
The Reservoir
model and
architecture for
open federated
cloud computing

B. Rochwerger
D. Breitgand

E. Levy
A. Galis

K. Nagin
I. M. Llorente

R. Montero
Y. Wolfsthal

E. Elmroth
J. Cáceres

M. Ben-Yehuda
W. Emmerich

F. Galán

The emerging cloud-computing paradigm is rapidly gaining
momentum as an alternative to traditional IT (information
technology). However, contemporary cloud-computing offerings
are primarily targeted for Web 2.0-style applications. Only
recently have they begun to address the requirements of enterprise
solutions, such as support for infrastructure service-level
agreements. To address the challenges and deficiencies in the
current state of the art, we propose a modular, extensible cloud
architecture with intrinsic support for business service management
and the federation of clouds. The goal is to facilitate an open,
service-based online economy in which resources and services are
transparently provisioned and managed across clouds on an on-
demand basis at competitive costs with high-quality service. The
Reservoir project is motivated by the vision of implementing an
architecture that would enable providers of cloud infrastructure to
dynamically partner with each other to create a seemingly infinite
pool of IT resources while fully preserving their individual
autonomy in making technological and business management
decisions. To this end, Reservoir could leverage and extend the
advantages of virtualization and embed autonomous management
in the infrastructure. At the same time, the Reservoir approach
aims to achieve a very ambitious goal: creating a foundation for
next-generation enterprise-grade cloud computing.

Introduction
In the Web 2.0 era, companies can grow from inception

to a massive scale at incredible rates. For example,

MySpace acquired 20 million users in two years; Google

YouTube** reached the same number of users in just 16

months [1]. However, to leverage this potential rate of

growth, companies must properly address critical

business decisions related to their service delivery

infrastructure.

Current approaches to cloud computing

The emerging cloud-computing paradigm [2], as

exemplified by the Amazon Elastic Compute Cloud (EC2)

[3], represents a promising conceptual foundation for

hosting and deployment of Web-based services while

theoretically relieving service providers from the

responsibility of provisioning the computational

resources needed to support these services. Cloud

computing enables individuals or companies with market

domain expertise to build and run a software-as-a-service

(SaaS) company with minimal effort developing software

and without managing any hardware operations. This

helps to reduce software complexity and costs, expedite

time to market, and enhance the accessibility to services.

With cloud computing, companies can lease

infrastructure resources on-demand from a virtually

unlimited pool. The pay-as-you-go billing model applies

charges for the resources actually used per unit time. This

way, a business can optimize its IT (information

technology) investment and improve availability and

scalability.

�Copyright 2009 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied by any means or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other

portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 1

0018-8646/09/$5.00 ª 2009 IBM

While cloud computing holds huge promise for the

future of service computing, the following inherent

deficiencies in current offerings can be identified:

Inherently limited scalability of single-provider clouds—

Although most infrastructure cloud providers today

claim infinite scalability, in reality it is reasonable to

assume that even the largest players may start facing

scalability problems as the cloud-computing usage rate

grows. In the long term, scalability problems may be

expected to worsen as cloud providers serve an increasing

number of online services, each accessed continuously by

massive numbers of global users.

Lack of interoperability among cloud providers—

Contemporary cloud technologies have not been designed

with interoperability in mind. This results in an inability

to scale through business partnerships across cloud-

computing providers. In addition, it prevents small and

medium-sized cloud-infrastructure providers from

entering the cloud-provisioning market. Overall, this

stifles competition and locks consumers to a single

vendor.

No built-in business service management support—

Business service management (BSM) is a management

strategy that enables businesses to align their IT

management with their high-level business goals. The key

aspect of BSM is service-level agreement (SLA)

management. Current cloud-computing solutions are not

designed to support the BSM practices that are well

established in the daily management of enterprise IT

departments. As a result, enterprises that want to

transform their operations to cloud-based technologies

cannot do so incrementally and will likely find such a

transformation to be a disruptive step.

We argue that none of these problems, or other major

problems such as security and availability, can be

remedied by retrofitting existing architectures. On the

contrary, these issues must be addressed by designing a

cloud-computing architecture from basic principles. In

this paper, we propose a reference model and architecture

that systematically addresses some of those deficiencies

and serves as a potential foundation for delivering IT

services as utilities over the Internet.

Reservoir approach
The Reservoir approach is to enable on-demand delivery

of IT services at competitive costs without requiring a

large capital investment in infrastructure. This approach

is inspired by a strong desire to make the delivery of IT

services similar to the delivery of common utilities. For

example, a common scenario in the electric grid is for one

facility to dynamically acquire electricity from a

neighboring facility to meet a spike in demand. Just as in

other industries in which no single provider serves all

customers at all times, the next-generation cloud-

computing infrastructure should support a model that

enables multiple independent providers to cooperate

seamlessly to maximize their mutual benefit.

More specifically, to truly fulfill the promise of cloud

computing, there should be technological capabilities to

federate disparate data centers, including those owned by

separate organizations. Only through federation and

interoperability can infrastructure providers take

advantage of their aggregated capabilities to provide a

seemingly infinite service computing utility. Informally,

we refer to the infrastructure that supports this paradigm

as a federated cloud.

An additional important advantage offered by the

federated cloud approach is that it democratizes the

supply side of cloud computing by allowing small and

medium-sized businesses (SMBs) and new entrants to

become cloud providers. This encourages competition

and innovation.

One of the aforementioned limiting factors in current

cloud-computing offerings is the lack of support for BSM,

specifically for business-aligned SLA management.

