
The nonkernel: A Kernel Designed for the Cloud

Muli Ben-Yehuda1 Omer Peleg1 Orna Agmon Ben-Yehuda1 Igor Smolyar1,2

Dan Tsafrir1
1Technion—Israel Institute of Technology

2Open University of Israel
{muli,omer,ladypine,igors,dan}@cs.technion.ac.il

Abstract

Infrastructure-as-a-Service (IaaS) cloud computing
is causing a fundamental shift in the way computing
resources are bought, sold, and used. We foresee a fu-
ture whereby every CPU cycle, every memory word,
and every byte of network bandwidth in the cloud
would have a constantly changing market-driven
price. We argue that, in such an environment, the
underlying resources should be exposed directly to
applications without kernel or hypervisor involve-
ment. We propose the nonkernel, an architecture for
operating system kernel construction designed for
such cloud computing platforms. A nonkernel uses
modern architectural support for machine virtualiza-
tion to securely provide unprivileged user programs
with pervasive access to the underlying resources.
We motivate the need for the nonkernel, we contrast
it against its predecessor the exokernel, and we out-
line how one could go about building a nonkernel
operating system.

1 The Cloud is Different

Infrastructure-as-a-Service (IaaS) cloud computing,
where clients rent virtual machines from providers
for short durations of time, is running more and
more of the world’s computing workloads. Despite
representing a fundamentally new way of buying,
selling, and using computing resources, nearly all

virtual machines running in IaaS clouds run the
same legacy operating systems that previously ran
on traditional bare-metal stand-alone servers; that
have been designed for the hardware available twenty
and thirty years ago; and that assume that all system
resources are always at their disposal. We argue that
this is neither efficient nor sustainable and that the
system software stack must adapt to the new and
fundamentally different run-time platform posed by
IaaS cloud computing.

We begin by contrasting IaaS clouds with tradi-
tional servers. We ask the following questions: Who
owns resources? What is the economic model? At
what granularity are resources acquired and released?
And what architectural support does the platform
provide?

Resource ownership and control. On a tra-
ditional server, the operating system assumes that
it owns and controls all resources. For example, it
may use all available memory for internal caches,
assuming there is no better use for it; on the other
hand, in case of memory pressure it swaps pages
out, assuming it cannot get more physical memory.
In an IaaS cloud, the operating system (running
in a virtual machine) unwittingly shares a physical
server with other operating systems running in other
virtual machines, each of which assumes it has full
ownership and control over all resources assigned
to it. Resource clashes inevitably arise, leading to
performance variability and security breaches.

Economic model. In the cloud, the guest oper-
ating system’s owner and the hypervisor’s owner are
separate selfish economic entities. Due to economic
pressure, resources are overcommitted and constantly
change hands. In the Resource-as-a-Service (RaaS)
cloud, into which the IaaS clouds are gradually turn-
ing, those ownership decisions are made on an eco-
nomic basis [1], reflecting the operating systems’



owners valuation of the different resources at the
time. Thus, in the cloud, each resource has a time-
dependent associated cost—this can already be ob-
served in, e.g., CloudSigma’s (http://cloudsigma.
com/) burst pricing—and the operating system must
relinquish resources at a moment’s notice when their
prices rise beyond some application-specific thresh-
old; conversely, the operating system must purchase
the resources its applications need when they need
them.

Resource granularity. In a traditional server,
the operating system manages entire resources: all
CPUs, all RAM, all available devices. In the cloud,
the kernel acquires and releases resources on an in-
creasingly finer granularity [1], with a goal of acquir-
ing and releasing a few milliseconds of CPU cycles,
a single page of RAM, a few Mb/s of network band-
width. Although current cloud computing platforms
operate at a coarser granularity, the trend toward
fine-granularity is evident from our earlier work [1].

Architectural support. The operating systems
running on traditional servers strive to support
both the ancient and the modern at the same time.
Linux, for example, only recently dropped support
for the 27-year-old original Intel 386. Modern x86
cloud servers have extensive support for machine
virtualization at the CPU, MMU, chipset, and
I/O device level. We contend that any new kernel
designed for running on cloud servers should eschew
legacy platforms and take full advantage of this
architectural support for machine virtualization.

2 Designing a Cloud Kernel

Given the fundamental differences between a tradi-
tional server and an IaaS cloud, we now ask: what
requirements should we impose on a kernel designed
for the cloud?

