
Securing Self-Virtualizing Ethernet Devices

Igor Smolyar Muli Ben-Yehuda Dan Tsafrir
Technion – Israel Institute of Technology
{igors,muli,dan}@cs.technion.ac.il

Abstract
Single root I/O virtualization (SRIOV) is a hard-
ware/software interface that allows devices to “self virtu-
alize” and thereby remove the host from the critical I/O
path. SRIOV thus brings near bare-metal performance to
untrusted guest virtual machines (VMs) in public clouds,
enterprise data centers, and high-performance comput-
ing setups. We identify a design flaw in current Ethernet
SRIOV NIC deployments that enables untrusted VMs to
completely control the throughput and latency of other,
unrelated VMs. The attack exploits Ethernet ”pause”
frames, which enable network flow control functional-
ity. We experimentally launch the attack across sev-
eral NIC models and find that it is effective and highly
accurate, with substantial consequences if left unmiti-
gated: (1) to be safe, NIC vendors will have to mod-
ify their NICs so as to filter pause frames originating
from SRIOV instances; (2) in the meantime, administra-
tors will have to either trust their VMs, or configure their
switches to ignore pause frames, thus relinquishing flow
control, which might severely degrade networking per-
formance. We present the Virtualization-Aware Network
Flow Controller (VANFC), a software-based SRIOV NIC
prototype that overcomes the attack. VANFC filters pause
frames from malicious virtual machines without any loss
of performance, while keeping SRIOV and Ethernet flow
control hardware/software interfaces intact.

1 Introduction

A key challenge when running untrusted virtual ma-
chines is providing them with efficient and secure I/O.
Environments running potentially untrusted virtual ma-
chines include enterprise data centers, public cloud com-
puting providers, and high-performance computing sites.

There are three common approaches to providing I/O
services to guest virtual machines: (1) the hypervisor
emulates a known device and the guest uses an unmod-
ified driver to interact with it [71]; (2) a paravirtual

hypervisor

(a) Traditional Virtualization (b) Direct I/O Device Assignment

Figure 1: Types of I/O Virtualization

driver is installed in the guest [20, 69]; (3) the host as-
signs a real device to the guest, which then controls the
device directly [22, 52, 64, 74, 76]. When emulating a
device or using a paravirtual driver, the hypervisor in-
tercepts all interactions between the guest and the I/O
device, as shown in Figure 1a, leading to increased over-
head and significant performance penalty.

The hypervisor can reduce the overhead of device em-
ulation or paravirtualization by assigning I/O devices di-
rectly to virtual machines, as shown in Figure 1b. Device
assignment provides the best performance [38,53,65,76],
since it minimizes the number of I/O-related world
switches between the virtual machine and its hypervisor.
However, assignment of standard devices is not scalable:
a single host can generally run an order of magnitude
more virtual machines than it has physical I/O device
slots available.

One way to reduce I/O virtualization overhead fur-
ther and improve virtual machine performance is to of-
fload I/O processing to scalable self-virtualizing I/O de-
vices. The PCI Special Interest Group (PCI-SIG) on
I/O Virtualization proposed the Single Root I/O Virtu-
alization (SRIOV) standard for scalable device assign-
ment [60]. PCI devices supporting the SRIOV standard
present themselves to host software as multiple virtual
interfaces. The host can assign each such partition di-
rectly to a different virtual machine. With SRIOV de-
vices, virtual machines can achieve bare-metal perfor-

mance even for the most demanding I/O-intensive work-
loads [38, 39]. We describe how SRIOV works and why
it improves performance in Section 2.

New technology such as SRIOV often provides new
capabilities but also poses new security challenges. Be-
cause SRIOV provides untrusted virtual machines with
unfettered access to the physical network, such machines
can inject malicious or harmful traffic into the network.
We analyze the security risks posed by using SRIOV
in environments with untrusted virtual machines in Sec-
tion 3. We find that SRIOV NIC, as currently deployed,
suffers from a major design flaw and cannot be used se-
curely together with network flow control.

We make two contributions in this paper. The first
contribution is to show how a malicious virtual machine
with access to an SRIOV device can use the Ethernet
flow control functionality to attack and completely con-
trol the bandwidth and latency of other unrelated VMs
using the same SRIOV device, without their knowledge
or cooperation. The malicious virtual machine does this
by transmitting a small number of Ethernet pause or Pri-
ority Flow Control (PFC) frames on its host’s link to
the edge switch. If Ethernet flow control is enabled, the
switch will then shut down traffic on the link for a spec-
ified amount of time. Since the link is shared between
multiple untrusted guests and the host, none of them will
receive traffic. The details of this attack are discussed
in Section 4. We highlight and experimentally evaluate
the most notable ramifications of this attack in Section 5.

Our second contribution is to provide an understand-
ing of the fundamental cause of the design flaw lead-
ing to this attack and to show how to overcome it. We
present and evaluate (in Section 6 and Section 7) the
Virtualization-Aware Network Flow Controller (VANFC),
a software-based prototype of an SRIOV NIC that suc-
cessfully overcomes the described attack without any
loss in performance.

With SRIOV, a single physical endpoint includes both
the host (usually trusted) and multiple untrusted guests,
all of which share the same link to the edge switch. The
edge switch must either trust all the guests and the host
or trust none of them. The former leads to the flow con-
trol attack we show; the latter means doing without flow
control and, consequently, giving up on the performance
and efficient resource utilization flow control provides.

With SRIOV NICs modeled after VANFC, cloud users
could take full advantage of lossless Ethernet in SRIOV
device assignment setups without compromising their se-
curity. By filtering pause frames generated by the mali-
cious virtual machine, VANFC keeps these frames from

reaching the edge switch. The traffic of virtual machines
and host that share the same link remains unaffected;
thus VANFC is 100% effective in eliminating the attack.
VANFC has no impact on throughput or latency compared
to the baseline system not under attack.

VANFC is fully backward compatible with the current
hardware/software SRIOV interface and with the Ether-
net flow control protocol, with all of its pros and cons.
Controlling Ethernet flow by pausing physical links has
its fundamental problems, such as link congestion prop-
agation, also known as the ”congestion spreading” phe-
nomenon [13]. The attack might also be prevented by
completely redesigning the Ethernet flow control mech-
anism, making it end-to-end credit-based, as in Infini-
Band [18], for example. But such a pervasive approach
is not practical to deploy and remains outside the scope
of this work. Instead, VANFC specifically targets the de-
sign flaw in SRIOV NICs that enables the attack. VANFC
prevents the attack without any loss of performance and
without requiring any changes to either Ethernet flow
control or to the SRIOV hardware/software interfaces.

One could argue that flow control at the Ethernet level
is not necessary, since protocols at a higher level (e.g.,
TCP) have their own flow control. We show why flow
control is required for high performance setups, such as
those using Converged Enhanced Ethernet, in Section 8.

In Section 9 we provide some notes on the VANFC im-
plementation and on several aspects of VM-to-VM traf-
fic security. We present related work in Section 10. We
offer concluding remarks on SRIOV security as well as
remaining future work in Section 11.