While specific cloud-computing solutions can be

enhanced with some aspects of BSM, the provisioning of

complex services across a federated network of possibly

disparate data centers is a difficult and as yet unsolved

problem. A service may be a composition of numerous

distributed resources including computing, storage,

and network elements. Provisioning such a service

consumes physical resources but should not cause an SLA

violation of any other running application with a

probability larger than some predefined threshold.

Because SLAs serve as risk mitigation mechanisms, this

threshold represents the risk that a cloud provider and the

cloud customer are willing to accept.

With BSM, applications are properly dimensioned, and

their nonfunctional characteristics governed by SLAs,

such as performance, availability, and security, are

ensured with optimal cost through continuous IT

optimization. We argue that because of the immense scale

envisioned by cloud computing, support for BSM should

be maximally automated and embedded into the cloud

infrastructure.

The basic principle of the Reservoir model, as

presented in this paper, is that each infrastructure

provider is an autonomous business with its own business

goals. A provider federates with other providers (i.e.,

other Reservoir sites) based on its own local preferences.

The IT management at a specific Reservoir site is fully

autonomous and governed by policies that are aligned

with the business goals of the site. To optimize this

alignment once it is initially provisioned, resources

composing a service may be moved to other Reservoir

sites based on economic, performance, or availability

considerations. Our research addresses those issues and

4 : 2 B. ROCHWERGER ET AL. IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009

seeks to minimize the barriers to delivering services as

utilities with guaranteed levels of service and proper risk

mitigation.

Cloud computing is the latest incarnation of a general-

purpose public computing utility. In recent years we have

seen many efforts toward delivering computing as a

utility—from grid computing [4], which made significant

progress in the area of high-performance scientific

computing, to attempts at building enterprise-level

utilities [5]. However, none of these attempts has

materialized into a general-purpose compute utility

accessible by anyone at any time from anywhere.

What makes cloud computing different is that industry

such trends as the ubiquity of broadband networks, the

fast penetration of virtualization technology for x86-

processor-based servers [6], and the adoption of SaaS [7]

are finally creating an opportunity and a need for a global

computing utility. The reluctance to use online services as

a replacement for traditional software is lessening; the

success of companies such as Salesforce.com proves that

with the right set of security warranties and a competitive

price, companies are willing to trust even their most

valuable data—customer relations—to an online service

provider. At the same time, virtualization has made it

possible to decouple the functionality of a system as it is

captured by the software stack (operating system,

middleware, application, configuration, and data) from

the physical computational resources on which it executes

[8]. This, in turn, enables a new model of online

computing: Instead of specially crafted online software,

we can now think in terms of general-purpose online

virtual machines (VMs) that can perform any

computational task. Finally, as virtualization enters the

mainstream, the era of a general-purpose compute utility

is now within reach.

The specific contributions we present in this paper are

the following:

� Delineation of motivation and realistic use cases for

enterprise-grade federated cloud computing.
� Definition of a model and an open architecture for

federation and the interoperability of autonomous

clouds to form a global fabric of resources that can be

provided on demand with guaranteed service levels.
� Definition of an open, loosely coupled cloud-

computing stack in which each level operates

autonomously at a different level of abstraction and

interacts with the layers above and below via

standardized interfaces.

The remainder of this paper is organized as follows: In

the next section we discuss specific use cases and derive

requirements for Reservoir, and in the section following

that we present the Reservoir federation model and

architecture and provide definitions of the concepts used.

We then describe the Reservoir architecture in greater

detail and provide the rationale for the design choices we

propose. That is followed by offering insight into the state

of the art for virtualization, grid computing, and BSM,

and then we conclude with a summary.

Use cases and requirements analysis
In this section, we first review several similar use cases

that involve SAP systems [9]. Because of their complexity,

these systems serve as a useful conceptual benchmark for

deriving requirements and validating the Reservoir

model. Next, we present key design principles and a

subset of primary requirements. These requirements

reflect the distinctions to be made between Reservoir and

current cloud and virtualization offerings.

SAP systems

SAP systems are used for a variety of business

applications, such as SAP CRM (customer relationship

management) and SAP ERP (enterprise resource

planning). For simplicity, we assume that the different

SAP systems follow the same architecture described

below, but each system is installed and operated as an

independent system. A given SAP system consists of

generic components that are customized by configuration

and components that are custom-coded for a specific

installation.

An SAP system is typically a three-tier system

(Figure 1):

� Requests are handled by the SAP Web dispatcher.
� In the middle tier, there are two types of components:

multiple stateful dialog instances (DIs) and a single

central instance (CI) that performs central services

such as application-level locking, messaging, and

registration of DIs. The number of DIs can be

changed while the system is running to adapt to load.
� A single database management system (DBMS) and a

single storage system serve the SAP system.

As shown in Figure 2, the components can be arranged

in a variety of configurations, from a minimal

configuration in which all components run on a single

machine, to larger ones in which there are several DIs,

each running on a separate machine, and a separate

machine with the CI and the DBMS.

Virtualized data center use case

Consider a data center that uses virtualization technology

to consolidate the operation of different types of SAP

applications and all their respective environments; for

example, test and production. The applications are

offered as a service to external customers or alternatively,

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 3

the data center is operated by the IT department of an

enterprise for its internal users, enterprise employees.

A special variation is the case in which the data center

serves an on-demand SaaS setup in which customers are

external and each customer, or tenant, gets the same

base version of the application. However, each tenant

configures and customizes the application to suit its

specific needs. It is reasonable to assume that a tenant

in this case is an SMB.