The first requirement is to allow applications to
optimize for cost. On a traditional server, costs
are fixed and applications only optimize for “useful
work”. Useful work might be measured in run-time
performance, e.g., in cache hits per second. In the
cloud, where any work carried out requires renting
resources and every resource has a momentary price-
tag associated with it [1], applications would still
like to optimize for “useful work”—more useful work
is always better—but now they would also like to
optimize for cost. Why pay the cloud provider more

when you could pay less for the same amount of
useful work? Thus the cloud kernel should enable
applications to bi-objective optimize for both useful
work and cost.

The second requirement is to expose physical
resources. On a traditional server, the kernel serves
multiple roles: it abstracts and multiplexes the phys-
ical hardware, it serves as a library of useful func-
tionality (e.g., file systems, network stacks), and it
isolates applications from one another while letting
them share resources. This comes at a price: applica-
tions must access their resources through the kernel,
incurring run-time overhead and its associated costs;
the kernel manages their resources in a one-size-fits-
all manner; and the functionality the kernel provides,
“good enough” for many applications, is far from op-
timal for any specific application.

In the cloud, where costs of resources constantly
change, the kernel should get out of the way and
let applications manage their resources directly. This
has several important advantages: first, applications
can decide when and how much of each resource to
use depending on its momentary price-tag. This en-
ables applications to trade off cost with useful work,
or to trade off the use of a momentarily expensive
resource with a momentarily cheap one according
to the trade-offs that their algorithms are capable
of making. For example, when memory is expensive,
one application might use less memory but more
bandwidth while another might use less memory
but more CPU cycles. Second, applications know
best how to use the resources they have. An appli-
cation knows best what paging policy is best for it,
or whether it wants a NIC driver that is optimized
for throughput or for latency, or whether it needs a
small or large routing table. The kernel, which has to
serve all applications, cannot be optimal for any one
application. Exposing physical resources directly to
application means that nearly all of the functionality
of traditional kernels can be moved to application-
level, where applications can then specialize it to
suit their specific needs.

The third requirement is to isolate applications.
In the cloud, the kernel can rely on the underlying
hardware for many aspects of safe sharing and isola-
tion it previously had to take care of, and thus reduce
costs and increase resource utilization. For example,
using an IOMMU, the kernel can give each applica-
tion direct and secure access to its own I/O device
“instance” (an SR-IOV Virtual Function (VF) [10,18]
or a paravirtual I/O device [20]) instead of multi-

2

http://cloudsigma.com/
http://cloudsigma.com/


App1 App2 App3

Traditional Operating System Kernel

N
o
n
k
e
r
n
e
l

App1 App2 App3

Figure 1: Traditional kernel structure compared with the nonkernel. The nonkernel grants applications safe
direct access to their I/O devices.

plexing in software few I/O devices between many
different applications.

3 The Nonkernel

We propose the nonkernel, a new approach for kernel
construction designed for cloud computing platforms
(Fig. 1). The nonkernel is a hybrid kernel/hypervisor
designed to satisfy all three functional requirements
mentioned in the previous section: it allows bi-
objective optimization of both useful work and cost;
it exposes resources and their costs directly to appli-
cations; and it isolates applications from one another.

The nonkernel can run in one of two modes: either
as the bare-metal “hypervisor” (left side of Fig. 2) or
as the operating system kernel of a virtual machine
running on top of a legacy cloud hypervisor (right
side of Fig. 2). Since the nonkernel uses hardware-
assisted virtualization to run its applications each
in its own virtual machine (in either mode), it as-
sumes any underlying hypervisor supports nested
virtualization [5].

The nonkernel takes advantage of hardware-
assisted virtualization technology to achieve the func-
tional requirements. It exposes and lets applications
manipulate their CPU state directly, by running
every application in a virtual machine. It lets appli-
cations manipulate their page tables directly using
the architectural support for MMU virtualization.
Most importantly, it lets applications bypass the
kernel and access their I/O devices directly using
the chipset and I/O device support for machine vir-
tualization.

Bypassing the kernel has several implications.
First, the kernel itself is minimized, since it no longer
contains fine-grained scheduling or fine-grained mem-

ory management, file systems, storage device drivers,
TCP/IP stack, network device drivers or any other
device drivers. Instead, all resource-related code
is provided to applications as libraries they can
choose to link with. The libraries enable the ap-
plication owners to control their level of optimiza-
tion. Convenience-oriented owners will use a default
library, or maybe benchmark several alternative li-
braries and choose among them. However, interested
application owners can optimize the application for
both useful work and cost by adjusting existing li-
braries and even by implementing specialized ver-
sions of “interesting” libraries.