2 SRIOV Primer

Hardware emulation and paravirtualized devices impose
a significant performance penalty on guest virtual ma-
chines [15, 16, 21, 22, 23]. Seeking to improve vir-
tual I/O performance and scalability, PCI-SIG proposed
the SRIOV specification for PCIe devices with self-
virtualization capabilities. The SRIOV spec defines how
host software can partition a single SRIOV PCIe device
into multiple PCIe “virtual” devices.

Each SRIOV-capable physical device has at least one
Physical Function (PF) and multiple virtual partitions
called Virtual Functions (VFs). Each PF is a standard
PCIe function: host software can access it as it would
any other PCIe device. A PF also has a full configuration
space. Through the PF, host software can control the en-
tire PCIe device as well as perform I/O operations. Each
PCIe device can have up to eight independent PFs.

VFs, on the other hand, are “lightweight” (virtual)

guest VM0

hypervisor

Figure 2: SRIOV NIC in a virtualized environment

PCIe functions that implement a subset of standard PCIe
device functionalities. Virtual machines driving VFs per-
form only I/O operations through them. For a virtual ma-
chine to use a VF, the host software must configure that
VF and assign it to the virtual machine. Host software
often configures a VF through its PF. VFs have a partial
configuration space and are usually presented to virtual
machines as PCIe devices with limited capabilities. In
theory, each PF can have up to 64K VFs. Current In-
tel implementations of SRIOV enable up to 63 VFs per
PF [42] and Mellanox ConnectX adapters usually have
126 VFs per PF [57].

While PFs provide both control plane functionality
and data plane functionality, VFs provide only data
plane functionality. PFs are usually controlled by device
drivers that reside in the trusted, privileged, host operat-
ing system or hypervisor. As shown in Figure 2, in virtu-
alized environments each VF can be directly assigned to
a VM using device assignment, which allows each VM to
directly access its corresponding VF, without hypervisor
involvement on the I/O path.

Studies show that direct assignment of VFs provides
virtual machines with nearly the same performance as
direct assignment of physical devices (without SRIOV)
while allowing the same level of scalability as software-
based virtualization solutions such as device emulation
or paravirtualization [33, 38, 41, 77]. Furthermore, two
VMs that share the same network device PF can com-
municate efficiently since their VM-to-VM traffic can be
switched in the network adapter. Generally, SRIOV de-
vices include embedded Ethernet switch functionality ca-
pable of efficiently routing traffic between VFs, reducing
the burden on the external switch. The embedded switch
in SRIOV capable devices is known as a Virtual Ethernet

Bridge (VEB) [51].
SRIOV provides virtual machines with I/O perfor-

mance and scalability that is nearly the same as bare
metal. Without SRIOV, many use cases in cloud comput-
ing, high-performance computing (HPC) and enterprise
data centers would be infeasible. With SRIOV it is pos-
sible to virtualize HPC setups [24, 37]. In fact, SRIOV
is considered the key enabling technology for fully virtu-
alized HPC clusters [54]. Cloud service providers such
as Amazon Elastic Compute Cloud (EC2) use SRIOV as
the underlying technology in EC2 HPC services. Their
Cluster Compute-optimized virtual machines with high
performance enhanced networking rely on SRIOV [2].
SRIOV is important in traditional data centers as well.
Oracle, for example, created the Oracle Exalogic Elastic
Cloud, an integrated hardware and software system for
data centers. Oracle Exalogic uses SRIOV technology to
share the internal network [40].

3 Analyzing SRIOV Security

Until recently, organizations designed and deployed Lo-
cal Area Networks (LANs) with the assumption that each
end-station in the LAN is connected to a dedicated port
of an access switch, also known as an edge switch.

The edge switch applies the organization’s security
policy to this dedicated port according to the level of trust
of the end-station connected to the port: some machines
and the ports they connect to are trusted and some are
not. But given a port and the machine connected to it, the
switch enforcing security policy must know how trusted
that port is.

With the introduction of virtualization technology, this
assumption of a single level of trust per port no longer
holds. In virtualized environments, the host, which is of-
ten a trusted entity, shares the same physical link with
untrusted guest VMs. When using hardware emulation
or paravirtualized devices, the trusted host can intercept
and control all guest I/O requests to enforce the relevant
security policy. Thus, from the point of view of the net-
work, the host makes the port trusted again.

Hardware vendors such as Intel or Mellanox imple-
ment strict VF management or configuration access to
SRIOV devices. Often they allow VFs driven by un-
trusted entities to perform only a limited set of manage-
ment or configuration operations. In some implemen-
tations, the VF performs no such operations; instead, it
sends requests to perform them to the PF, which does so
after first validating them.

On the data path, the situation is markedly different.
SRIOV’s raison d’être is to avoid host involvement on

the data path. Untrusted guests with directly assigned
VFs perform data path operations—sending and receiv-
ing network frames—directly against the device. Since
the device usually has a single link to the edge switch,
the device aggregates all traffic, both from the trusted
host and from the untrusted guests, and sends it on the
single shared link. As a result, untrusted guests can send
any network frames to the edge switch.

Giving untrusted guests uncontrolled access to the
edge switch has two implications. First, since the edge
switch uses its physical resources (CAM tables, queues,
processing power) to process untrusted guests’ traffic,
the switch becomes vulnerable to various denial of ser-
vice attacks. Second, sharing the same physical link be-
tween trusted and untrusted entities exposes the network
to many Ethernet data-link layer network attacks such
as Address Resolution Protocol (ARP) poisoning, Media
Access Control (MAC) flooding, ARP spoofing, MAC
address spoofing, and Spanning Tree Protocol (STP) at-
tacks [14, 17, 47, 56, 73, 75]. Therefore, the edge switch
must never trust ports connected to virtualized hosts with
an SRIOV device.

Although the problem of uncontrolled access of un-
trusted end-points is general to Ethernet networks, using
SRIOV devices imposes additional limitations. As we
will see in the next few subsections, not trusting the port
sometimes means giving up the required functionality.

3.1 Traditional Lossy Ethernet
Traditional Ethernet is a lossy protocol; it does not guar-
antee that data injected into the network will reach its
destination. Data frames can be dropped for different
reasons: because a frame arrived with errors or because a
received frame was addressed to a different end-station.
But most data frame drops happen when the receiver’s
buffers are full and the receiving end-station has no mem-
ory available to store incoming data frames. In the origi-
nal design of the IEEE 802.3 Ethernet standard, reliabil-
ity was to be provided by upper-layer protocols, usually
TCP [63], with traditional Ethernet networks providing
best effort service and dropping frames whenever con-
gestion occurs.

3.2 Flow Control in Traditional Ethernet
Ethernet Flow Control (FC) was proposed to control con-
gestion and create a lossless data link medium. FC en-
ables a receiving node to signal a sending node to tem-
porarily stop data transmission. According to the IEEE
802.3x standard [6], this can be accomplished by sending
a special Ethernet pause frame. The IEEE 802.3x pause

link
speed,
Gbps

single frame
pause time, ms

frame rate required to
stop transmission,

frames/second

1 33.6 30
10 3.36 299
40 0.85 1193

Table 1: Pause frame rate for stopping traffic completely

frame is defined in Annex 31B of the spec [9] and uses
the MAC frame format to carry pause commands.

When a sender transmits data faster than the receiver
can process it and the receiver runs out of space, the
receiver sends the sender a MAC control frame with
a pause request. Upon receiving the pause frame, the
sender stops transmitting data.

