The SCIMITAR project explores virtual memory for I/O devices. Devices no longer share a single I/O address space, or have per-device I/O address spaces (IOMMU). Instead devices use consumer virtual addresses.

Motivation
- Memory pinning expensive & complex [Wyckoff et al., CCGRID ’05]
- Direct access from virtual machines [Liu et al., USENIX ’06, Ben-Yehuda et al., OLS ’06]
- An I/O device is just another heterogenous core [Weinsberg et al., ASPLOS ’08]

Assumptions and observations
- Memory frames which are DMA targets are usually already allocated and resident!
- Strategy: make the common case fast, and the unlikely case possible.

Theory of operation
- Use existing MMU translation mechanisms for virtual->physical translation.
- Don't pin up-front (assume memory is pinned!)
- Move pinning cost and complexity to rare unmap.

Some open questions
- How do you build such a system (HW and SW)?
- Does I/O have spatial and temporal locality?
- Are I/O page faults feasible?
- How do you build an optimal device IOTLB?

Experimental Prototype
- Using programmable network adapter.
- Rewrote firmware to raise I/O page faults and cache I/O translations (IOTLB).
- Working on operating system memory management changes (I/O page fault handler, unmap protocol).
- Evaluating underlying assumptions.