
NAP: a Building Block for Remediating
Performance Bottlenecks via Black Box Network

Analysis ∗

Muli Ben-Yehuda
IBM Haifa Research Lab,

Israel
muli@il.ibm.com

David Breitgand
IBM Haifa Research Lab,

Israel
davidbr@il.ibm.com

Michael Factor
IBM Haifa Research Lab,

Israel
factor@il.ibm.com

Hillel Kolodner
IBM Haifa Research Lab,

Israel
kolodner@il.ibm.com

Valentin Kravtsov
Technion, Israel Institute of

Technology
svali_ds@cs.technion.ac.il

Dan Pelleg
IBM Haifa Research Lab,

Israel
dpelleg@il.ibm.com

ABSTRACT
In this work we present a simple, yet powerful, method-
ology for application-agnostic diagnostic and remedi-
ation of performance hot spots in elastic multi-tiered
client/server applications, deployed as collections of
black box Virtual Machines (VM). Our novel out-of-
band black-box performance management system,Net-
work Analysis for RemediatingPerformance Bottle-
necks (NAP), listens to the TCP/IP traffic on the vir-
tual network interfaces of the VMs comprising an ap-
plication and analyzes statistical properties of this traf-
fic. From this analysis, which is application indepen-
dent and transparent to the VMs, NAP identifies perfor-
mance bottlenecks that might effect application perfor-
mance and derives remediation decisions that are most
likely to alleviate the application performance degrada-
tion. We prototyped our solution for the Xen hypervi-
sor and evaluated it using the popular Trade6 bench-
mark that simulates a typical e-commerce application.
Our results show that NAP successfully identifies per-
formance bottlenecks in a complex multi-tier applica-
tion setting, while incurring negligible performance over-
head.

Categories and Subject Descriptors
D.4.8 [Operating Systems]: performance—measure-
ments, modeling and prediction, operational analysis

∗This work was partially supported by the Euro-
pean Community’s Seventh Framework Programme
([FP7/2001-2013]) under grant agreement n◦ 215605.

ICAC’09, June 15–19, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-564-2/09/06 ...$5.00.

General Terms
Performance, Experimentation

Keywords
performance management, autonomic computing, traf-
fic analysis, cloud computing, elastic computing

1. INTRODUCTION
Server virtualization is typically deployed to make

more efficient use of server resources, to improve server
availability, and to centralize server administration. One
of the key advantages of server virtualization is rapid
and adaptive response to changing performance require-
ments. However, to fully realize this advantage, the
resource provisioning infrastructure must be capable
of dynamically and autonomically resizing and repro-
visioning applications deployed as collections of vir-
tual machines, according to the current performance
needs. This implies embedding of themonitor-analyze-
remediate management loop that drives these capacity
allocation decisions, into the resource provisioning in-
frastructure itself in an application-agnostic manner.

The need for such autonomic and application-agnostic
resource management policies is well exemplified by
the infrastructure compute clouds [1, 10, 2, 22], which
treat applications as collections of black-box virtual ma-
chines (VM).

In general, monitoring VMs to manage the perfor-
mance of the applications running inside them is non-
trivial. Measuring indicators of application performance
typically requires application-level knowledge. For ex-
ample, the Application Response Measurement (ARM)
standard [24] provides application management capa-
bilities, including measurement of application availabil-
ity, performance, usage, and end-to-end transaction re-
sponse time. However, to use ARM, a programmer
needs to integrate the application with an ARM soft-
ware development kit (SDK). Integration with the ARM
SDK or other application monitoring products requires
effort and cannot be done without access to the applica-
tion source code. The approach exemplified by ARM is
often referred to asin-band monitoring. In-band mon-

itoring is not always possible as it requires intrusive
instrumentation of the application.

In this work, we useout-of-band monitoring to ad-
dress core technological challenges impeding perfor-
mance management of multi-tier applications running
on VMs1. Our solution,NAP, is designed to monitor
the performance of multi-tiered client/server applica-
tions, which receive requests to perform tasks and re-
turn the results over the network. We address the com-
mon scenario of a synchronous request/response com-
munication pattern between the clients and the server
VMs. NAP’s objective is to enable the dynamic re-
allocation of physical resources assigned to virtual ma-
chines to address changing performance demands while
ensuring a desired performance level. Specifically, NAP
automatically identifies a tier and VM within the tier,
where a performance hotspot occurs and generates a re-
mediation policy that eitherscales-up the problematic
VM, or scales-up the problematic tier2.

NAP observes the traffic at the hypervisor level as-
suming that the inbound and outbound traffic flow is in-
duced by the internal service activities of the monitored
VM. The correlation of TCP/IP segments is done using
the sequence and acknowledgment numbers found in
the segment headers, allowing the demarcation of re-
quest and response boundaries in the inbound and out-
bound TCP/IP flows. NAP does not concern itself with
the application-level protocol or application semantics.
Instead, NAP counts the difference between the num-
ber of requests and responses identified on the incom-
ing and outgoing TCP/IP sessions in a given time slice.
NAP also calculates the number of incoming requests
per time unit directly from the monitored traffic. By
using only minimal additional knowledge on the appli-
cation configuration, NAP estimates averagewait and
service times for each component by carefully applying
Little’s law [17].