The pause frame includes information on how long to
halt the transmission. The pause time is a two byte
MAC Control parameter in the pause frame that is mea-
sured in units of pause quanta. It can be between 0
to 65535 pause quanta. The receiver can also tell the
sender to resume transmission by sending a special pause
frame with the pause time value set to 0.

Each pause quanta equals 512 “bit times,” defined
as the time required to eject one bit from the NIC (i.e., 1
divided by the NIC speed). The maximal pause frame
pause time value can be 65535 pause quanta,
which is 65535×512 = 33.6 million bit times.

For 1Gbps networks, one pause frame with
pause time value of 65535 pause quanta
will tell the sender to stop transmitting for 33.6 million
bit times, i.e., 33.6 ms. A sender operating at 10 Gbps
speed will pause for 3.36 ms. A sender operating at 40
Gbps speed will pause for 0.85 ms.

Table 1 shows the rate at which a network device
should receive pause frames to stop transmission com-
pletely. The pause time value of each frame is
0xFFFF. Sending 30 pause frames per second will tell
the sender to completely stop transmission on a 1Gbps
link. For a sender operating at 10 Gbps speed to stop
transmission requires sending 299 frames/second. For a
sender operating at 40 Gbps speed to stop transmission
requires sending 1193 frames/second.

3.3 Priority Flow Control in Ethernet

To improve the performance and reliability of Ethernet
and make it more suitable for data centers, the IEEE
802.1 working group proposed a new set of standards,
known as Data Center Bridging (DCB) or Converged En-

hanced Ethernet (CEE).
In addition to the IEEE 802.3x Ethernet pause, the

new IEEE 802.1Qbb standard proposed to make Ethernet
truly “lossless” in data center environments by adding
Priority-based Flow Control (PFC) [8].

Similar to the 802.3x FC, PFC is a link-level flow con-
trol mechanism, but it is implemented on a per traffic-
class basis. While 802.3x FC pauses all traffic on the
link, PFC makes it possible to pause a specific class of
traffic using the same pause frame structure. PFC oper-
ates on individual traffic classes, as defined by Annex I
of the IEEE 802.1Q standard [7]. Up to 8 traffic classes
can be defined for PFC per link.

3.4 Attacking VMs via Flow Control

Direct device assignment enables malicious guests to
attack the Ethernet network via well-known Layer 2
attacks [14, 17, 47, 56, 73, 75]. Even when using
virtualization-aware switching extensions such as the
Virtual Edge Port Aggregator (VEPA) [30,31], all guests
with direct access to the VFs of the same PF still share
the same physical link to the edge switch, and the edge
switch still allocates processing resources per link.

Since both 802.3x and 802.1Qbb perform flow control
on a link-level basis, and the link is shared between VMs,
any flow control manipulation by a single VM will affect
the PF and all VFs associated with this PF. This means
that a malicious VM is capable of controlling the band-
width and latency of all VMs that share the same adapter.

The malicious VM can pause all traffic on the link by
sending 802.3x pause frames and can stop a specific traf-
fic class by sending 802.1Qbb pause frames. To stop all
traffic on a 10 Gbps Ethernet link, an attacker needs to
transmit pause frames at a rate of 300 frames/second,
which is about 155 Kbps of bandwidth. The attacker can
fully control the bandwidth and latency of all tenant VMs
with minimal required resources and without any coop-
eration from the host or from other guest VMs.

4 Attack Evaluation

4.1 Experimental Setup

We constructed a lab setup in which we perform and
evaluate the flow-control attack described in the previous
section. We use a Dell PowerEdge R420 server, which is
a dual socket with six cores per socket, with Intel Xeon
E5-2420 CPUs running at 1.90GHz. The chipset is the
Intel C600 series. The server includes 16GBs of mem-
ory and an SRIOV-capable Intel NIC (10GbE 82599 or

1GbE I350) installed in PCIe generation 3 slots with two
VFs enabled.

We use the KVM Hypervisor [50] and Ubuntu server
13.10 with 3.11.0 x86 64 kernel for the host, guest VMs,
and the client. Each guest is created with 2GBs of mem-
ory, two virtual CPUs, and one VF directly assigned to it.
Client and host machines are identical servers connected
to the same dedicated switch, as shown in Figure 3.

To achieve consistent results, the server’s BIOS profile
is performance optimized, all power optimizations are
tuned off, and Non-Uniform Memory Access (NUMA) is
enabled. The guest virtual CPUs are pinned to the cores
on the same NUMA node to which the Intel PF is con-
nected. The host allocates to the guest memory from the
same NUMA node as well.

For our 1GbE environment, we use an Intel Ethernet
I350-T2 network interface connected to a Dell Power-
Connect 6224P 1Gb Ethernet switch. For our 10GbE
environment, we use an Intel 82599 10 Gigabit TN net-
work interface connected to an HP 5900AF 10Gb Ether-
net switch.

Host and client use their distribution’s default drivers
with default configuration settings. Guest VMs use ver-
sion 2.14.2 of the ixgbevf driver for the Intel 10G
82599 Ethernet controller virtual function and the default
igbvf version 2.0.2-k for the Intel 1G I350 Ethernet
controller virtual function. Ethernet flow control IEEE
802.3x is enabled on switch ports. We set the Ethernet
Maximal Transfer Unit (MTU) to 1500 bytes on all Eth-
ernet switches and network interfaces in our tests.

4.2 Benchmark Methodology

We conduct a performance evaluation according to the
methodology in RFC 2544 [25]. For throughput tests,
we use an Ethernet frame size of 1518 bytes and measure
maximal throughput without packet loss. Each through-
put test runs for at least 60 seconds and we take the aver-
age of 5 test cycles. To measure latency, we use 64 and
1024 byte messages. Each latency test runs at least 120
seconds and we measure the average of at least 15 test
cycles. (While RFC 2544 dictates running 20 cycles, we
obtained plausible results after 15 cycles; thus, we de-
cided to reduce test runtime by running each test only 15
cycles.)

Benchmark Tools: We measure throughput and la-
tency with two well-known network benchmark utilities:
iperf [3] and netperf [45]. We use the iperf TCP
stream test to measure throughput and the netperf
TCP RR test to measure latency. The iperf and
netperf clients are run on the client machine, while

VF1

host

SRIOV NIC

Figure 3: Setup scheme

the iperf and netperf servers are run on VM1. We
measure on the client the bandwidth and latency from the
client to VM1.

Traffic Generators: In addition to the traffic gener-
ated by the benchmark tools, we use tcpdump [44] to
capture traffic and tcpreplay [5] to send previously
captured and modified frames at the desired rate.

Testbed Scheme: The testbed scheme is shown in Fig-
ure 3. Our testbed consists of two identical servers, one
acting as client and the other as the host with SRIOV ca-
pable NIC. We configure two VFs on the host’s SRIOV
PF. We assign VF1 to guest VM1 and VF2 to guest
VM2. Client and host are connected to the same Ethernet
switch. We generate traffic between VM1 and the client
using iperf and netperf. VM2 is the attacking VM.