There are several typical aspects of virtualized data

centers. The infrastructure provider must manage the life

cycle of the application for hundreds or thousands of

tenants while keeping a very low total cost of ownership

(TCO). This includes setting up new tenants, backing up

the databases, managing the customizations and

configurations of tenants, and obtaining patches and

newer versions of the software from the service provider,

SAP. Also, setting up a new tenant in the SaaS-for-SMBs

case is completely automated by a Web-based wizard.

The new tenant runs through a series of configuration

questions and uploads such master data items as product

catalog and customer lists. Following these steps, the

tenant is up and running, typically using a trial version.

The provisioning of the storage, database, and

application server resources is part of this automated

setup. The customers are billed a fixed monthly

subscription fee or a variable fee based on their

application usage.

There are several well-known approaches to multi-

tenancy of the same database schema [10]. Regardless of

the approach taken, multi-tenancy calls for flexible

virtualization schemes where, for example, the DBMS

component and the storage system are shared between

multiple tenants. The main reason for this sharing is to

minimize the TCO per tenant.

In summary, the key challenges in these use cases from

the point of view of the infrastructure provider are the

following:

� Managing thousands of different service components

that comprise a variety of service applications

executed by thousands of virtual execution

environments on a complex infrastructure that also

includes network and storage systems.
� Consolidating many applications on the same

infrastructure, thereby increasing hardware utilization

and optimizing power consumption while keeping the

operational cost at a minimum.
� Guaranteeing the individual SLAs of the many

customers of the data center, who face different and

fluctuating workloads.

Primary requirements

From the use case described in the previous section, we

derived the following main requirements for the cloud

infrastructure:

Automated and fast deployment—The Reservoir cloud

should support automated provisioning of complex

(a)

(b)

DBMS DBMSDBMS

CI

DBMS

DIDI

DI/CI DI/CIDI/CI

Figure 2

Sample SAP system deployments: (a) multiple SAP systems where

each system runs in the same machine (represented as rounded red

rectangles); (b) single SAP system where the large components (CI

and DBMS) run together on the same machine, and each DI runs

on a dedicated machine. For simplicity, it can be assumed that the

Web dispatcher is collocated with the CI on both figures.

Storage

Database management system

BrowserPresentation tier

Application tier

Database tier

Web dispatcher

DIDI CI

Figure 1

Abstraction of an SAP system (CI: central instance; DI: dialog

instance).

4 : 4 B. ROCHWERGER ET AL. IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009

service applications based on a formal contract that

specifies the infrastructure SLAs. The same contract

should be reused to provision multiple instances of the

same application for different tenants with different

customizations.

Dynamic elasticity—The Reservoir cloud should

dynamically adjust resource allocation parameters

(memory, processing, network bandwidth, and storage)

of individual virtual execution environments seamlessly.

Moreover, the number of virtual execution environments

must be dynamically and seamlessly adjusted to adapt to

the changing load.

Automated continuous optimization—The Reservoir

cloud should continuously optimize alignment of

infrastructure resources management with the high-level

business goals.

Virtualization technology independence—The Reservoir

cloud should support different virtualization technologies

transparently.

Reservoir model for federated cloud computing
In the Reservoir model, there is a clear separation

between the functional roles of service providers and

infrastructure providers. Service providers are the entities

that understand the needs of a particular business and

offer service applications to address those needs. Service

providers do not own the computational resources

needed by these service applications; instead, they lease

resources from infrastructure providers that provide them

with a seemingly infinite pool of computational, network,

and storage resources.

Infrastructure providers operate Reservoir sites that

own and manage the physical infrastructure on which

service applications execute. The federation of

collaborating sites forms a Reservoir cloud. To optimize

resource utilization, the computational resources within a

site are partitioned by a virtualization layer into virtual

execution environments (VEEs). VEEs are fully isolated

runtime environments that abstract the physical

characteristics of the resource and enable sharing. The

virtualized computational resources along with the

virtualization layer and all of the management

enablement components are referred to collectively as the

VEE host.

A service application is a set of software components

that works collectively to achieve a common goal. Each

component of such service applications executes in a

dedicated VEE. The VEEs are placed on the same or

different VEE hosts within the site or on different sites

(Figure 3).

A service application is deployed on the Reservoir

cloud using a service manifest, described later in this

section, that formally defines the contract and SLA

between the service provider and the infrastructure

provider.

Resource allocation

Within each Reservoir site, the resource utilization is

monitored and the placement of VEEs is constantly

updated to achieve optimal utilization with minimal cost.

Similarly, the execution of the service applications is

monitored and the capacity is constantly adjusted to meet

the SLA and requirements specified in the manifest.

Reservoir supports two modes of capacity provisioning

with respect to service providers: explicit and implicit.

In the explicit capacity requirements for sized-service-

applications mode, the service provider conducts sizing

and capacity planning studies of the service application

Computational resource Computational resource Computational resource

Virtualizer Virtualizer Virtualizer

VEE host VEE host VEE host

Reservoir site 1 Reservoir site 2

Service application 1 Service application 2 Service application 3

Figure 3

Service applications are executed by a set of VEEs (represented by squares) distributed across the VEE hosts in a Reservoir cloud. VEEs for a

particular service application may all be collocated in the same VEE host (as in service application 1), they may be spread across VEE hosts

within the same site (as in service application 2), or they may be spread across sites (as in service application 3).

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 5

prior to deployment. At deployment time, the service

provider precisely specifies the capacity needs of the

application under specific workload conditions. In

particular, the service provider specifies capacity

requirements for the minimal service configuration and

the elasticity rules—that is, the rules that govern the

automated on-demand allocation and deallocation of

additional capacity under varying workload conditions.