NAP constructs distributions for these metrics and
observes their temporal behavior, comparing them to
the baseline distributions by means of a non-parametric
statistical test. When statistically significant deviations
from the baseline are detected, the analysis module is-
sues alerts that may trigger capacity reallocation pro-
cess to relieve bottlenecks or to eliminate underutiliza-
tion. This way, performance monitoring and analysis
are performed by NAP transparently to the application.
At the same time, NAP remains application-agnostic,
as neither analysis nor monitoring involve knowledge
of the application internals.

NAP is based on a simple, "first principles" approach.
We exploit typical server virtualization deployment sce-
narios that allow accurate measurement and attribution
of the network traffic to the VM application activity.
NAP does not strive to obtain an exact estimation of

1In the context of virtual machine performance man-
agement, out-of-band monitoring implies that the mon-
itoring agents are deployed on a hypervisor and have no
a priori knowledge of the applications running within
the monitored virtual machines.
2The term scale-up when applied to VM refers to allo-
cating more resources to this VM, e.g., virtual CPUs.
When applied to tier, the term scale-up refers to adding
VM instances to this tier.

the application level performance from analyzing the
TCP/IP traffic, which might be a very difficult thing to
do, but rather identifies significant changes in measures
of central tendency observed at the network level, that
are likely to impact the application level performance.
To the best of our knowledge, we are the first to propose
a performance management system with such capabil-
ities. Specifically, our contributions are:

1. A novel methodology for out-of-band, non-intrusive,
application-independent diagnostics of performance
bottlenecks for virtualized multi-tier client/server
applications;

2. A prototype of an online tool, NAP, that uses this
methodology to monitor, analyze and remediate
virtualized servers in the Xen hypervisor envi-
ronment;

3. An experimental evaluation of our solution and
demonstration that it is capable of high precision
diagnostics, while incurring negligible overhead
on the managed system. To evaluate NAP, we
use Trade6 [9], an established and widely used
benchmark for e-commerce, as our workload gen-
erator.

The rest of this paper is organized as follows. Sec-
tion 2 surveys related work. Section 3 presents our
model and the mathematical foundation of the method-
ology. Section 4 describes NAP’s architecture and im-
plementation. Section 5 shows our experimental evalu-
ation results. We summarize our current work and dis-
cuss some future directions in Section 6.

2. RELATED WORK
Elastic computing has became increasingly popular

since the end of 1990-s with the spread of electronic
commerce [3]. With recent advances in virtualization,
elastic computing becomes more cost-effective and po-
tentially easier to manage [25, 22]. Traditionally, per-
formance diagnostics requires correlating high level ap-
plication state to low level performance metrics of the
managed application [3, 8, 7, 18]. This is achieved us-
ing in-band, application aware performance monitoring
and analysis. This approach is not always possible in
the virtualized setting.

Hypervisor-level out-of-band monitoring of virtual
machines and statistical analysis of their data streams
has been explored in Vigilant [20]. In one incarnation,
Vigilant monitors the resource requests made by a vir-
tual machine and applies machine learning methods to
the data stream in order to detect problems [20]. While
Vigilant shares common roots with this work, it has
never attempted monitoring of service quality at this
level of abstraction.

A paper on Sandpiper [25] compares black-box and
gray-box monitoring strategies for identifying and re-
mediating performance hot spots in virtualized data cen-
ters. The remediation mechanism studied by the au-
thors migrates VMs from the physical host whose re-
sources are constrained to the hosts that have excess
resources. With respect to network traffic, the out-of-
band black-box monitoring mechanisms used in Sand-
piper [25] is analogous to NAP. However, the analysis

of the traffic observed on the virtual interfaces of VMs
is fundamentally different.

In particular, in contrast to NAP, the black-box mon-
itoring strategy used by Sandpiper, does not attempt
capturing high-level application performance behavior
from analyzing the TCP/IP level traffic. In Sandpiper
this is achieved via the gray-box strategy that relies on
OS and application instrumentation.

B-hive Networks (http://www.bhive.net/) tech-
nology shares the same goals with NAP: analyzing vir-
tual machine network traffic to understand application
performance, and sizing an organization’s virtual in-
frastructure to achieve specific service levels. Unfor-
tunately, no information has been published about B-
hive’s algorithms or system design.

In [13], the author explores black box techniques
for inferring properties of Bulk-Synchronous Parallel
(BSP) applications in virtualized environments. As [13]
demonstrate, many important application level proper-
ties of the BSP-style applications can be inferred from
observing low-level network traffic.

In [15] the authors take an approach similar to NAP.
However, their solution relies on knowing application-
level protocol and performance statistics. The approach
in [15] is based on detecting sharp changes in the av-
erage service time. While being very useful, this ap-
proach may be insufficient in two respects. First, it
requires knowledge of the application-level communi-
cation protocol. Second, while an increase in average
service time in most cases causes an increase in aver-
age total response time (ceteris paribus), which may
be indicative of CPU being a bottleneck, the opposite
is not always true. In Section 5 we show a practical
scenario when service time remains constant yet the av-
erage wait time grows dramatically, contributing to an
increase in the average total response time, i.e., perfor-
mance degradation. This case is indicative of CPUnot
being a bottleneck and remediation action is to alleviate
queueing by adding more instances of the bottleneck
VM (scale-out). Thus, it is beneficial to consider both
service and wait time temporal behavior to improve di-
agnostics – the approach we take in this paper.

