
Rearchitecting System Software for the Cloud
Muli Ben-Yehuda, Dan Tsafrir

Technion—Israel Institute of Technology

What is the Problem?

• Using traditional OS’s in the cloud—see
RaaS poster nearby—is expensive.

Today’s Operating Systems

• Today’s operating systems are
inefficient⇒ need better sys. software.

Traditional OS Structure
App1 App2 App3

Traditional Operating System Kernel

• Traditional operating systems were
designed to share I/O devices.

Machine Virtualization

• SR-IOV devices can be shared by
multiple contexts.

The nom Operating System

App1

The nom Kernel

App2 App3

• The nom kernel provides every application with direct access to its own devices using
architectural support for machine virtualization.

Benefits of nom
• All applications bypass the kernel

completely on the I/O path.

• Small, simple, and secure kernel.

• Applications customize their I/O stacks
to fit their needs.

• Applications adapt to changing costs of
different resources quickly.

A Packet’s Progress

Network
Stack

Device
Driver

Traditional:
App2

App1

Network
Stack Device

Driver
Exokernel:

App2

App1

Network
Stack

Network
Stack

Device
Drivernom:

App2

App1

Network
Stack

Device
Driver

nom is Work in Progress
• Runs on x86-64 bare-metal and QEMU

• SMP support

• Intel, Mellanox SR-IOV devices

• PIO using iopl/VMCS exception bitmap

• MMIO using page-table mapping

• DMA using IOMMUs

• Direct interrupt injection [Gordon12]

Related Work
• Exokernel: [Engler95], [Kaashoek97],

[Ganger02]

• Virtual machine device assignment:
[LeVasseur04], [Ben-Yehuda06],
[Gordon12]

• Userspace I/O, in particular VIA,
Quadrics, and Infiniband.

Current Research Projects
• How should applications adapt to

changing resource availability?

• What is the difference between an OS
and a hypervisor?

• What is the difference between an
application and a virtual machine?

• Are SR-IOV devices secure?