In this mode, the infrastructure provider is not committed

to the high-level service-level objectives (SLOs) for the

service (e.g., response time and throughput). Instead,

the infrastructure provider commits itself to an

infrastructure SLA that governs the terms and conditions

of capacity provisioning according to the explicit

requirements of the service provider. The service provider

supplies explicit capacity requirements and is charged for

actual capacity usage in line with the pay-as-you-go

model.

The implicit mode covers capacity requirements for

unsized service applications. In this mode, the service

provider may have only initial sizing estimations for its

service or may not have any sizing estimates at all.

Therefore, the service is sized within the Reservoir service

infrastructure prior to deployment. The infrastructure

provider commits itself to an SLA that is formulated in

terms of high-level SLOs. As in the explicit capacity for

sized-services mode, the service provider pays for the

actual usage of capacity. However, while the service

provider may ask for usage reports at various levels of

detail, it does not have control over the sizing of its

service. By default, the infrastructure provider will strive

to minimize over-provisioning. In addition, the service

provider may specify such policies as minimal resource

utilization policy and maximal cost policy.

It is important to note that the ongoing optimizations

of the resource allocation are done without human

intervention by the Reservoir software stack installed on

each site.

Service manifest

The service manifest is one of the key elements of the

Reservoir model. The manifest specifies the structure of

the service application in terms of component types that

are to be deployed as VEEs.

For each of these component types, the manifest

specifies a reference to a master image, that is, a self-

contained software stack (operating system, middleware,

applications, data, and configuration) that fully captures

the functionality of the component type. In addition,

the manifest contains the information and rules necessary

to automatically create from a single, parameterized

master image unique VEE instances that can run

simultaneously without conflicts [8]. The manifest also

specifies the grouping of components into virtual

networks and tiers that form the service applications.

Given that the emerging Open Virtual Format (OVF)

industry standard [11] includes most of this information,

the service manifest will extend OVF.

The manifest also specifies the capacity requirements

for an explicitly sized service application as agreed upon

between the infrastructure provider and the service

provider. The minimum and maximum resource

requirements of a single instance, for example, the

number of virtual CPUs (central processing units),

memory size, storage pool size, and the number of

network interfaces and their bandwidth, are specified for

each component. The capacity specification also includes

the minimum and maximum number of VEEs of a

particular component type. The dynamic and adaptive

part of the capacity requirement is specified using a set of

elasticity rules. These rules formally correlate monitored

key performance indicators (KPIs) and load parameters

(e.g., response time, throughput, and number of active

sessions) with resource allocations (e.g., memory, CPUs,

bandwidth, and number of VEEs of the same component

type). These rules express how the resources allocated

to the application, that is, the resources allocated for each

VEE as well as the number of VEEs of a particular

component type, can be dynamically increased or reduced

to satisfy the variable demand for the service application.

Finally, the manifest specifies KPIs that should be

monitored by Reservoir to verify SLA compliance and

trigger the elasticity rules. This specification may include

self-contained probes that periodically provide these

KPIs.

To illustrate, a simplified service manifest for a SAP

system is shown in Table 1. This manifest corresponds to

the configuration in which a DI and the DBMS each have

a separate VEE, and the CI and Web dispatcher are

encapsulated on another VEE. Notice how the manifest

fixes the CI and the DBMS as single instances and

declares the DI as the elastic entity by providing it with a

range of instances. To optimize cost-effectiveness, the

service manifest specifies resource requirements under

normal load.

To enable dynamic matching of the application

capacity to the variances in workload, the manifest

defines KPIs that are monitored as indications for the

load that the SAP system serves. The overall response

time of a certain business transaction or the number of

concurrent active user sessions can be used for this

purpose. An elasticity rule that triggers the addition of a

new DI when this KPI exceeds a threshold value would

adapt the resources allocated for the system as the

workload increases. For example, if measured response

time crossed a prespecified threshold, then a new DI

instance would be added.

4 : 6 B. ROCHWERGER ET AL. IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009

Reservoir components

The Reservoir architecture shown in Figure 4 is designed

to provide a clean separation of concerns among the

layers operating at different levels of abstraction. The

rationale behind this particular layering is to keep a clear

separation of concerns and responsibilities and to hide

low-level infrastructure details and decisions from high-

level management and service providers.

Service manager

The service manager is the highest level of abstraction,

interacting with the service providers to receive their

service manifests, negotiate pricing, and handle billing. Its

two most complex tasks are deploying and provisioning

VEEs based on the service manifest and monitoring and

enforcing SLA compliance by throttling the capacity of

a service application.

The service manager receives service manifests from the

service providers. Based on information in the manifest, it

deploys and provisions the service application by

interacting with the VEE manager to allocate VEEs and

their associated resources. From the service requirements

in the manifest, such as SLOs and elasticity rules, the

service manager derives a list of required resources and

their configuration as well as placement constraints based

on such factors as cost, licensing, and confidentiality. For

unsized service applications (represented by the box

labeled ‘‘Service application 3’’ in Figure 3), the service

manager is responsible for generating explicit rules based

on site policy. Deployment and provisioning decisions are

based on performance and SLA compliance and adjusted

according to such business considerations as, for

example, costs, security, and offers.

The service manager is also responsible for monitoring

the deployed services and adjusting their capacity, that is,

the number of VEE instances and their allocation of

resources such as memory and CPUs to ensure SLA

compliance and alignment with high-level business goals,

such as cost-effectiveness.