Monitoring the status of applications running on a
distributed network typically includes passive network
monitoring or a combination of application-level and
passive network monitoring using popular standards like
NetFlow [4] and IPFIX [5]. Data flows are identified
and data is collected on a per-flow or per-application
basis, enabling calculation of network related perfor-
mance metrics and detection of a wide spectrum of aber-
rant behaviors, some of which may be responsible for
application performance degradation [19, 16]. Usually,
these solutions are deployed on the routing elements
inside the network rather than on the virtual network
interfaces of the virtual machines. This makes it dif-
ficult to accurately differentiate between the network
delay and service and wait time at the server. NAP, on
the contrary focuses on the server side and aims at the
accurate appreciation of the server side contribution to
performance degradation.

3. MODEL
We first describe our assumptions about the moni-

tored applications in Section 3.1. In Section 3.2 we out-
line the NAP monitoring approach. Section 3.3 depicts
performance remediation policies based on our model.

3.1 Application Assumptions
In this work we report results for synchronous multi-

tier client/server applications, where an application is
provisioned as a collection of VMs. As a typical exam-
ple, consider a three-tier commercial application con-
sisting of a Web front-end tier, an application server
tier, and a database server tier. A minimal configura-
tion would include three VMs running a front-end, an
application server and a database server respectively.
With elastic computing, the application can be resized
on demand to meet required performance levels cost-
effectively. Specifically, VMs can be resized by in-
creasing or decreasing the CPU power and/or the num-
ber of CPUs and other resources, such as e.g., mem-
ory and bandwidth, and tiers can be re-dimensioned by
adding or removing VM instances. NAP aims at facil-
itating these performance management decisions with-
out deploying in-band application-level monitoring so-
lutions.

Making application-level performance decisions with-
out application knowledge is hard. Fortunately, we can
exploit a typical virtualization setting for our needs.
While different applications may utilize the same VMs,
e.g., a VM running a DNS server, to make a more ef-
ficient use of the infrastructure, in typical virtualiza-
tion scenario, there is one-to-one mapping of the ap-
plication components to VMs. The TCP/IP traffic is
directly observable for VMs by monitoring their vir-
tual network interfaces at the hypervisor level. Thanks
to the one-to-one mapping of the application compo-
nents to VMs, the TCP/IP traffic observed for a VM
can be reliably attributed to the activities of the appli-
cation component hosted by the VM3.

NAP handles bothmulti-threading andmulti-tasking
models of request processing at the server side. In what
follows, we assume the multi-threaded model, which,
arguably, is more a more complex one. In this model a
thread from the working pool is allocated to an incom-
ing request and each request is served until completion
by the thread initially assigned to it.

3.2 Monitoring Approach
NAP aims at being application-agnostic. It performs

traffic monitoring at the TCP/IP level. Since the moni-
tored application is a multi-tier synchronous client/server
service, the TCP/IP traffic coming from the upper tiers
to the back-end tiers, which we callinbound traffic, can
be attributed to applicationrequests. The TCP/IP traffic
returning in the opposite direction is termedoutbound
traffic and is associated with the applicationresponses.

3If more than one application is deployed on a single
VM, which is not a typical virtualization scenario, NAP
still will be able to identify performance hot spots and
perform remediation. However, in this scenario, NAP
is likely to over-provision capacity to some degree, as
it is not clear how to scale up an application compo-
nent independently from other application components
deployed on this VM and, possibly, having different
capacity demands and performance targets.

http://www.bhive.net/

Thanks to synchronous communication, we can cor-
rectly demarcate the TCP/IP segments that correspond
to requests and responses on the TCP/IP connections.
As we show, this information is sufficient for identify-
ing performance hot spots.

NAP uses a simple technique matching the last TCP/IP
segment of a request sent on the direct session of the
TCP/IP connection with the first TCP/IP segment of the
response sent on the return session of the same connec-
tion by using TCP segment sequence and acknowledge-
ment numbers. This request/response pair matching is
explained in more detail in Section 4. At this point it
is important to stress that we want to capture the total
processing time of requests at the server components,
excluding network delays. To achieve this, monitoring
of requests and responses is always performed at the
server side. Furthermore, in case of a multi-segment
request we capture the time at which we observe the
last segment of the request asrequest arrival time for
this request. For responses, on the contrary, we record
the time at which we observe the first TCP segment of
the response as theresponse arrival time4.

It is important to notice that pipelining of requests
and responses as used, e.g., in HTTP/1.1 does not break
the NAP model. HTTP/1.1 allows multiple HTTP re-
quests to be written out to a socket together without
waiting for the corresponding responses. The requestor
then waits for the responses to arrive in the order in
which they were requested.

The requests observed at the network level using the
above technique, are not equivalent to the user-level
transactions, for which performance service level ob-
jectives (SLO) might be defined, as these transactions
may comprise multiple requests. Machine learning tech-
niques similar to [14] can be used to recognize user-
level transactions from the requests. We do not take
this approach in NAP, however, observing that detect-
ing statistically significant changes in the measures of
central tendency of the requests themselves, might be
sufficient to trigger successful resource reallocation de-
cisions.

Let ∆ denote a singlesampling interval duration. Let
Ni denote the number ofpending requests. At any time
instance during∆ when a new request or response is
detected,Ni is updated, wherei stands for “i-th request
or response detection". Thus,Ni is a random variable
assuming integer values between 0 and∞.