4.3 Flow-Control Attack Implementation

We use tcpreplay [5] to send specially crafted 802.3x
pause frames at the desired rate from the malicious
VM2.1 When the switch receives a pause frame from
VM2, it inhibits transmission of any traffic on the
link between the switch and the PF, including the traf-
fic between the client and VM1, for a certain num-
ber of pause time quanta. Sending pause frames
from VM2, we can manipulate the bandwidth and la-
tency of the traffic between VM1 and the client. The
value of pause time of each pause frame is 0xFFFF
pause quanta units. Knowing the link speed, we can
calculate the pause frame rate, as described in Section 3,
and impose precise bandwidth limits and latency delays
on VM1. The results of the attack in both 1GbE and
10GbE environments are presented in Section 4.4.

1 We use 802.3x pause frames for the sake of simplicity, but we
could have used PFC frames instead. PFC uses exactly the same flow
control mechanism and has the same MAC control frame format. The
only difference between PFC frames and pause frames is the addition
of seven pause time fields in PFC that are padded in 802.3x frames.

4.4 Attack Results
Figures 4 and 5 show the results of the pause frame at-
tack on victim throughput in the 1GbE and 10GbE en-
vironments respectively. Figures 4a and 5a show victim
(VM1) throughput under periodic attack of VM2. Every
10 seconds, VM2 transmits pause frames for 10 seconds
at 30 frames/second (as shown in Figure 4a) and at 300
frames/second (as shown in Figure 5a). In this test we
measure the throughput of the victim system, VM1. The
figures clearly show that VM2 can gain complete control
over VM1 throughput: starting from the tenth second,
the attacker completely stops traffic on the link for ten
seconds.

Figure 6 shows the results of the pause frame attack
on victim latency in the 10GbE environment. Figure 6a
shows victim latency under the same periodic attack de-
scribed above. In this test we use 64B and 1024B mes-
sages. For better result visualization, we lowered the at-
tack rate to 150 pause frames/second. Figure 6a shows
that the attacker can increase victim latency to 250% by
running the attack at a rate of only 150 frames/second.

Victim throughput Figures 4b and 5b display
throughput of VM1 as a function of the rate of pause
frames VM2 sends. From Figure 4b we can see that
VM2 can pause all traffic on the 1GbE link with al-
most no effort, by sending pause frames at a rate of 30
frames/second. For the 10GbE link, VM2 needs to work
a little bit harder and raise its rate to 300 frames/second.
This test’s results confirm the calculations shown in Ta-
ble 1. Figures 7a and 7b confirm that the measured vic-
tim throughput is exactly as predicted. In other words, it
is easily and completely controlled by the attacker.

These tests show that a malicious VM can use the
pause frame attack to control the throughput of other
VMs with precision. Furthermore, we see that the pause
frame attack requires minimal effort from the attacker
and will be hard to detect amid all the other network
traffic. To halt all transmissions on the 10GbE link,
the attacker only needs to send 64B pause frames at
300 frames/second. 300 frames/second is approximately
0.002% of the 14.88 million frames/second maximum
frame rate for 10GbE.2 Discovering such an attack can
be quite challenging, due to the low frame rate involved,
especially on a busy high-speed link such as 10GbE or
40GbE.

Victim latency Figure 6b shows the victim’s latency
as a function of the attacker’s pause frame rate. In this
test we measure the latency of 64 byte messages and
1024 byte messages. We see that the figures for both 64B

2 The maximum frame rate equals the link speed divided by the sum
of sizes of the preamble, frame length and inter-frame gap.

0

200

400

600

800

1000

 0 10 20 30 40 50 60 70

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
s
 [

M
b

/s
]

time [seconds]

(a)

0

200

400

600

800

1000

 0 50 100 150 200 250 300

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
 [

M
b

/s
]

pause frames attacker sends
 each second [frames/second]

(b)

Figure 4: Pause frame attack: victim throughput in 1GbE environment

0
2
4
6
8

10

 10 20 30 40 50 60 70

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
s
 [

G
b

/s
]

time [seconds]

(a)

0

2

4

6

8

10

 0 100 200 300

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
 [

G
b

/s
]

pause frames attacker sends
 each second [frames/second]

(b)

Figure 5: Pause frame attack: victim throughput in 10GbE environment

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120v
ic

ti
m

 l
a

te
n

c
y
 u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
 [

µ
s
]

time [seconds]

(a)

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

v
ic

ti
m

 l
a

te
n

c
y
 [

µ
s
]

pause frames attacker sends
 each second [frames/second]

message size
64B
1024B

(b)

Figure 6: Pause frame attack: victim latency in 10GbE environment

and 1024B are barely distinguishable and almost con-
verge; the latency is the same for small and large size
messages under attack.

In Figure 7c we see that measured latency and ex-
pected latency differ somewhat. In practice, this differ-
ence means that an attacker can control the victim’s la-
tency with slightly less precision than it can control its
throughput, but it can still control both with high preci-
sion and relatively little effort.

In back-to-back configuration, without a switch, la-
tency behaves as expected. We believe this difference
is caused by the switch’s internal buffering methods—

in addition to storing frames internally, the Ethernet
switch prevents the possible side effects of such buffering
e.g., head-of-line blocking [70] and congestion spread-
ing [13]. To accurately explain this phenomenon, we
need access to the switch internals; unfortunately, the
Ethernet switch uses proprietary closed software and
hardware.

Experiments with Non-Intel Devices We performed
an identical experiment on same setup with an SRIOV
Broadcom NetXtreme II BCM57810 10GbE NIC [26]
and got the same results. Our attack is valid for this NIC
as well.

200

400

600

800

1000

 0 200 400 600 800 1000

m
e

a
s
u

re
d

 t
h

ro
u

g
h

p
u

t
 [

M
b

/s
]

expected throughput [Mb/s]

(a)

0

2

4

6

8

10

 0 2 4 6 8 10

m
e

a
s
u

re
d

 t
h

ro
u

g
h

p
u

t
[G

b
/s

]

expected throughput [Gb/s]

(b)

0

500

1000

1500

2000

 0 500 1000 1500 2000

m
e
a
s
u
re

d
 l
a
te

n
c
y

 [
µ

s
]

expected latency [µs]

message size
64B
1024B

(c)

Figure 7: Pause frame attack: expected vs. measured throughput and latency

We also tried the attack described above on another
vendor’s 40GbE SRIOV adapter. Whenever the attack-
ing VM transmitted MAC control frames (pause frames)
through its VF, the adapter completely locked up and be-
came unresponsive. It stopped generating both transmit
and receive interrupts, and required manual intervention
to reset it, by reloading the PF driver on the host. This
lockup appears to be a firmware issue and has been com-
municated to the adapter vendor.

Clearly, with this adapter and this firmware issue, a
malicious VM could trivially perform a straightforward
denial of service attack against its peer VMs that use this
adapter’s VFs and against the host. But since this attack
is trivial to discover, we focus instead on the stealthier
pause frame attack, which is much harder to discover and
protect against.

5 Attack Ramifications

The consequences of the attack are substantial. If Eth-
ernet flow control is enabled on the SRIOV device, the
host’s VMs’ security is compromised and the VM’s are
susceptible to the attack.