At the end of the day, someone has to manage
resources—but it is the application and application
alone that knows how to best manage resources for
its purposes. Since all resource-related code runs
in application context, application writers can co-
design the application logic and the way it uses
available resources. Application writers can optimize
their application to take advantage of the changing
costs of resources. This would be hard if not impos-
sible when there is only a single I/O stack as in a
traditional operating system kernel. For interested
applications, this can provide a big improvement in
cost-per-useful-work. For applications that do not
care about costs, it is no worse than letting the kernel
manage resources.

So far we have described what the nonkernel does
not do. What does the nonkernel do? It is in charge
of (1) machine booting (2) resource acquisition and
(3) application isolation.

The nonkernel contains the first instructions exe-
cuted when the (physical or virtual) machine boots.
It boots the system to a state in which the user can
launch new applications.

3



hardware

The nonkernel
running 

on bare-metal

hardware

legacy cloud hypervisor

The nonkernel on top of a legacy
 hypervisor, alongside a legacy OS

nonkernel

app

VM

app

VM

nonkernel

app

VM

app

VM

VM

legacy kernel

app

VM

app

Figure 2: The nonkernel can run on bare metal or virtualized.

The nonkernel maintains a global view of available
resources and their current prices. It exposes this in-
formation to applications and provides mechanisms
by which they can acquire, pay for, and release these
resources. It is in charge of resource arbitration—
deciding which application gets which resource when
there is contention—and of the initial allocation of
enough CPU and memory to allow applications to
start running and purchase more resources.

The nonkernel isolates applications while also per-
mitting them to communicate directly. This is the
result of containing each application in its own vir-
tual machine. On x86, VMs access I/O devices using
PIO and MMIO instructions, which the nonkernel
isolates using architectural support [5,24]; when the
I/O device performs Direct Memory Access (DMA)
into the application’s memory, the IOMMU (pro-
grammed by the nonkernel) validates and translates
this access [6]; and when the I/O device raises an
interrupt, the interrupt is delivered directly to the ap-
plication [10]. For efficient communication between
applications, the nonkernel provides an IPC mecha-
nism with no kernel involvement other than for setup
and tear-down.

There are two ways one could go about building
a nonkernel: based on an existing operating system
kernel/hypervisor and implemented from scratch. To
turn the Linux kernel, for example, into a nonkernel,
Linux could run applications in virtual machines us-
ing a mechanism such as Dune [4] and provide these
applications with direct access to their I/O devices
using direct device assignment [24]. However, this
would still be a Linux kernel, containing hundreds

of thousands of lines of the core Linux kernel code,
which would constrain the design space and dictate
certain decisions. Implementing a nonkernel from
scratch would allow a wider and deeper investigation
of the design space.

4 Nonkernel vs. Exokernel

One way of thinking of the nonkernel is as an exoker-
nel designed for today and future computing clouds.
The original exokernel [9] broke ground in systems
research. However, as originally designed, it was im-
possible to implement it as secure and complete as
needed for today’s public clouds. Lacking hardware
support, the original exokernel implementation re-
lied on downloading user code into the kernel, which
exposed the kernel to arbitrary malicious code.

One way presented by the exokernel prototype
to overcome this limitation was to give the user a
context-specific language, similar to user-specified
rule sets for kernel packet filters. While this solution
might prevent the user from executing arbitrary code,
it still allowed her to monopolize packets destined to
other processes; thus the original exokernel’s security
relied on trusting processes, which is infeasible in a
public cloud. Furthermore, context specific languages
are abstractions created by the kernel, the very thing
the exokernel model is meant to prevent.

Rethinking the exokernel in light of modern hard-
ware virtualization support allows the nonkernel to
achieve two goals. First, it enables the nonkernel to
securely assign resources to untrusted processes with-
out adding any software abstractions, thus fulfilling

4



Network
Stack

Device
Driver

Traditional:
App2

App1

Network
Stack Device

Driver
Exokernel:

App2

App1

Network
Stack

Network
Stack

Device
DriverNonkernel:

App2

App1

Network
Stack

Device
Driver

Figure 3: The I/O critical path in different kernels

the original goal of the exokernel model. Second, it
allows the I/O critical path to be carried out with-
out any kernel involvement (Fig. 3), removing the
last redundant domain switching and giving the user
maximum control over her software stack and the
way it uses available resources.