Let{Ni}∆ be a sample ofNi of sizen during the mon-
itoring interval∆. Then, using configuration informa-
tion readily available in a typical deployment scenario,
as explained in Section 4, we define the mean queue
length L of an application component running in the
monitored VM as:

L = max{0,
∑n

i=1 Ni

n
−|worker threads|} (1)

If ∆ is chosen to be sufficiently long, most of re-
quests are matched to the responses, i.e., the system
is balanced. The unmatched requests can be discarded

4Note that NAP knows which TCP segment of the re-
quest is “last" onlya posteriori, i.e., when it matches
response TCP segments on the reverse TCP session.

after some additional timeout as explained in Section 4
in more detail.

From Little’s law [17] applied to the queuing part
of the system we derive an approximation of the mean
queue time W as follows:

W =
L
λ

(2)

whereL is approximated by Equation 1 andλ is com-
puted directly from observing the mean inter-arrival time
of requests during∆.

The meantotal response time, T , is calculated using
the following equation:

T =
∑treq∈∆ tresp− treq

reqs(∆)
(3)

wheretreq denotes a request’s arrival time andtresp de-
notes the corresponding response’s dispatching time.T
is calculated for each∆.

The meanservice time S is approximated using Equa-
tion 2 and Equation 3 as follows:

S = T −W (4)

NAP collects a number of data points for the mean
queue timeW , mean total response timeT , and mean
service timeS, and constructs statistical distributions of
these variables. The analysis module of NAP compares
these distributions to the baselines for the application.
If considerable deviation is detected, an alert is sent to
the remediation module that takes performance man-
agement decisions such as capacity reapportionment.

The monitoring process described above is performed
at every tier. This allows isolation of the problematic
tier, i.e., the one that is either over-utilized, causing
performance hot spots, or under-utilized, causing cost-
ineffectiveness.

3.3 Remediation Policies
A few deviations from the baseline distributions of

the meanS andW are particularly important. We use
them to guide NAP’s remediation policy selection:

• The distribution of both W and S are stochas-
tically greater than their respective baselines.
This is the case of a typical performance hot spot
resulting from insufficient capacity. In general,
this case is indicative either of an increase in the
average complexity of the requests in the current
workload or of a hardware insufficiency that may
slow down processing. In any case, the most ef-
ficient remediation action is the resizing of the
corresponding VM by allocating more resources
to it.

• The distribution of both W and S are stochas-
tically smaller than their respective baselines.
This case is indicative of under-utilization. The
corresponding VMs may be resized by taking away
excess capacity.

• The distribution of W is stochastically greater
than its baseline, while the distribution of S is

stochastically equal to its baseline.This may
seem counter-intuitive. Yet, as we show, it arises
in practical scenarios. This phenomenon is ob-
served when the workload volume, e.g., the num-
ber of clients issuing requests increases drasti-
cally, while the capacity demand of the requests
does not increase on the average. While allocat-
ing more resources per machine, e.g., increas-
ing CPU speed, may be helpful in some cases,
the CPU might not be the primary bottleneck.
An appropriate remediation in this case would be
adding more VM instances (or, in some cases in-
creasing a number of CPUs per VM) to shorten
the queuing time.

• The distribution of W is stochastically smaller
than its baseline, while the distribution of S
is stochastically equal to its baseline.This is
indicative of under-utilization. To improve cost-
effectiveness the corresponding tier may be scaled-
down by removing excess VM instances.

Given the model outlined above, the key questions
for experimental analysis are: (a) the choice of statisti-
cal test and (b) the threshold for the disparity that trig-
gers the alerts. The NAP analysis module can be im-
plemented usingany statistical test. In fact, the NAP’s
architecture is modular and allows plugging different
tests. In Section 5 we show an analysis based on a
simple percentile test that can be easily understood and
adopted by system managers that may wish to follow
the decision logic of the autonomic NAP policies.

4. ARCHITECTURE AND IMPLE-
MENTATION

The NAP system can be roughly divided into three
main components: monitoring, analysis, and remedi-
ation. Figure 1 depicts the high-level architecture of
NAP in a hypervisor environment. In this setting, the
host runs two virtual machines, one of which is a ser-
vice virtual machine running the NAP system and the
other one is the virtual machine running an application.
In order to service client requests, the application VM
communicates with the outside world over a virtual net-
work interface. All the network traffic of the server
passes through the service virtual machine, where the
NAP monitoring module collects the needed informa-
tion.

We note that having a special virtual machine han-
dle all network traffic for other virtual machines is very
common and is the default mode of operation for the
Xen hypervisor [6], regardless of NAP. The overhead
added by NAP is confined to the monitoring module’s
overhead.

4.1 Monitor
The application-agnostic feature of the monitoring

system stems from the fact that the system observes
the TCP/IP headers only and makes no assumptions
about higher-layer protocols beyond the very general
assumptions of Section 3.1. The monitoring module
treats the packet incoming to the monitored server and
containing some data (as opposed to headers only) as

Figure 1: NAP – high level architecture

requests, and packets outgoing from the server and con-
taining some data as responses. Packets belonging to
the same request/response pair have the same sequence
and acknowledgment numbers respectively. Therefore,
no request or response is counted more than once. Ad-
ditionally, the TCP packets of a request contain the ac-
knowledgement number of the corresponding response,
thus allowing the exact calculation of a request’s re-
sponse time.

The monitoring module is a light-weight packet snif-
fer, which is responsible for collecting traffic informa-
tion such as the headers of data packets sent and re-
ceived by clients during a monitoring interval∆. The
actual packets capturing is performed via the JPCAP
library5. The packet headers are processedonline and
the main statistics such asL, λ, T , W , andS are calcu-
lated for each∆ as described in Section 3.