The attack cannot be prevented using the filtering ca-
pabilities of currently available SRIOV Ethernet devices
due to their minimal filtering capability. At best, mod-
ern SRIOV NICs are capable of enforcing anti-spoofing
checks based on the source MAC address or VLAN tag
of the VM, to prevent one VM from pretending to be
another. In the attack we describe, the adversary gener-
ates flow control frames with the malicious VM’s source
MAC and VLAN tag, so anti-spoofing features cannot
block the attack.

Since the attack cannot be prevented with current
NICs and switches, cloud providers must either be con-
tent with flawed security and fully trust the guest VMs or
disable the Ethernet flow control in their networks. Nei-
ther option is palatable. The former is unrealistic for the
public cloud and unlikely be acceptable to private cloud

providers. The latter means giving up the performance
benefits of lossless Ethernet, increasing overall resource
utilization, and reducing performance. We discuss in
greater detail the performance advantages that Ethernet
flow control provides in Section 8.

6 Improving SRIOV Security

The attack described in the previous sections is the result
of a fundamental limitation of SRIOV: from the network
point of view, VFs and their associated untrusted VMs
are all lumped together into a single end-station. To se-
cure SRIOV and eliminate the attack while keeping flow
control functionality, we propose to extend SRIOV Eth-
ernet NIC filtering capability to filter traffic transmitted
by VFs, not only on the basis of source MAC and VLAN
tags—the method currently employed by anti-spoofing
features—but also on the basis of the MAC destination
and Ethernet type fields of the frame. This filtering can-
not be done by the host without some loss of perfor-
mance [39] and has to be done before traffic hits the edge
switch. Hence it must be done internally in the SRIOV
NIC. We built a software-based prototype of an SRIOV
Ethernet NIC with pause frame filtering. Before present-
ing the prototype, we begin by describing the internals of
an SRIOV NIC.

6.1 SRIOV NIC Internals

Figure 8a shows a detailed schema of an SRIOV Ether-
net NIC. The SRIOV device is connected to the external
adjacent Ethernet switch on the bottom side and to the
host’s PCIe bus, internal to the host, on the top side.

Switching The NIC stores frames it receives from the
external switch in its internal buffer. The size of this
buffer is on the order of hundreds of KBytes, depending
on the NIC model: 144KB in Intel I350 [43] and 512KB
in Intel 82599 [42]. After receiving a packet, the SRIOV
NIC looks up the frame’s MAC in its MAC address table,

finds the destination VF according to the frame’s desti-
nation MAC address, and copies the frame (using DMA)
over the PCIe bus to the VF’s buffer ring, which is allo-
cated in the host’s RAM. This is analogous to a standard
Ethernet switch that receives a packet on an ingress port,
looks up its MAC address, and chooses the right egress
port to send it to. The data path of the frame is marked
with a red dashed line in Figure 8a. In addition, SRIOV
NIC is able to perform VM-to-VM switching internally,
without sending the frames to the external switch.

Internal Buffer When Ethernet flow control is en-
abled, the SRIOV NIC starts monitoring its internal
buffer. If the NIC cannot process received frames fast
enough, for example due to an overloaded or slow PCIe
link, the buffer fills up. Once it reaches a predefined
threshold, the SRIOV NIC generates and sends pause
frames to the external Ethernet switch. The switch then
holds transmissions to the NIC for the requested time,
storing these frames in its own internal buffers. While
the switch is buffering frames, the NIC should continue
copying the frames it buffered into the each VF’s ring
buffer, clearing up space in its internal buffer.

Ring Buffer The final destination for a received frame
is in its VF’s ring buffer, located in host RAM. The net-
work stack in the VM driving the VF removes frames
from its ring buffers at a rate that is limited by the CPU.
If the VM does not get enough CPU cycles or is not ef-
ficient enough, the NIC may queue frames to the ring
buffer faster than the VM can process them. When the
ring buffer fills up, most Ethernet NICs (e.g., those of In-
tel’s and Mellanox’s) will simply drop incoming frames.
Less commonly, a few NICs, such as Broadcom’s NetX-
treme II BCM57810 10GbE, can monitor each VF’s ring
buffer. When the ring buffer is exhausted, the NIC can
send pause frames to the external switch to give the host
CPU a chance to catch up with the sender. When avail-
able, this functionality is usually disabled by default.

Outbound Security Some SRIOV Ethernet NICs
(e.g., Intel 82599 10GbE [42] or I350 1GbE [43] NICs)
include anti-spoofing functionality. They can verify that
the source MAC address and/or VLAN tag of each frame
transmitted by the VF belongs to the transmitting VF.
To this end, these NICs have an internal component that
can inspect and even change frames transmitted from the
VF. In addition, Intel SRIOV NICs have advanced in-
bound filtering capabilities, storm control, rate limiting,
and port mirroring features, very much like any standard
Ethernet switch.

As we can see, Ethernet SRIOV devices implement
on-board a limited form of Ethernet switching. That
is why such devices are also known as virtual Ethernet

bridges (VEBs).

6.2 The VANFC design

The key requirement from VANFC is to filter outbound
traffic transmitted by a VF. Ideally, VANFC would be
implemented in a production SRIOV NIC. Unfortu-
nately, all tested SRIOV NICs are proprietary with closed
firmware. Furthermore, most frame processing logic is
implemented in high speed ASIC hardware.

We opted instead to build VANFC as a software-based
prototype of an SRIOV NIC that filters outbound traffic.
VANFC takes advantage of the following two observa-
tions: (1) VEB embedded into the SRIOV NIC device
replicates standard Ethernet switching behavior and can
be considered as a virtual Ethernet switch; (2) all valid
pause frames are generated by the NIC’s hardware and
have the PF’s source MAC address, whereas invalid—
malicious—pause frames are sent with source address of
a VF. Should the adversary VM attempt to generate pause
frames with the PF’s source MAC address, the NIC’s
anti-spoofing will find and drop these frames.

In order to filter transmitted malicious pause frames,
we first need to identify pause frames. In such
frames the Ethernet type field is 0x8808 (MAC con-
trol type), the MAC opcode field is 0x0001 (pause
opcode), and the destination MAC address is multi-
cast 01-80-C2-00-00-01. For any such packet, the
VANFC filter should drop the frame if the source MAC is
different than the PF’s MAC address.

As mentioned previously, most SRIOV NICs already
have a component that can filter outbound traffic; this
component is a part of the SRIOV device’s internal Eth-
ernet switch and cannot be modified. Our prototype ex-
tends this switch in software by running the extension
on the wire between the SRIOV NIC and the external
switch.

Filtering Component For our Ethernet filtering de-
vice we use the standard Linux bridge configured on
an x86-based commodity server running Ubuntu server
13.10 and equipped with two Intel 82599 10 Gigabit TN
Network controllers installed in PCIe gen 2 slots. One
NIC is connected to the host PF and the other is con-
nected to the external Ethernet switch, as displayed in
Figure 8b. Ethernet switching is performed by the Linux
bridge [4] and filtering is done by the ebtables [32].

Performance model Bridge hardware is fast enough
not to be a bottleneck for 10Gb Ethernet speed. How-
ever, by adding to the setup an Ethernet device imple-
mented in software, we increased latency by a constant
delay of approximately 55µs. An eventual implementa-

(a) (b)

Figure 8: Fig. (a) shows schema of current SRIOV NIC internals; Fig. (b) shows VANFC schema.

tion of VANFC in hardware will eliminate this overhead;
we therefore discount it in latency oriented performance
tests.