5 Discussion: Pros and Cons

The nonkernel has several advantages when com-
pared with traditional kernels and exokernels. The
first advantage is its performance. Traditional
userspace-I/O systems (e.g., [8,21,23]) show that per-
formance can be gained by limiting kernel-induced
overhead. Among other things, better performance
can be achieved by refraining from data copy be-
tween kernel data structures and user-supplied
buffers, by avoiding the overhead of system calls,
and by directly accessing device control structures.
Nonkernel applications benefit from these perfor-
mance boosts as they bypass the kernel completely
on their I/O paths. Although nonkernel applications
run in virtual machines, we have recently shown that
virtual machines can achieve bare-metal performance
even under the most demanding I/O intensive work-
loads [10]; thus we do not expect this pervasive use
of machine virtualization to cause any performance
degradation.

Other benefits of the nonkernel include reduced
driver complexity, since drivers now run completely
in userspace, each driver instance serving a single

application; easier debugging, development and verifi-
cation of drivers and I/O stacks, for the same reason;
simpler and easier to verify trusted-computing-base
in the form of the nonkernel itself [12]; and hopefully
a more secure system overall, for the same reason.
The nonkernel economic model can also be useful
for systems where operating power is a concern, by
letting applications tune their resource requirements
to the current thermal envelope limits.

The main disadvantage of the nonkernel approach
is that it forsakes legacy architectures and legacy
applications. The nonkernel is designed for modern
hardware—in some cases, for hardware that is pre-
production—and thus will simply not run on older
machines. Likewise, the nonkernel is not designed to
run legacy applications; realizing its benefits to the
fullest extent requires some level of cooperation and
effort from the application developer. We believe
that the cloud represents such a large shift in com-
puting platform that breaking away from legacy is
no longer unthinkable. Nonetheless, a nonkernel can
support to some extent legacy applications, either
through emulation libraries that provide a subset
of POSIX or Win32 semantics or by running a full
“library OS” inside each nonkernel application con-
text [19].

6 Related work

The nonkernel design draws inspiration from sev-
eral ideas in operating system and hypervisor con-

5



struction. In addition to the original exokernel, the
nonkernel’s design also borrows from past work on
userspace I/O (e.g., [7, 8, 21, 23]), virtual machine
device assignment (e.g., [14,15,24]), multi-core aware
and extensible operating systems (e.g., [3,13]), and li-
brary operating systems (e.g., [2,19,22]). The nonker-
nel shares the underlying philosophy of specializing
applications for the cloud with Mirage [16,17] and
the underlying philosophy of a minimal hypervisor
with NoHype [11].

7 Conclusions

The cloud is a different kind of run-time platform,
which poses new challenges but also provides an
opportunity to rethink how we build system software.
We propose the nonkernel, a new kind of kernel
where applications access their resources directly
and securely and respond to changing resource costs
at a fine granularity. We are building a nonkernel
called nom to experiment with and evaluate the
ideas brought forward in this paper.

8 Acknowledgements

The research leading to the results presented in this
paper is partially supported by the Israeli Ministry
of Science and Technology.

References

[1] Agmon Ben-Yehuda, O., Ben-Yehuda, M.,
Schuster, A., and Tsafrir, D. The
Resource-as-a-Service (RaaS) cloud. In Hot-
Cloud (2012).

[2] Ammons, G., Silva, D. D., Krieger, O.,
Grove, D., Rosenburg, B., Wisniewski,
R. W., Butrico, M., Kawachiya, K., and
Hensbergen, E. V. Libra: A library operat-
ing system for a JVM in a virtualized execution
environment. In VEE (2007).

[3] Baumann, A., Barham, P., Dagand, P.-E.,
Harris, T., Isaacs, R., Peter, S., Roscoe,
T., Schüpbach, A., and Singhania, A. The
multikernel: a new OS architecture for scalable
multicore systems. In SOSP (2009).

[4] Belay, A., Bittau, A., Mashtizadeh, A.,
Terei, D., Mazires, D., and Kozyrakis, C.

Dune: Safe user-level access to privileged CPU
features. In OSDI (2012).

[5] Ben-Yehuda, M., Day, M. D., Dubitzky,
Z., Factor, M., Har’El, N., Gordon, A.,
Liguori, A., Wasserman, O., and Yassour,
B.-A. The Turtles project: Design and imple-
mentation of nested virtualization. In OSDI
(2010).

