtual addresses. A
separate translation table has to be maintained (either in the
host or in the adapter or IOMMU). In these cases, in addition
to pinning physical memory, it is also necessary to register the
memory at the DMA translation tables, and to keep both CPU
and I/O page tables in sync.

Our goal is to avoid the need for explicit memory pinning
and registration. We define a mechanism that allows DMA
access to consumer virtual addresses, using existing MMU
translation tables for virtual-to-physical translation during the
DMA operations.

Unlike Infiniband, PDMA does not require memory pre-
registration and using memory keys for protection. Unlike
Address Translation Services (ATS) as defined by the PCI-
SIG IOV workgroup ([10]), PDMA does not perform transla-
tion based on device identity, and does not hand the translated
addresses to the devices. Instead, the PDMA request carries
secured information on the address space of the application or
VM which initiated the original I/O request. The DMA
address and the address space ID are protected using the
memory credentials mechanism; the credentials are generated
on the fly when the I/O consumer generates an I/O request,
which eliminates the need in pre-registration or maintaining
the DMA translation tables.

The mechanism does not require explicit pinning. A
“dynamic pinning” protocol ensures that a mapped page is
not unmapped while a DMA access is in progress, and most
of the complexity is moved to a rare unmap operation.

The dynamic pinning protocol introduces the concept of an
I/O page fault. HG raises an I/O page fault when an I/O
device tries to access a non-present memory page on behalf of
a consumer. Privileged software is responsible for handling
the page fault and restarting the I/O access by HG. The
PDMA protocol allows the HG to slow down the DC if too
many I/O page faults are handled concurrently (although this
is assumed to be rare). The I/O devices at the DC do not need
to be aware of the page faults at the host, as the PDMA
protocol takes care of this.

4. Summary and Conclusions
The proposed architecture inherently simplifies I/O virtual-

ization and improves I/O efficiency, security and scaling in
virtualized and non-virtualized environments. The I/O access
libraries provide the OS and the applications with a generic
view of I/O, while the device specific details managed by the,
logically remote, Device Controller. As a result, the
networked nature of modern I/O is hidden from the OS and is
visible only to the interface elements (Host Gateways). Secu-
rity is achieved by using a capability/credential mechanism to
access both memory and devices, with the I/O infrastructure
being responsible for enforcing credentials (some I/O compo-
nents will protect memory while others will protect devices or

resources within devices). Since access to devices and
resources within devices is protected, there is no need any
more for virtualizing device adapters; device/resource access
is done in the same way from a user process, an OS, or a OS
hosted by a VM.

5. Acknowledgements
The Scalable I/O architecture was developed by a team

that, in addition to the authors and in various stages, included
Ton Engbersen, Scott Guthridge, Orran Krieger, Vadim
Makhervaks, Ilan Shimony, T Basil Smith and John Tracey –
all with IBM at the time the work was conducted. The secu-
rity mechanisms underwent a deep review with a team from
the IBM Zurich Research Lab led by Michael Waidner.

Additional people worked on different prototype imple-
mentations and a large group of people contributed to this
work through their review, comments and valuable insights.
We are grateful to all of them. We especially thank those that
pointed to us various implementation alternatives for different
processors and subsystems (Jimi Xenidis, Hubertus Franke,
Ed Seminaro, Greg Still, Alan Benner, Tom Bradicich – all
from IBM). We would like to express our special thanks to
Micky Rodeh (IBM) for making this work happen and the
management team from IBM Research, and especially the
IBM Research Laboratory in Haifa for standing by us for
several years.

6. References
[1] R. Cormier, R. Dugan, and R. Guyette. System/370 Extended

Architecture: The Channel Subsystem. IBM Journal of
Research and Development, 27(3), p 206-218, May 1983.

[2] J. Sugerman, G. Venkitachalam, B. Lim. Virtualizing I/O
Devices on VMware Workstation's Hosted Virtual Machine
Monitor. In Proceedings of the General Track: 2002 USENIX
Annual Technical Conference, p.1-14, June 2001.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, A. Warfield. Xen and the art of virtual-
ization. In Proceedings of the nineteenth ACM symposium on
Operating systems principles, Oct. 2003.

[4] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In OLS '07: The 2007
Ottawa Linux Symposium, p. 225-230, July 2007.