We wanted to make this bridge completely transparent
and not to interfere with passing traffic: the host should
keep communicating with the external switch and the
switch should keep communicating with the host as in
the original setup without VANFC. VANFC should change
neither the SRIOV software/hardware interface nor the
Ethernet flow control protocol. To ensure this, we made
a few modifications in Linux bridge code and in the Intel
82599 device driver used by the bridge device.

Bridge Modification The standard Ethernet bridge
should not forward MAC control frames that are used
to carry pause commands since MAC control frames are
designed to be processed by Ethernet devices. Since
we want the bridge to deliver all of the traffic be-
tween the SRIOV device and the external switch, in-
cluding the pause frames sent by the PF, we modify the
Linux bridging code to forward MAC control frames
and use ebtables to filter pause frames not sent from
the PF. Our experiments use a static configuration for
ebtables and for the Linux bridge.

Device Driver Modification We use a modified
ixgbe driver version 3.21.2 for Intel 10G 82599 net-
work controllers on the bridge machine. According to
the Intel 82599 controller data-sheet [42], the flow con-
trol mechanism of the device receives pause frames when
flow control is enabled; otherwise the device silently
drops pause frames. In our setup, we disable the flow
control feature of Intel NICs installed in the bridge ma-
chine and we configure them to forward pause frames up

to the OS, where they should be processed by the bridge
and ebtables. We do this by enabling the Pass MAC
Control Frames (PMCF) bit of the MAC Flow Control
(MFLCN) register, as described in section 3.7.7.2 of the
Intel 82599 data-sheet [42].

Ring Buffer Exhaustion As mentioned, some SRIOV
devices are capable of monitoring a VF’s ring buffer
and automatically generating pause frames when it is ex-
hausted. In such a scenario, pause frames will be gen-
erated with the source MAC address of the PF and will
not be recognized by the VANFC. We argue that such
pause frame generation should be disabled in any SRIOV
based setup, regardless of whether the VMs are trusted.
Since the VM fully controls the VF’s ring buffer, a ma-
licious VM can modify its software stack (e.g., the VF
device driver) to manipulate the ring buffer so that the
SRIOV device monitoring the ring buffer will generate
pause frames on the VM’s behalf. Such pause frames
will reach the external switch, which will stop its trans-
missions to the host and other VMs, leaving us with the
same attack vector.

Automatic generation of pause frames on VF ring
buffer exhaustion is problematic even if all VMs are
trusted. Consider, for example, a VM that does not have
enough CPU resources to process all incoming traffic and
exhausts the VF’s ring buffer. Sending pause frames to
the switch may help this VM process the buffer but will
halt the traffic to other VMs. Thus, to keep the SRIOV
device secure, an SRIOV NIC should not automatically
send pause frames when the VF’s ring buffer is exhausted
regardless of whether the VM is trusted.

Nevertheless, monitoring VF ring buffers can be use-

ful for keeping the Ethernet network lossless and avoid-
ing dropped frames. We propose that the SRIOV device
monitor ring buffers, but instead of automatically gener-
ating pause frames on ring buffer exhaustion, it should
notify the hypervisor. The hypervisor, unlike the device,
could then carefully consider whether the VM is mali-
cious or simply slow. If the VM is simply slow, the hy-
pervisor could give it a scheduling boost or assign more
CPU resources to it, thereby giving it a chance to process
its ring buffer before it fills up. We plan to explore this
avenue in future work.

7 Evaluating VANFC

We evaluate VANFC in several scenarios. The base-
line scenario includes an unprotected system, as shown
in Figure 3, and no attack is performed during the test. In
this scenario we measure the system’s baseline through-
put and latency. The baseline system under attack in-
cludes the same unprotected system but here VM2 runs
the attack during the test, sending pause frames at a con-
stant rate of 150 frames/sec. In this scenario we measure
the effectiveness of the attack on an unprotected system.

In the protected system scenario, VANFC, shown
in Figure 8b, replaces the unprotected system. In this
scenario VM2 does not perform any attack during the
test. We use this scenario to measure the performance
overhead introduced by VANFC compared to the base-
line. In the protected system under attack scenario, we
also use VANFC, but here the attacker VM2 sends pause
frames at a constant rate of 150 frames/sec. In this sce-
nario we verify that VANFC indeed overcomes the attack.

We perform all tests on the 10GbE network with the
same environment, equipment, and methodology as de-
scribed in Section 4.1.

As explained in Section 6.2, to filter malicious pause
frames, our solution uses a software-based filtering de-
vice, which adds constant latency of 55µs. A produc-
tion solution would filter these frames in hardware, ob-
viating this constant latency overhead of software-based
model. Thus, in latency-oriented performance tests of
the VANFC, we reduced 55µs from the results.

Evaluation Tests To evaluate the performance of the
described scenarios, we test throughput and latency using
iperf and netperf, as previously described.

In addition, we configure the apache2 [34] web
server on VM1 to serve two files, one sized 1KB and
one sized 1MB. We use apache2 version 2.4.6 installed
from the Ubuntu repository with the default configura-
tion. We run the ab [1] benchmark tool from the client
to test the performance of the web server on VM1.

VM1 also runs memcached [35] server version
1.4.14, installed from the Ubuntu repository with
the default configuration file. On the client we
run the memslap [78] benchmark tool, part of the
libmemcached client library, to measure the perfor-
mance of the memcached server on VM1.

Figure 9 displays normalized results of the performed
tests. We group test results into two categories: through-
put oriented and latency oriented. Throughput oriented
tests are iperf running pure TCP stream and apache2
serving a 1MB file. These tests are limited by the 10GbE
link bandwidth. During the tests, the client and server
CPUs are almost idle.

From Figure 9 we conclude that VANFC completely
blocks VM2’s attack and introduces no performance
penalty.

8 Necessity of Flow Control

One can argue that flow control is not required for proper
functionality of high level protocols such as TCP. It then
follows from this argument that SRIOV can be made “se-
cure” simply by disabling flow control.

The TCP protocol does provide its own flow control
mechanism. However, many studies have shown that
TCP’s main disadvantage is high CPU utilization [28,36,
46, 55, 66]. Relying on TCP alone for flow control leads
to increased resource utilization.

In public cloud environments, users pay for computa-
tional resources. Higher CPU utilization results in higher
charges. In enterprise data centers and high-performance
computing setups, resource consumption matters as well.
Ultimately, someone pays for it. In clouds, especially,
effective resource utilization will become increasingly
more important [12].

Certain traffic patterns that use the TCP protocol in
high-bandwidth low-latency data center environments
may suffer from catastrophic TCP throughput collapse,
a phenomenon also known as the incast problem [58].
This problem occurs when many senders simultaneously
transmit data to a single receiver, overflowing the net-
work buffers of the Ethernet switches and the receiver,
thus causing significant packet loss. Studies show that
Ethernet flow control functionality, together with con-
gestion control protocol, can mitigate the incast problem,
thus improving the TCP performance [27, 62].

As part of a recent effort to converge current net-
work infrastructures, many existing protocols were im-
plemented over Ethernet, e.g., Remote DMA over Con-
verged Ethernet (RoCE) [19]. RoCE significantly re-
duces CPU utilization when compared with TCP.