Finally, the service manager is responsible for

accounting and billing. While existing cloud-computing

infrastructures tend to be quite inflexible and usually

employ fixed-cost, postpaid subscription models, we

consider both postpaid and prepaid billing models based

on resource usage. Both models are based on the resource

utilization information provided by the service manager

accounting system and are processed according to the

Reservoir site

VEE manager (VEEM)

Service manager

VEE host
(e.g., hypervisor,
OSGi container)

Service provider

Manifest

SLA

VMIVMI

SLA

S
M

I
V

H
I

V
M

I

Figure 4

The Reservoir architecture: major components and interfaces

(OSGi: Open Services Gateway initiative; SMI: service manage-

ment interface; VMI: VEE management interface; VHI: virtual

host interface).

Table 1 A simplified example of a service manifest for a SAP system. In this example, simple labels are used as master image identifiers,

but in a real manifest, fully qualified references (such as URLs) are used.

Component Web dispatcher, CI DI DBMS

Master image ci.img di.img db2.img

No. of virtual CPUs (min./max.) 2/4 4/8 8/8

Memory size (min./max.) 4 GB/8 GB 16 GB/32 GB 32 GB/64 GB

No. of virtual network interface cards 2 2 1

Additional disk size None 100 GB 1,000 GB

Minimum no. of instances 1 4 1

Maximum no. of instances 1 20 1

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 7

rules in the business information model to perform cost

calculation.

Virtual execution environment manager

The virtual execution environment manager (VEEM) is

the next level of abstraction, interacting with the service

manager above it, the VEE hosts below, and the VEE

managers at other sites in order to enable federation.

The VEEM is responsible for the optimal placement of

VEEs into VEE hosts subject to constraints determined

by the service manager. The continuous optimization

process is driven by a site-specific programmable utility

function. The VEEM is free to place and move VEEs

anywhere, even on the remote sites (subject to overall

cross-site agreements), as long as the placement satisfies

the constraints. Thus, in addition to serving local requests

from the local service manager, VEEM is responsible for

the federation of remote sites.

At the VEEM level, a service is realized as a set of

interrelated VEEs, a VEE group, and hence it should be

managed as a whole. For example, the service manifest

may define a specific deployment order, placement

constraints in the form of affinity rules, or rollback

policies. The VEEM also provides the functionality

needed to handle the dynamic nature of the service

workload, such as the ability to add and remove VEEs

from an existing VEE group or to change the capacity of

a single VEE.

Operating in federated environments puts additional

requirements on the VEEM for submission, management,

and monitoring of VEEs on remote sites. The VEEM at

the primary site performs this by assuming the role of a

service manager of the remote VEEM in all cross-site

interactions. A clear delegation of responsibility and

separation of concerns among the service manager, the

VEEM at the primary site, and the remote VEEM follows

from this distinct role definition. For placement decisions,

the primary VEEM takes into account agreements with

other sites and detailed information about local resources

before deciding on local or remote VEE placement.

Notably, the primary VEEM does not get involved in the

internal placement decisions on the remote site because

this is a concern of the remote VEEM. The interfaces

used by the primary VEEM to interact with a remote

VEEM are the same as those used by a service manager

for interactions with the primary VEEM.

Virtual execution environment host

The virtual execution environment host (VEEH) is the

lowest level of abstraction, interacting with the VEE

manager to realize its IT management decisions onto a

diverse set of virtualization platforms.

The VEEH is responsible for the basic control and

monitoring of VEEs and their resources. This includes

such activities as creating a VEE, allocating additional

resources to a VEE, monitoring a VEE, migrating a VEE,

and creating a virtual network and storage pool. Each

VEEH type encapsulates a particular type of

virtualization technology, and all VEEH types expose a

common interface such that VEEM can issue generic

commands to manage the life cycle of VEEs. The

receiving VEEH is responsible for translating these

commands into commands specific to the virtualization

platform that it has abstracted.

Given that VEEs belonging to the same application

may be placed on multiple VEEHs and even extend

beyond the boundaries of a site, VEEHs must support

isolated virtual networks that span VEEHs and sites.

Moreover, VEEHs must support transparent VEE

migration to any compatible VEEH in a Reservoir cloud,

regardless of site location or network and storage

configurations.

Layers of interoperability

The layered design stresses the use of standard, open, and

generic protocols and interfaces to support vertical and

horizontal interoperability between layers. Different

implementations of each layer will be able to interact with

each other. The service management interface with its

service manifest exposes a standard interface into the

Reservoir cloud for service providers. The service

provider may then choose among Reservoir cloud

providers, knowing that they share a common language

to express their business requirements. The VEE

management interface simplifies the introduction of

different and independent IT optimization strategies

without disrupting other layers or peer VEEMs. Further,

the fact that the VEE management interface supports

VEEM-to-VEEM communication simplifies cloud

federation by limiting the horizontal interoperability to

one layer of the stack. The VEEH interface will support

plugging in new virtualization platforms such as

hypervisors without requiring VEEM recompilation or

restart. The Reservoir loosely coupled stack reference

architecture should promote a variety of innovative

approaches to support cloud computing.

Related work
In this section, we briefly review the state of the art in

areas related to the Reservoir model and architecture.

Virtualization technologies

Virtualization has reemerged in recent years as a

compelling approach to increasing resource utilization

and reducing the cost of IT services. The common theme

of all virtualization technologies is hiding the underlying

infrastructure by introducing a logical layer between the

physical infrastructure and the computational processes.

4 : 8 B. ROCHWERGER ET AL. IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009

Virtualization takes many forms. System virtualization

[12], also commonly referred to as server virtualization, is

the ability to run multiple heterogeneous operating

systems on the same physical server [6]. With server

virtualization, a control program, commonly known as a

hypervisor or VM monitor, is run on a given hardware

platform simulating one or more other VMs. Each of

these VMs runs its respective operating system just as if it

were installed on a standalone hardware platform.