[6] Ben-Yehuda, M., Mason, J., Krieger, O.,
Xenidis, J., Van Doorn, L., Mallick, A.,
Nakajima, J., and Wahlig, E. Utilizing IOM-
MUs for virtualization in Linux and Xen. In
OLS (2006).

[7] Caulfield, A. M., Mollov, T. I., Eisner,
L. A., De, A., Coburn, J., and Swanson, S.
Providing safe, user space access to fast, solid
state disks. In ASPLOS (2012).

[8] Chen, Y., Bilas, A., Damianakis, S. N.,
Dubnicki, C., and Li, K. UTLB: a mechanism
for address translation on network interfaces.
SIGPLAN Not. 33 (October 1998).

[9] Engler, D. R., Kaashoek, M. F., and
O’Toole Jr., J. Exokernel: an operating sys-
tem architecture for application-level resource
management. In SOSP (1995).

[10] Gordon, A., Amit, N., Har’El, N., Ben-
Yehuda, M., Landau, A., Tsafrir, D., and
Schuster, A. ELI: Bare-metal performance
for I/O virtualization. In ASPLOS (2012).

[11] Keller, E., Szefer, J., Rexford, J., and
Lee, R. B. Nohype: virtualized cloud infras-
tructure without the virtualization. In ISCA
(New York, NY, USA, 2010), ACM.

[12] Klein, G., Elphinstone, K., Heiser, G., An-
dronick, J., Cock, D., Derrin, P., Elka-
duwe, D., Engelhardt, K., Kolanski, R.,
Norrish, M., Sewell, T., Tuch, H., and
Winwood, S. seL4: formal verification of an
OS kernel. In SOSP (2009).

[13] Krieger, O., Auslander, M., Rosen-
burg, B., Wisniewski, R. W., Xenidis, J.,
Da Silva, D., Ostrowski, M., Appavoo, J.,
Butrico, M., Mergen, M., Waterland,
A., and Uhlig, V. K42: building a complete
operating system. In EuroSys (2006).

6



[14] LeVasseur, J., Uhlig, V., Stoess, J., and
Götz, S. Unmodified device driver reuse and
improved system dependability via virtual ma-
chines. In OSDI (2004).

[15] Liu, J., Huang, W., Abali, B., and Panda,
D. K. High performance VMM-bypass I/O in
virtual machines. In USENIX ATC (2006).

[16] Madhavapeddy, A., Mortier, R., Rotsos,
C., Scott, D., Singh, B., Gazagnaire, T.,
Smith, S., Hand, S., and Crowcroft, J.
Unikernels: library operating systems for the
cloud. In ASPLOS (2013).

[17] Madhavapeddy, A., Mortier, R., Sohan,
R., Gazagnaire, T., Hand, S., Deegan, T.,
McAuley, D., and Crowcroft, J. Turning
down the LAMP: software specialisation for the
cloud. In HotCloud (2010).

[18] PCI SIG. Single root I/O virtualization and
sharing 1.0 specification, 2007.

[19] Porter, D. E., Boyd-Wickizer, S., How-
ell, J., Olinsky, R., and Hunt, G. C. Re-
thinking the library OS from the top down. In
ASPLOS (2011).

[20] Russell, R. virtio: towards a de-facto standard
for virtual I/O devices. ACM SIGOPS Oper.
Sys. Rev. (OSR) 42, 5 (2008), 95–103.

[21] Schaelicke, L., and Davis, A. L. Design
Trade-Offs for User-Level I/O Architectures.
IEEE Trans. Comput. 55 (August 2006).

[22] Van Hensbergen, E. P.R.O.S.E.: parti-
tioned reliable operating system environment.
SIGOPS Oper. Syst. Rev. 40, 2 (Apr. 2006).

[23] von Eicken, T., Basu, A., Buch, V., and
Vogels, W. U-Net: a user-level network inter-
face for parallel and distributed computing. In
SOSP (New York, NY, USA, 1995).

[24] Yassour, B.-A., Ben-Yehuda, M., and
Wasserman, O. Direct device assignment for
untrusted fully-virtualized virtual machines.

7


	The Cloud is Different
	Designing a Cloud Kernel
	The Nonkernel
	Nonkernel vs. Exokernel
	Discussion: Pros and Cons
	Related work
	Conclusions
	Acknowledgements