 0

 0.2

 0.4

 0.6

 0.8

 1

iperf
stream
[Mb/s]

apache
1MB

[req/s]

netperf RR
64B

[packets/s]

netperf RR
1024B

[packets/s]

memcached
[req/s]

apache
1KB

[req/s]

n
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

[r
e
la

ti
v
e
 t
o
 b

a
s
e
lin

e
 s

y
s
te

m
]

baseline system
baseline system under attack
protected system

protected system under attack

latency oriented throughput oriented

Figure 9: VANFC performance evaluation results

0

1

2

3

4

5

 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K32K

tr
a

n
s
fe

r
ra

te
 [

G
b

/s
]

message size [KB]

(a)

0

1

2

3

4

5

 1 2 4 8 16 32 64 128 256 5121K 2K 4K 8K16K32K

tr
a

n
s
fe

r
ra

te
 [

G
b

/s
]

message size [KB]

transmit queue depth
1
2

4
8

16
32

64
128

256

(b)

Figure 10: Performance of a single RoCE flow in the system with two competing RoCE flows. Graph (a) shows
performance with enabled flow control; graph (b) shows performance with disabled flow control.

A few recent studies that evaluate performance of dif-
ferent data transfer protocols over high speed links have
been published [48, 49, 67, 72]. Kissel et al. [49] com-
pare TCP and RoCE transfers over 40GbE links using
the same application they developed for benchmarking.
Using TCP, they managed to reach a speed of 22Gbps
while the sender’s CPU load was 100% and the receiver’s
CPU load was 91%. With OS-level optimizations, they
managed to reach a speed of 39.5 Gbps and reduce the
sender’s CPU load to 43%. Using the RoCE protocol,
they managed to reach 39.2 Gbps while the CPU load of
the receiver and sender was less than 2%! These results
clearly show that RoCE significantly reduces CPU uti-
lization and thus the overall cost of carrying out compu-
tations. It is especially important when a large amount
of data is being moved between computational nodes
in HPC or data center environments, where virtualiza-
tion is becoming prevalent and increasing in popular-
ity [24, 37, 54].

Studies show that RoCE cannot function properly
without flow control [48, 49, 67, 72]. Figure 10, taken

from Kissel et al. [49], with the authors’ explicit permis-
sion, shows the performance effect of flow control on two
competing data transfers using the RoCE protocol. Fig-
ure 10a shows the performance of a single RoCE data
transfer while another RoCE data transfer is competing
with it for bandwidth and flow control is enabled. Both
transfers effectively share link bandwidth. Figure 10b
shows the performance of the same RoCE data transfer
when flow control is disabled. As can be seen in the fig-
ure, without flow control the RoCE data transfer suffers,
achieving a fraction of the performance shown in Fig-
ure 10a. We have also independently reproduced and
verified these results.

Kissel et al. also show [49] that the same problem is
relevant not only to RoCE but can be generalized to TCP
as well. Thus we conclude that disabling flow control
would cause less effective resource utilization and lead to
higher cost for cloud customers and for any organization
deploying SRIOV. Conversely, securing SRIOV against
flow control attacks would make it possible for SRIOV
and flow control to coexist, providing the performance

benefits of both without relinquishing security.

9 Discussion

Notes on Implementation VANFC can be implemented
as part of an SRIOV device already equipped with an
embedded Ethernet switch or it can be implemented
in the edge Ethernet switch, by programming the edge
switch to filter flow control frames from VFs’ MAC ad-
dresses. Adding VANFC functionality to the NIC requires
less manufacturing effort; it is also more convenient and
cheaper to replace a single NIC on a host than to replace
an edge switch. Nevertheless, in large-scale virtualiza-
tion deployments, such as those of cloud providers or
corporate virtual server farms, a single 10GbE Ethernet
switch with high port density (for example, the 48 port
HP 5900AF 10Gb Ethernet switch in our testbed) serves
many host servers with SRIOV capable devices. In such
scenarios, upgrading 48 SRIOV devices connected to the
48 port switch requires considerably more resources than
single switch upgrade.

Having said that, we argue that proper implementation
of the solution to the described problem is in the SRIOV
NIC and not in the edge Ethernet switch. The problem
we discuss is strictly related to the virtualization plat-
form and caused by a design flaw in the SRIOV NIC’s
internal switching implementation. Mitigating the prob-
lem in the edge switch, an external device whose purpose
is not handle virtualization problems of the host, would
force the edge switch to learn about each VF’s MAC ad-
dress and to distinguish PFs from VFs, coupling the edge
switch too closely with the NICs.

VEB and VEPA Another important security aspect of
SRIOV is VM-to-VM traffic. In SRIOV devices with an
embedded VEB switch, VM-to-VM traffic does not leave
the host network device and is not visible to the external
edge switch, which enforces the security policy on the
edge of the network. To make all VM traffic visible to the
external switch, the VEB switch should act as a VEPA
and send all VM traffic to the adjacent switch.

A properly configured Ethernet switch and the use of
a VEPA device can enforce a security policy (ACL, port
security) on malicious VM traffic and prevent most L2
attacks. However, while VEPA solves many manage-
ability and security issues that pertain to switching in
virtualized environments [29], it does not address the
flow control attack we presented earlier. This is because
VEPA still shares the same single link between multi-
ple untrusted guests and the host and does not manage
flow control per VF. Besides not solving the flow control
attack, it uses, again, the edge Ethernet switch, which is

external to the source of the problem–SRIOV NIC. Thus,
a VEPA extension should not be considered for the so-
lution and the problem should be solved in the SRIOV
NIC.

10 Related Work

Several recent works discussed the security of self-
virtualizing devices. Pék et al. [61] described a wide
range of attacks on host and tenant VMs using directly
assigned devices. They performed successful attacks on
PCI/PCIe configuration space, on memory mapped I/O,
and by injecting interrupts. They also described an NMI
injection attack. Most of the attacks they discussed can
be blocked by a fix in the hypervisor or by proper hard-
ware configuration.

Richter et al. [68] showed how a malicious VM with
a directly attached VF can perform DoS attacks on other
VMs that share the same PCIe link by overloading its
own Memory Mapped I/O (MMIO) resources and flood-
ing the PCIe link with write request packets. As the au-
thors mention, this attack can be mitigated by using the
QoS mechanisms defined by the PCIe standard [59].

All of the attacks discussed in the aforementioned pa-
pers are based on weak security implementations of soft-
ware (e.g., a hypervisor) or hardware (a chipset system
error reporting mechanism) that are internal to the host.
Our attack exploits different design aspects of SRIOV
devices: it targets the interoperability of SRIOV devices
with software and hardware external to the host.

There are ongoing efforts of the Data Center Bridging
Task Group, which is a part of the IEEE 802.1 Working
Group, to standardize configuration, management and
communication of virtual stations connected to the adja-
cent bridge. The working group proposed the 802.1Qbg
Edge Virtual Bridging [10] and 802.1BR Bridge Port
Extension [11] standards. Both standards concentrate
on configuration and management of the bridge services
for virtual stations, leaving the flow control of virtual
stations out of their scope. To the best of our knowl-
edge, our work is the first to present the problem of self-
virtualizing devices in converged enhanced Ethernet en-
vironments with flow control, and the first to suggest a
solution for it.