[5] R. Russell. virtio: towards a de-facto standard for virtual I/O
devices. In ACM SIGOPS Operating Systems Review, Volume
42 Issue 5, July 2008.

[6] J. Santos, Y. Turner, J. Janakiraman, and I. Pratt. Bridging the
gap between software and hardware techniques for i/o virtual-
ization. In Proceedings of the 2008 USENIX Annual Technical
Conference, 2008.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, A. Warfield. Live migration of virtual machines. In
Proceedings of the 2nd conference on Symposium on Net-
worked Systems Design & Implementation, p.273-286, May
2005.

[8] E. Zhai, G. D. Cummings, Y. Dong. Live Migration with Pass-
through Device for Linux VM. In Proceedings of OLS '08: The
2008 Ottawa Linux Symposium, July 2008.

[9] H. Raj, K. Schwan. High performance and scalable I/O virtual-
ization via self-virtualized devices. In Proceedings of the 16th
international symposium on High performance distributed
computing, June 2007.

[10] PCI-SIG I/O Virtualization specifications,
http://www.pcisig.com/specifications/iov/

[11] InfiniBand™ Trade Association, InfiniBand™ Architecture
Specification Release 1.2, October 2004.

[12] M. E. Baskey, M. Eder, D. A. Elko, B. H. Ratcliff, and D. W.
Schmidt. zSeries Features for Optimized Sockets-Based Mes-
saging: HiperSockets and OSA-Express.In IBM Journal of
Research and Development.46, No. 4/5, p. 475-485, July/Sep-
tember 2002.

[13] B. Pawlowski, D. Noveck, D. Robinson, R. Thurlow. The NFS
version 4 protocol. In Proceedings of the 2nd International Sys-
tem Administration and Networking Conference (SANE 2000).

[14] M. Factor, D. Nagle, D. Naor, E. Reidel, J. Satran. The OSD
security protocol. In Proceedings of 3rd International IEEE
Security in Storage Workshop (2005).

[15] L. Shalev, V. Makhervaks, Z. Machulsky, G. Biran, J. Satran,
M. Ben-Yehuda, I. Shimony. Loosely Coupled TCP Accelera-
tion Architecture. In Proceedings of 14th IEEE Symposium on
High-Performance Interconnects (HOTI'06), p. 3-8, Aug. 2006.

[16] G. Regnier, S. Makineni, I. Illikkal, R. Iyer, D. Minturn, R.
Huggahalli, D. Newell, L. Cline, A. Foong. TCP onloading for
data center servers. In IEEE Computer, November 2004.

[17] J. Dean, S. Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. In OSDI, p. 137-150, 2004.

[18] P. Willmann, J. Shafer, D. Carr, A. Menon, S. Rixner, A. L.
Cox, and W. Zwaenepoel, Concurrent direct network access for
virtual machine monitors, in Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer
Architecture, 2007, pp. 306-317.

[19] Philip Buonadonna, Andrew Geweke, David Culler. An Imple-
mentation and Analysis of the Virtual Interface Architecture, In
Proceedings of SuperComputing '98.

[20] J. Liu, W. Huang, B. Abali, and D. K. Panda. High performance
vmm-bypass i/o in virtual machines, in ATEC '06: Proceed-
ings of the annual conference on USENIX '06 Annual Techni-
cal Conference. Berkeley, CA, USA: USENIX Association,
2006, p. 3

[21] W. Huang, J. Liu, M. Koop, B. Abali, and D. Panda. Nomad:
migrating os-bypass networks in virtual machines, inVEE '07:
Proceedings of the 3rd international conference onVirtual exe-
cution environments. New York, NY, USA: ACMPress, 2007,
pp. 158-168.

	1. Introduction
	2. Existing I/O Virtualization Approaches
	3. Scalable I/O Architecture
	3.1 Scalable I/O Protocol
	3.2 Execution Flow of a Scalable I/O Program
	3.3 High-Level I/O Interface
	3.4 Programmable I/O Interface
	3.5 Making Remote Execution Efficient
	3.6 Efficient and Protected Memory Access

	4. Summary and Conclusions
	5. Acknowledgements
	6. References
	Scalable I/O - a Well-Architected Way to Do Scalable, Secure and Virtualized I/O