Storage virtualization, network virtualization, and logical

representations of physical storage and network resources

are other examples of virtualization.

Distributed management of virtualization

Given the growing popularity of virtualization, many

commercial products and research projects, such as

OpenNebula [13], Platform VM Orchestrator [14], IBM

Virtualization Manager [15], and VMware DRS [16] are

being developed to dynamically overlay physical

resources with virtual machines. In general, these efforts

are intended to extend the benefits of virtualization from

a single resource to a pool of resources, decoupling the

VM not only from the physical infrastructure but also

from the physical location.

There are also some commercial and scientific

infrastructure cloud-computing initiatives including

Nimbus [17], Eucalyptus [18], and Amazon EC2. These

provide remote interfaces for control and monitoring of

virtual resources. Although these solutions simplify the

management of VMs on a distributed pool of resources,

none of these initiatives for distributed VM management

evaluate its extension to a grid-like environment in

which different infrastructure sites could collaborate

to satisfy peak or fluctuating demands.

In the context of Reservoir, grid interfaces and

protocols [19] may enable the required interoperability

between the clouds or infrastructure providers. However,

Reservoir will strive to overcome interoperability

challenges often posed in traditional grids by a very strict

separation of concerns and by minimal interfaces,

reducing cross-site concerns to a minimum. Reservoir

also needs to expand substantially on the current state of

the art for grid-wide accounting [20] and increase

flexibility to support different billing schemes and

accounting for services with indefinite lifetimes (as

opposed to finite jobs) with support to account for

utilization metrics relevant for VMs.

Business service management

BSM is a management strategy that links IT

infrastructure management objectives to the goals of the

business. In contrast to a technologically oriented

management approach, in BSM IT shares the same

overall targets with the business, such as growing revenue,

reducing costs, lowering business risk, increasing

customer satisfaction, guaranteeing a given return on

investment, and complying with regulations.

A key aspect of BSM is SLA management. In

Reservoir, new SLA management challenges arise as a

result of the dynamic federation of infrastructure

providers. Some emerging approaches to SLA

management that can be leveraged in Reservoir include

data-driven methods (e.g., dynamic setting of SLOs based

on statistical analysis [21]), model-driven methods (e.g.,

developing performance models that govern the design of

information and communication technology

infrastructure [22]), and language-based approaches (i.e.,

using formal languages to specify SLAs to assure that

they are consistent and unambiguous [23]). Skene et al.

[24] have studied SLA monitoring and the formal

definition for application-service provisioning. Some

earlier work considered SLA management in federated

environments; however, that line of research [25] did not

address the special considerations of supporting

migration and virtualization.

Summary
In this paper, we have presented a new open federated

cloud-computing model, architecture, and functionality

as being developed in the Reservoir project. The

Reservoir model explicitly addresses the limited

scalability of a single-provider cloud, the lack of

interoperability among cloud providers, and the lack of

built-in BSM support in current cloud offerings.

Cloud computing has the potential of becoming a

revolutionary technology that changes the way service

computing is performed. We believe that the principles

introduced in this work are essential for the cloud-

computing vision to materialize to its full extent.

The Reservoir project is in its early stages. Work on the

implementation and evaluation of the concepts outlined

in this paper continues as this paper was prepared for

publication. Further discussion of these results is deferred

for future work.

Acknowledgments
The research leading to these results is partially supported

by the European Community Seventh Framework

Programme (FP7/2001-2013) under grant agreement

#215605. We thank Eliot Salant from IBM and Juan

Hierro from Telefónica without whose work this project

would not have been possible. In addition, we thank

Shimon Agassi, Katherine Barabash, David Hadas, Irit

Loy, and Edi Shmueli of IBM; Manuel Dı́az, David

Perales, and Emilio Torres of Telefónica; Daniel

Henriksson, Francisco Hernandez, and Johan Tordsson

of Umeå; Mark Wusthoff of SAP; Fritz Ferstl of Sun

Microsystems; and Javier Fontan, Luis Gonzalez,

Eduardo Huedo, Rafael Moreno, and Tino Vazquez from

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 9

Universidad Complutense de Madrid for their help

materializing the ideas expressed in this document.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Google,
Inc., Linus Torvalds, or Citrix Systems, Inc., in the United States,
other countries, or both.

References
1. J. Meattle, ‘‘YouTube vs. MySpace Growth: No Contest!’’

Compete, Inc., October 18, 2006; see http://blog.compete.com/
2006/10/18/youtube-vs-myspace-growth-google-charts-metrics/.

2. N. Carr, The Big Switch: Rewiring the World, from Edison to
Google, W. W. Norton & Company, New York, 2008.

3. Amazon Elastic Compute Cloud (Amazon EC2), Amazon
Web Services LLC; see http://aws.amazon.com/ec2/.

4. I. Foster, C. Kesselman, and S. Tuecke, ‘‘The Anatomy of the
Grid: Enabling Scalable Virtual Organizations,’’ Intl. J.
Supercomputer Appl. 15, No. 3, 200–222 (2001).

5. K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. P. Pazel, J. Pershing, and
B. Rochwerger, ‘‘Océano—SLA Based Management of a
Computing Utility,’’ Proceedings of the 6th IEEE/IFIP
International Symposium on Integrated Network Management,
Seattle; Wiley-IEEE Press, Hoboken, NJ, 2001, pp. 855–868.

6. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, ‘‘Xen and
the Art of Virtualization,’’ Proceedings of the 19th ACM
Symposium on Operating Systems Principles, ACM, New
York, 2003, pp. 164–177.

7. M. Turner, D. Budgen, and P. Brereton, ‘‘Turning Software
into a Service,’’ Computer 36, No. 10, 38–44 (2003).

8. O. Goldshmidt, B. Rochwerger, A. Glikson, I. Shapira, and
T. Domany, ‘‘Encompass: Managing Functionality,’’
Proceedings of the 21st IEEE International Parallel and
Distributed Processing Symposium, Wiley-IEEE Press,
Hoboken, NJ, 2007, pp. 1–5.

9. SAP AG, SAP Help Portal; see http://help.sap.com/.
10. S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger,

‘‘Multi-tenant Databases for Software as a Service: Schema-
Mapping Techniques,’’ Proceedings of the ACM SIGMOD
International Conference on Management of Data; ACM, New
York, 2008, pp. 1195–1206.

11. Distributed Management Task Force, Inc., Open
Virtualization Format Specification, Version 1.0.0, document
no. DAP0243; see http://www.dmtf.org/standards/published_
documents/DSP0243_1.0.0.

12. G. J. Popek and R. P. Goldberg, ‘‘Formal Requirements for
Virtualizable Third Generation Architectures,’’ Communic.
ACM 17, No. 7, 412–421 (1974).

13. OpenNebula.org, Distributed Systems Architecture Group at
Universidad Complutense de Madrid; see http://
www.opennebula.org/doku.php.

14. Platform Computing Corporation, Platform VM
Orchestrator; see http://www.platform.com/Products/
platform-vm-orchestrator.

15. IBM Corporation, Extensions: Virtualization Manager; see
http://www-03.ibm.com/systems/management/director/about/
director52/extensions/vm.html.

16. VMware, Inc., VMware DRS; see http://www.vmware.com/
products/vi/vc/drs.html.

17. The Globus Alliance, Nimbus; see http://workspace.globus.
org/.

18. Eucalyptus; see http://eucalyptus.cs.ucsb.edu/wiki/
Presentations.

19. I. Foster and C. Kesselman, ‘‘Globus: A Metacomputing
Infrastructure Toolkit,’’ Intl. J. Supercomputer Appl. High
Perf. Computing 11, No. 2, 115–128 (1997).

20. P. Gardfjäll, E. Elmroth, L. Johnsson, O. Mulmo, and
T. Sandholm, ‘‘Scalable Grid-Wide Capacity Allocation with
the SweGrid Accounting System (SGAS),’’ Concurrency
Computation Practice Exper. 20, No. 18, 2089–2122 (2008).

21. D. Breitgand, E. A. Henis, O. Shehory, and J. M. Lake,
‘‘Derivation of Response Time Service Level Objectives for
Business Services,’’ Proceedings of the 2nd IEEE/IFIP
International Workshop on Business-Driven IT Management,
Wiley-IEEE Press, Hoboken, NJ, 2007, pp. 29–38.

22. J. Sauvé, F. Marques, A. Moura, M. Sampaio, J. Jornada, and
E. Radziuk, ‘‘SLA Design from a Business Perspective,’’
Proceedings of the 16th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, Springer
Berlin/Heidelberg, 2005, pp. 72–83.

23. D. D. Lamanna, J. Skene, and W. Emmerich, ‘‘SLAng: A
Language for Service Level Agreements,’’ Proceedings of the
9th IEEEWorkshop on Future Trends in Distributed Computing
Systems, IEEE Computer Society Press, Washington, DC,
2003, pp. 100–106.

24. J. Skene, A. Skene, J. Crampton, and W. Emmerich, ‘‘The
Monitorability of Service-Level Agreements for Application-
Service Provision,’’ Proceedings of the 6th International
Workshop on Software and Performance, ACM, New York,
2007, pp. 3–14.

25. P. Bhoj, S. Singhal, and S. Chutani, ‘‘SLA Management in
Federated Environments,’’ Proceedings of the 6th IFIP/IEEE
International Symposium on Integrated Network Management,
Boston; Wiley-IEEE Press, Hoboken, NJ, 1999, pp. 293–308.

Received July 29, 2008; accepted for publication
October 9, 2008

Benny Rochwerger IBM Research Division, Haifa Research
Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(rochwer@il.ibm.com). Mr. Rochwerger has an M.S. degree in
computer science from the University of Massachusetts Amherst,
and a B.Sc. degree in computer engineering from the Technion–
Israel Institute of Technology. Since joining IBM in 1995, he has
worked in virtualization management, autonomic computing,
event processing, grid computing, distributed graphics, and
networking. He is currently the lead architect for the
Reservoir project.

David Breitgand IBM Research Division, Haifa Research
Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(davidbr@il.ibm.com). Dr. Breitgand received his B.Sc., M.Sc.,
and Ph.D. degrees, all in computer science, from the Hebrew
University of Jerusalem. In 2003, he joined IBM, where he is a
member of the Storage and Performance Management group,
leading the group’s research efforts in end-to-end performance
analysis and management of networked storage and systems. For
the Reservoir project, he focuses on algorithms for cost-effective
capacity provisioning for Reservoir services.

Eliezer Levy SAP Labs Israel Ltd., 15 Hatidhar Street,
Ra’anana, Israel 43665 (levy@sap.com). Dr. Levy has a B.Sc.
degree in computer science from the Technion–Israel Institute of
Technology and a Ph.D. degree in computer sciences from the
University of Texas at Austin. He is currently a researcher in SAP
Research. He was previously the chief architect of the small
businesses business unit in SAP.