The monitoring component is configurable, allowing
the administrator to set a timeout after which an unan-
swered request would be either discarded or counted as
request with a maximal response timeTmax.

Other helpful (optional) parameters include:

Filter String : specifies which ports should be moni-
tored by NAP for this VM, e.g., "port 80";

Worker Thread Pool Size : number of worker threads
configured at the server side. Currently, we ob-
tain this information from the configuration files,
e.g., from inspecting Apache MPM common di-
rectives.

If these parameters are not set, as may be a common
case in the black box model, NAP infers them from
the out-of-band traffic monitoring. In particular, if the
port that should be monitored at the virtual interface of
a server VM is not specified, NAP monitors this inter-
face in a promiscuous mode capturing all IP datagrams,

5http://netresearch.ics.uci.edu/kfujii/
jpcap/doc/index.html

http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html

extracting the port numbers from the encapsulated TCP
segments and listening to all ports with activity.

If the maximal number of working threads is un-
known, NAP performs a special test to estimate it. Namely,
NAP chooses a request from the observed traffic, and
sends it to the VM under the test at a constant rate, in-
creasing this rate gradually. For these requests, NAP
measures total average response time. When the num-
ber of worker threads becomes smaller than the number
of requests that arrive simultaneously, some requests
get queued. This is manifested by an increase in the
average wait time and, consequently total average re-
sponse time. NAP captures this change point to esti-
mate the number of workers in the pool.

The monitoring module of NAP works as follows.
The monitoring module stores the key attributes of re-
quest and response TCP/IP segments headers such as
arrival timestamp, sequence and acknowledgment num-
bers using internal data structure. Each response is
matched with its request, or discarded after themaxi-
mal response time timeout, which is set to be a number
of ∆-s. Consequently,∆-s with the end time earlier then
thecurrent time−maximal response time are marked
as “aged”. For the aged∆, the monitoring module com-
putes the values ofS andW using Equations 1–4 and
passes them to the analysis module. Eventually, the
aged data is discarded.

In the current version of NAP∆ is manually set and
it is not adaptive. However, a simple adaptive heuristic
is possible to automate this process. Namely, letε be
a maximal error in the estimation of averages that we
want to admit at theα confidence level. Then, window
should is adaptively set in such a way that the number
of requests (a) approximately equals the number of re-
quests and (b) the number of request-response pairs in

the windown > (s ·
Zα/2

ε)2, whereZα/2 is the critical
value of unit Normal variate at confidence levelα and
s is the sample standard deviation computed over the
total response time measured for each request/response
pair. Inability to determine∆ that satisfies these condi-
tions may in itself be an indicator of performance insta-
bility as the job flow in the system is highly unbalanced
on every time scale. Another reason for inability to set
good∆ may be large sample standard deviation, which
is indicative of significant differences between requests
in the system. If this is the case, univariate datapoints
clustering will be performed and thenW andS will be
computed per each cluster, as explained in Section 5.

4.2 Analysis and Remediation
The analysis module stores the values ofS, andW

for a sliding time window comprising a number of∆-s.
Using the data in the sliding window, the distributions
of S and W are calculated and compared to the cor-
responding baseline distributions. The comparison of
the distributions is implemented as a pluggable compo-
nent, which is easy to change and reconfigure. In the
current version of NAP, the comparison algorithm is a
simple percentile analysis, which is depicted in Algo-
rithm 1. Based on the comparison results, the decision
is made whether to raise a performance hot spot (or
under-utilization) alarm. If an alarm is raised, the re-
mediation module is engaged.

Input : baseS[], baseW[] : values ofS andW in
baseline;

winS[], winW[] : measuredS, W in a sliding time
window;
X : percentile;
threshold : threshold percentage (between 0 and
1);
Output : alert message
percBaseS← Xth percentile of baseS;
percBaseW ← Xth percentile of baseW;
percWinS← Xth percentile of winS;
percWinW ← Xth percentile of winW;
if percBaseW·(1+threshold) < percWinW and
percBaseS·(1+threshold) < percWinS then

alert(“over-utilization – more resources per
instance are needed”) ;
return ;

end
if percBaseW·(1+threshold)< percWinW then

alert(“over-utilization – more instances
needed”) ;
return ;

end
if percBaseW·(1-threshold) > percWinW and
percBaseS·(1-threshold) > percWinS then

alert(“under-utilization – less resources per
instance are needed”) ;
return ;

end
if percBaseW·(1-threshold) > percWinW then

alert(“under-utilization – less instances
needed”) ;
return ;

end

Algorithm 1 : Decision making algorithm

The third, remediation component, decides which (if
any) action to take in order to remediate the problem
detected by the analysis component. Remediation is
usually done by either scaling-up the tier (i.e., adding
more VM instances at that tier) or scaling-up (i.e., adding
more resources to each instance) the service layer where
the problem is detected. One of the advantages of the
NAP system is that it can clearly indicate in which tier
of then-tier application the problem occurred and sug-
gest the proper remediation action.

5. EXPERIMENTAL EVALUATION
The primary purpose of our evaluation study is to

usefulness of simple out-of-band black box traffic mon-
itoring for detecting performance hot-spots reliably. In
this initial study we leave some important questions out
of the scope. First, our testbed is static and we do not
evaluate NAP in a virtualized infrastructure environ-
ment that uses migrations. Second, we exclude net-
work perturbations from our evaluation experiments.
Third, we did not include hardware failures or software
bugs into our evaluation scenarios. These issues are
important and they are deferred to the future work.