Alex Galis University College London, Torrington Place,
London WC1E 7 JE, United Kingdom (a.galis@ee.ucl.ac.uk).
Dr. Galis is a visiting professor at the Department of Electronic

4 : 10 B. ROCHWERGER ET AL. IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009

and Electrical Engineering at University College London. He has
coauthored and published more than 125 refereed journal or
conference papers, more than 100 reports, and six books on
network and service management, intelligent services,
programmable networks and services, virtualization of resources,
and grid systems.

Kenneth Nagin IBM Research Division, Haifa Research Labs,
Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(nagin@il.ibm.com). Mr. Nagin received a B.A. degree from the
University of Madison and a B.S. degree from the University of
Pittsburgh. Since joining IBM in 1985, he has worked on copy
services, disaster recovery solutions and storage management tools
for direct-access storage devices, model-based software test
generation and test consultation, and BladeCenter* management
tools. He holds more than 20 patents. His current research is
concerned with cloud-computing server virtualization.

Ignacio M. Llorente Universidad Complutense de Madrid,
C/ Profesor José Garcı́a Santesmases, 28040 Madrid, Spain
(llorente@dacya.ucm.es). Dr. Llorente has more than 15 years of
research experience in the field of high-performance parallel and
distributed computing. He is currently a full professor in computer
architecture and technology at Universidad Complutense de
Madrid, where he leads the Distributed Systems Architecture group.

Ruben Montero Universidad Complutense de Madrid,
C/ Profesor José Garcı́a Santesmases, 28040 Madrid, Spain
(rubensm@dacya.ucm.es). Dr. Montero is an associate professor in
computer architecture and technology in the Department of
Computer Architecture and System Engineering at Universidad
Complutense de Madrid, where he is part of the Distributed
Systems Architecture group. He has held several research
appointments at the Institute for Computer Applications in Science
and Engineering (ICASE), at NASA Langley Research Center.

Yaron Wolfsthal IBM Research Division, Haifa Research
Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(wolfsthal@il.ibm.com). Dr. Wolfsthal heads the system and
services area at the IBM Haifa Research Laboratory. This area is
one of the IBM European Union innovation centers, and its
mission is to develop leading-edge technologies for IBM advanced
information and communication technology products and
services, including virtualization infrastructures and systems
management. He has 16 years of experience in various research and
development and management roles. He holds B.Sc., M.S., and
Ph.D. degrees in computer science, all from the Technion–Israel
Institute of Technology.

Erik Elmroth Umeå University, SE-901 87 Umeå Sweden
(elmroth@cs.umu.se). Dr. Elmroth is the scientific leader of the
Grid Computing Research group at Umeå University. He is also an
associate professor and serves as deputy head of the Department of
Computing Science and deputy director of the High Performance
Computing Center North. He has held positions at National
Energy Research Scientific Computing Center, Lawrence Berkeley
National Laboratory, the University of California Berkeley, and
the Massachusetts Institute of Technology. He is a member of the
Swedish Research Council’s Committee for Research
Infrastructures, vice chair of its expert panel on e-science, and
scientific secretary of the former e-science group of the Nordic
Council of Ministers.

Juan Cáceres Telefónica IþD, C/ Emilio Vargas, 6. 28043
Madrid, Spain (caceres@tid.es). Mr. Cáceres has a Research M.Sc.
(Bologna Process) and an M.Sc. degree in computer science from
the Technical University of Madrid and is currently working
toward his Ph.D. degree in cloud computing at the Universidad
Complutense de Madrid. He has more than eight years of

experience in middleware and distributed systems development at
Telefónica IþD. He has also experience in open source software
from setting up the MORFEO Open-Source Software Community,
where he leads the Middleware Platform group.

Muli Ben-Yehuda IBM Research Division, Haifa Research
Labs, Haifa University Campus, Mount Carmel, Haifa 31905, Israel
(muli@il.ibm.com). Mr. Ben-Yehuda is a systems researcher at
IBM Haifa Research Laboratory, where he was recently named an
IBM Master Inventor. His research interests include I/O for
virtualized systems, I/O memory management units, smart I/O
devices, and innovative uses of virtual machines. He has
contributed to numerous operating systems and hypervisors,
including the Linux** kernel, the Xen** virtual machine monitor,
and the Linux kernel-based virtual machine project (KVM).

Wolfgang Emmerich University College London,
Torrington Place, London WC1E 7 JE, United Kingdom
(W.Emmerich@cs.ucl.ac.uk). Dr. Emmerich graduated from the
Universität Dortmund and obtained his doctorate from the
Universität of Paderborn. He is a professor of Distributed
Computing at the Department of Computer Science, where he is
director of research and head of the Software Systems Engineering
group. He is a Chartered Engineer, a member of the editorial board
of IEEE Transactions of Software Engineering, and a member of
the Institution of Engineering and Technology. Aside from a wide
range of research publications, he is author of Engineering
Distributed Objects, published by Wiley in 2000.

Fermı́n Galán Telefónica IþD, C/ Emilio Vargas, 6. 28043
Madrid, Spain (fermin@tid.es). Mr. Galán is an R&D engineer at
Telefónica IþD in the Business Oriented Infrastructure group, and
has been involved in several R&D European collaborative projects.
He has an M.Sc. degree in telecommunications engineering from the
Technical University of Madrid. He is currently working toward his
Ph.D. degree in telematics at the Technical University of Madrid.

IBM J. RES. & DEV. VOL. 53 NO. 4 PAPER 4 2009 B. ROCHWERGER ET AL. 4 : 11