NAP was evaluated using two setups: (1) a synthetic
client-server application tailored specifically to sanity-
check the model and gain intuition and (2) a real world

application simulation using Trade6. The synthetic ap-
plication provided full control over the client work-
loads and the server-side application behavior. This
simple application allows reproducing problematic server-
side states and inspecting the monitoring system be-
havior before and after the problem remediation. After
gaining intuition and acquiring insight with this simple
system, we demonstrate that our approach works well
for Trade6, which is considerably more complex.

Our toy synthetic application consists of three VMs
deployed on three different physical hosts: (1) client
workload generator VM, (2) application server VM,
and (3) database VM. There were two types of requests
in our application: SELECT and UPDATE. With prob-
ability 50% clients invoke either SELECT or UPDATE.
When received by the application server, bothSELECT

andUPDATE trigger a series of intensive I/O mixed with
intensive calculations, which can heavily tax CPU. Pro-
cessing SELECT requests takes approximately twice
as long as processing the UPDATE requests. After fin-
ishing the calculations, the application server submitted
an appropriate SELECT or UPDATE query to the sec-
ond VM, which ran the PostgreSQL database server.
On the DB server, the SELECT query again took ap-
proximately twice as long as the UPDATE command.

The baseline workload was set for 30 users. Sev-
eral executions (totalling 120,000 client queries) were
performed with this workload. We measured the base-
line mean service time (S), the mean queue time (W),
and the mean total response time (T) on the application
server VM and on the DB VM. Fig. 2 depicts the cu-
mulative distribution function (CDF) forS, W , andT as
measured on the application server during the baseline
executions.

Figure 2: Application server times CDF – baseline
(30 users)

In order to simulate a problematic state, we increased
the number of users. Two additional experiments were
conducted, in which the number of users was raised
first to 40 and then to 50. Fig. 3 depicts the CDF of the
times as measured on the application server VM during
these two experiments.

Increasing the workload to 40 and 50 users resulted
in growth of the 95th percentile of the mean total queue
time W by 55% and 111% respectively, compared to
the baseline. It is important to notice that the service
time S during the 3 aforementioned executions stayed
approximately constant (this counter-intuitive situation
was discussed in Section 3.3). Since the server’s mean
service time did not change (it took the same time to
complete a query as it took in the baseline), but the

Figure 3: Application server – increased workload.
Topmost chart – 40 users, bottom chart – 50 users

total queue time exceeded some predefined threshold,
the problem should be remediated by scaling-up the ap-
plication server tier, i.e., by adding more application
servers. Doubling the number of application servers
and splitting the users equally between them, brings the
measuredT , S, andW very close to the baseline shown
in Fig. 2. Scaling-up VMs resulted in less successful
remediation since CPU was not the primary bottleneck
in this case.

Another way to see what happens in the system dur-
ing this experiment that varies the number of users,
while keeps the computational complexity of requests
the workload constant, is to plot theS, T , andW times
vs. the mean queue lengthL (see Eq. 1), as shown in
Fig. 4. As expected,T andW in N exhibit a linear de-
pendency onL, while the mean service time,S, stays
constant.

Figure 4: Application server – times vs. queue
length

Another set of experiments was conducted to show
NAP’s ability to detect the problematic states in a sys-
tem where the client workload remains constant but
some internal server problem occurs. For example, such
a problematic state can be caused by a database which
has grown too large, unexpected CPU load outside the
system’s control, or insufficient disk bandwidth. In or-
der to simulate such a problematic state, a new process
running an endless loop of calculations was launched

on the application server VM. This resulted in heavy
CPU load in the virtual machine bringing it up to 100%
usage and, thus, severely degrading performance in the
application server. The workload used in this run was
the same baseline workload produced by 30 client threads
as shown in Fig. 2. Fig. 5 depicts the measured times
during the period of CPU overload. It is notable that the
95th percentile of all three measurements (S, T , andW)
increased by approximately 500%. This, naturally, was
more than enough to trigger an alert.

Figure 5: Application server – CPU overload CDF

In this case, both the mean queue timeW and the
mean service timeS were much higher than the base-
line. This can indicate either the increased difficulty
of the workload (each query takes more time), or some
internal misbehavior of the server (which, as we know,
was the case due to controlled problem injection that
we performed). In any case, the VMs in the problem-
atic tier should be scaled up (each instance given more
resources) in order to remediate the problem. In our
setup, this was done by adding an additional virtual
CPU. Fig. 6 depicts the measurements of the monitor-
ing system after the problem remediation.

Figure 6: Application server – CDF after remediat-
ing CPU over-load

The results of this run suggest that the system’s re-
sponsiveness has almost returned to normal. The mea-
sured times still show a degradation of 10-20% when
compared to the baseline, but contrasted with the previ-
ous 500% degradation, this is a successful remediation.

We note that performance degradation tolerance level
is a configurable system parameter. In the current ver-
sion of NAP, this parameter is controlled manually. If
Service Level Objective (SLO) compliance for the ap-
plication is being monitored and the compliance in-
formation is available to NAP, dynamic and adaptive
threshold setting techniques can be used to automate
threshold setting with controllable levels of false posi-
tive and false negative alerts [7].

Contrary to the application server, the DB server showed
no serious fluctuations in the system responsiveness, as
this VM was not affected during the experiment. On
the DB VM, the queue time was zero during all runs,
thereforeS was always equal toT .6

To show the applicability of the NAP monitoring sys-
tem to real-life complex applications, we tested NAP
with the 3-tier IBM Trade6 application that simulates
stock exchange trade environment. Trade6 consists of
WebSphere Application Server, the DB2 database, and
the Rational Performance Tester 6.1 application, which
generates the client load. We used the default server
and client configurations7.

This experiment was set up as follows: one VM run-
ning the WebSphere application server, a second VM
running the DB2 database server, and two physical ma-
chines acting as clients. The application server (Web-
Sphere) VM was initially configured to run with a sin-
gle virtual CPU. Fig. 7 shows the CDF for the base-
line time measurements, made during 15 minutes with
a workload generated by 350 users.

Figure 7: Trade6 application server – baseline CDF

In the next experiment, the number of users was in-
creased to 600. Fig. 8 depicts the values ofT , W , and
S during the intensified workload as measured by NAP
on the application server VM. It is notable that the 95th
percentile ofW increased by 154% while the 95th per-
centile ofS stayed unchanged, suggesting that more ap-
plication server instances are needed in the relevant tier.
Expanding the application service tier by means of a
new application server and redirecting half of the users
to a new server resolves the problem and brings the sys-
tem to a state that is nearly identical to the baseline.

Another problematic state was simulated by means
of an additional process, running an infinite loop on
the Trade6 application server VM, which resulted in
heavy CPU load. The CPU overload process is a multi-
threaded process where by controlling the number of
computational threads, we controlled the overload level.
Gradually increasing the number of threads resulted
in proportional CPU load increase. Fig. 9 depicts the

6It is reasonable to expect that under extreme load con-
ditions the statistics NAP calculates for the DB tier
may also be affected. For example, if the application
server slows down to the point that transmission win-
dow would become zero often, NAP will assume that
service time has increased. We were not able to create
such adverse conditions, however.
7The default configuration is described in
http://www.ibm.com/developerworks/edu/
dm-dw-dm-0506lau.html.

http://www.ibm.com/developerworks/edu/dm-dw-dm-0506lau.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0506lau.html

Figure 8: Trade6 application server – increased
workload CDF

measurements for the maximal over-load level. In this
state the mean queue time and mean service time are
higher by approximately 121% and 48% compared to
the baseline. This suggests that the remediation policy
that allocates more resources to the application server
is most likely to succeed.

Figure 9: Trade6 application server – CPU overload
CDF

The remediation policy allocated virtual CPUs one
by one, resulting in 4 total virtual CPUs allocated. Fig. 10
depicts the measured times after the problem remedia-
tion. As the graphs show, the mean service time and the
mean queue time 95th percentiles are now nearly 16%
and 29% lower then the respective baseline times.

Figure 10: Trade6 application server – remediation
CDF

It is notable that during all of the experiments men-
tioned above, the average CPU utilization by the mon-
itoring system was 0%. The memory consumption of
the monitoring system depended on several parameters,
such as number of deltas considered during the distri-
bution calculations, the number of baseline measure-
ments, and the maximal request time. These param-
eters could be tuned to achieve the right trade-off of

memory vs. accuracy. During our tests, the memory us-
age of the monitoring system implemented in Java was
about 50MB. This memory usage also included packet
capture library and an additional statistics library. This
suggests good scalability even though an explicit scal-
ability study was not performed at this stage.

The main appeal of the percentile-based statistic anal-
ysis is its intuitiveness and simplicity. However, this
approach should be exercised with caution in cases where
requests differ dramatically making analysis of the CDF
of mean values ofS andW insufficiently sensitive. For
instance, the aforementioned Trade6 application con-
tains 15 different request types. The distributions of
the number of these requests and their response time
are presented in Fig. 11 and Fig. 12 respectively. Grad-
ual CPU overloading of the Trade6 server showed that
the performance of all the requests degraded almost
equally as the load increased. However, for the sake
of a thought experiment, let us assume that the “Trade
Home” request would be the only CPU intensive re-
quest out of all the 15 request types, while the rest of
the queries would be I/O intensive. In such case, dou-
bling the CPU load on the Trade6 server will case 100%
degradation for the “Trade Home” requests. Neverthe-
less, the 95th percentile of the mean total response time
increases only by approximately 9% which may be not
enough to trigger an alert.

In such cases, the request-response data can be clus-
tered, using algorithms such asX-means or
PG−means [11, 12, 21, 23]. This is even an easier task
than usual, since the data is univariate (using directly
measured total response time). After clustering, data in
each sub-cluster can be treated as a separate source of
information exactly as presented above.

Figure 11: Trade6 – requests count distribution

Figure 12: Trade6 – response time distribution

6. CONCLUSIONS
We have presented a novel out-of-band performance

management system NAP. Major features of NAP in-
clude application and protocol agnostic monitoring and

analysis, negligible performance overhead, accurate de-
tection of hot spot tiers and of problematic VMs within
these tiers, and an ability to trigger efficient remedia-
tion action in an autonomous manner. We evaluated
NAP using the well accepted Trade6 benchmark with
several types of workload. Our future research direc-
tions include:

• Evaluating NAP with real production systems;

• Evaluating and integrating NAP with a large scale,
highly dynamic infrastructure cloud environment,
where VM migrations are possible, such as RESER-
VOIR [22];

• Automatically learning – at the infrastructure level
– of theelasticity rules that govern services ca-
pacity allocation decisions to satisfy fluctuations
in demand in a cost-effective manner;

• Evaluating our solution in presence of network
problems and software bugs.

We believe that wherever gray-box or white-box per-
formance management is feasible, it is generally prefer-
able over the black box one. However, there are many
important settings, where gray-box or white-box ap-
proach is not applicable. As we show in this paper,
in such cases NAP offers an attractive and powerful al-
ternative.

7. REFERENCES
[1] The Amazon Elastic Compute Cloud (Amazon

EC2) web site.http://aws.amazon.com/ec2.
[2] Gogrid.http://www.gogrid.com.
[3] K. Appleby, S. Fakhoury, L. Fong,

G. Goldszmidth, M. Kalantar, S. Krishnakumar,
D. P. Pazel, J. Pershing, and B. Rochwerger.
Oceano-SLA based management of a computing
utility. IEEE/IFIP IM’01, pages 855–868, 2001.

[4] B. Claise, Ed. Cisco Systems NetFlow Services
Export Version 9, RFC3954, Oct 2004.

[5] B. Claise, Ed. Specification of the IP Flow
Information Export (IPFIX) Protocol for the
Exchange of IP Traffic Flow Information,
RFC5101, Jan 2008.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03, pages 164–177, New York, NY, USA,
2003.

[7] D. Breitgand, M. Goldstein, E. Henis, and
O. Shehory. Reducing Levels of Negative and
Positive False Alarms via Multiple Adaptive
Thresholds. InIFIP/IEEE IM’09, to appear,
June 2009.

[8] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons,
and J. S. Chase. Correlating instrumentation data
to system states: a building block for automated
diagnosis and control. InOSDI’04, pages 16–16,
Berkeley, CA, USA, 2004. USENIX Association.

[9] J. Coleman and T. Lau. Set up and run a Trade6
benchmark with DB2 UDB – IBM tutorial.
http://www.ibm.com/developerworks/edu/
dm-dw-dm-0506lau.html.

[10] Distributed Systems Architecture Group at
Universidad Complutense de Madrid.
OpenNebula, 2008.

[11] Y. Feng, G. Hamerly, and C. Elkan. PG-means:
learning the number of clusters in data. InThe
12-th Annual Conference on Neural Information
Processing Systems (NIPS), 2006.

[12] Greg Hamerly and Charles Elkan. Learning the k
in k-means. InThe 7th Annual Conference on
Neural Information Processing Systems (NIPS),
pages 281–288, 2003.

[13] A. Gupta.Black Box Methods for Inferring
Parallel Applications Properties in Virtual
Environments. PhD thesis, EECS, Northwestern
University, May 2008.

[14] J. Hellerstein, T. Jayram, and I. Rish.
Recognizing end-user transactions in
performance management. InAAAI’00, pages
596–602, Menlo Park, CA, USA, 2000. AAAI
Press.

[15] S. Kato, T. Yamane, and T. Noagayama.
Automated performance problem determination
by observing service demand. Technical report,
IBM Research, Tokyo Research Lab, 2007.

[16] A. Lakhina, M. Crovella, and C. Diot. Mining
Anomalies Using Traffic Feature Distributions.
In SIGCOMM’05, pages 217–228. ACM, 2005.

[17] Little, J. D. C. A Proof of the Queuing Formula L
= λ W. Operations Research, 9(383–387), 1961.

[18] M. A. Munawar, M. Jiang, and P. A. S. Ward.
Monitoring Multi-Tier Clustered Systems with
Invariant Metric Relationships. InSEAMS ’08,
pages 73–80, New York, NY, USA, 2008. ACM.

[19] G. Münz and G. Carle. Real-Time Analysis of
Flow Data for Network Attack Detection. In
IFIP/IEEE IM’07, May 2007.

[20] D. Pelleg, M. Ben-Yehuda, R. Harper,
L. Spainhower, and T. Adeshiyan. Vigilant:
out-of-band detection of failures in virtual
machines.SIGOPS Oper. Syst. Rev.,
42(1):26–31, Jan 2008.

[21] D. Pelleg and A. Moore. X-means: Extending
K-means with efficient estimation of the number
of clusters. InICMLA’00, pages 727–734, San
Francisco, 2000. Morgan Kaufmann.

[22] B. Rochwerger, D. Breitgand, E. Levy, A. Galis,
K. Nagin, I. Llorente, R. Montero, Y. Wolfsthal,
E. Elmroth, J. Caceres, M. Ben-Yehuda,
W. Emmerich, and F. Galan. The RESERVOIR
Model and Architecture for Open Federated
Cloud Computing.IBM Systems Journal, 2009.
to appear.

[23] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large
scale program behavior. InASPLOS’02, 2002.

[24] The Open Group. Application Response
Measurement — ARM, 4.0 Version 2.http://
www.opengroup.org/management/arm/, 2007.

[25] T. Wood, P. Shenoy, V. Arun, and Y. Mazin.
Black-box and Gray-box Strategies for Virtual
Machine Migration. InUSENIX NSDI’07, pages
229–242, 2007.

http://aws.amazon.com/ec2
http://www.gogrid.com
http://www.ibm.com/developerworks/edu/dm-dw-dm-0506lau.html
http://www.ibm.com/developerworks/edu/dm-dw-dm-0506lau.html
http://www.opengroup.org/management/arm/
http://www.opengroup.org/management/arm/

	Introduction
	Related Work
	Model
	Application Assumptions
	Monitoring Approach
	Remediation Policies

	Architecture and Implementation
	Monitor
	Analysis and Remediation

	Experimental Evaluation
	Conclusions
	References