11 Conclusions and Future Work

Self-virtualizing devices with SRIOV lie at the founda-
tion of modern enterprise data centers, cloud comput-
ing, and high-performance computing setups. We have

shown that SRIOV, as currently deployed on current Eth-
ernet networks, is incompatible with required function-
ality such as flow control. This is because flow control
relies on the assumption that each endpoint is trusted,
whereas with SRIOV, each network endpoint is com-
prised of multiple, possibly untrusted, virtual machines.
We show how to overcome this flaw by teaching the
NIC about virtual functions. We present the prototype of
such a system, VANFC, and its evaluation. Our prototype
is 100% effective in securing SRIOV against this flaw
while imposing no overhead on throughput or latency-
oriented workloads.

Future work includes continuing to investigate the
security of SRIOV devices; extending our work from
Ethernet to other networking technologies such as In-
finiBand and Fiber Channel; looking at the security of
direct-assigned self-virtualizing devices other than NICs,
such as high-end NVMe SSDs and GPGPUs; develop-
ing VF co-residency detection techniques; and using the
hypervisor to solve the problem of VM ring buffer ex-
haustion. Handling this with software without losing per-
formance will be challenging. On VANFC specifically,
we plan to continue our evaluation and to explore what
an eventual hardware-based implementation would look
like.

Acknowledgments

We would like to thank the anonymous reviewers, our
shepherd, Srdjan Capkun, Shachar Raindel from Mel-
lanox, David H. Lorenz and Ilya Lesokhin from Tech-
nion, and Sharon Kessler for insightful comments. This
research was supported, in part, by the Ministry of Sci-
ence and Technology, Israel, grant #3-9609. Any opin-
ions, findings, and conclusions in this paper are those of
the authors only and do not necessarily reflect the views
of our sponsors.

References
[1] Apache HTTP server benchmarking tool. https:

//httpd.apache.org/docs/2.2/programs/ab.html.
[Accessed Jul, 2014].

[2] High Performance Computing (HPC) on Amazon Elastic Com-
pute Cloud (EC2) . Online : https://aws.amazon.com/
hpc/. [Accessed Jun, 2014].

[3] Iperf - The TCP/UDP Bandwidth Measurement Tool. http:
//iperf.sourceforge.net. [Accessed Jul, 2014].

[4] Linux Ethernet Bridge. http://
www.linuxfoundation.org/collaborate/
workgroups/networking/bridge. [Accessed Jul,
2014].

[5] Tcpreplay: Pcap editing and replay tools for Unix systems.
http://tcpreplay.synfin.net/. [Accessed Jul, 2014].

[6] IEEE Standards for Local and Metropolitan Area Networks: Sup-
plements to Carrier Sense Multiple Access With Collision Detec-
tion (CSMA/CD) Access Method and Physical Layer Specifica-
tions - Specification for 802.3 Full Duplex Operation and Physi-
cal Layer Specification for 100 Mb/s Operation on Two Pairs of
Category 3 Or Better Balanced Twisted Pair Cable (100BASE-
T2). IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 (Sup-
plement to ISO/IEC 8802-3: 1996; ANSI/IEEE Std 802.3, 1996
Edition) (1997), 1–324.

[7] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks. IEEE Std 802.1Q-2011 (Revision of IEEE Std 802.1Q-
2005) (Aug 2011), 1–1365.

[8] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks–Amendment 17: Priority-based Flow Control. IEEE
Std 802.1Qbb-2011 (Amendment to IEEE Std 802.1Q-2011 as
amended by IEEE Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-
2011) (Sept 2011), 1–40.

[9] IEEE Standard for Ethernet - Section 2. IEEE Std 802.3-2012
(Revision to IEEE Std 802.3-2008) (Dec 2012), 752–762.

[10] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local
Area Networks–Amendment 21: Edge Virtual Bridging. IEEE
Std 802.1Qbg-2012 (Amendment to IEEE Std 802.1Q-2011 as
amended by IEEE Std 802.1Qbe-2011, IEEE Std 802.1Qbc-2011,
IEEE Std 802.1Qbb-2011, IEEE Std 802.1Qaz-2011, IEEE Std
802.1Qbf-2011, and IEEE Std 802.aq-2012) (July 2012), 1–191.

[11] IEEE Standard for Local and metropolitan area networks–Virtual
Bridged Local Area Networks–Bridge Port Extension. IEEE Std
802.1BR-2012 (July 2012), 1–135.

[12] AGMON BEN-YEHUDA, O., BEN-YEHUDA, M., SCHUSTER,
A., AND TSAFRIR, D. The Rise of RaaS: The Resource-as-a-
Service Cloud. Communications of the ACM (CACM) (2014).

[13] ALIZADEH, M., ATIKOGLU, B., KABBANI, A., LAKSH-
MIKANTHA, A., PAN, R., PRABHAKAR, B., AND SEAMAN, M.
Data Center Transport Mechanisms: Congestion Control Theory
and IEEE Standardization. In 46th Annual Allerton Conference
on Communication, Control, and Computing (2008), IEEE.

[14] ALTUNBASAK, H., KRASSER, S., OWEN, H., GRIMMINGER,
J., HUTH, H.-P., AND SOKOL, J. Securing Layer 2 in Local
Area Networks. In 4th International Conference on Networking,
Lecture Notes in Computer Science. Springer, 2005.

[15] AMIT, N., BEN-YEHUDA, M., TSAFRIR, D., AND SCHUSTER,
A. vIOMMU: efficient IOMMU emulation. In USENIX Annual
Technical Conference (ATC) (2011).

[16] AMIT, N., BEN-YEHUDA, M., AND YASSOUR, B.-A. IOMMU:
Strategies for Mitigating the IOTLB Bottleneck. In Workshop on
Interaction between Operating Systems & Computer Architecture
(WIOSCA) (2010).

[17] ARTEMJEV, O. K., AND MYASNYANKIN, V. V. Fun with the
Spanning Tree Protocol. Phrack 11 (2003), 61.

[18] ASSOCIATION, I. T. InfiniBand Architecture Specification Re-
lease 1.2.1, Volume 1. InfiniBand Trade Association (2007).

[19] ASSOCIATION, I. T. InfiniBand Architecture Specification Re-
lease 1.2.1, Volume 1, Annex A16: RoCE. InfiniBand Trade As-
sociation (2010).

https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
http://iperf.sourceforge.net
http://iperf.sourceforge.net
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://tcpreplay.synfin.net/

[20] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S.,
HARRIS, T., HO, A., NEUGEBAUER, R., PRATT, I., AND
WARFIELD, A. Xen and the Art of Virtualization. ACM SIGOPS
Operating Systems Review (2003).

[21] BEN-YEHUDA, M., BOROVIK, E., FACTOR, M., ROM, E.,
TRAEGER, A., AND YASSOUR, B.-A. Adding Advanced Stor-
age Controller Functionality via Low-Overhead Virtualization.
In USENIX Conference on File & Storage Technologies (FAST)
(2012).

[22] BEN-YEHUDA, M., MASON, J., KRIEGER, O., XENIDIS,
J., VAN DOORN, L., MALLICK, A., NAKAJIMA, J., AND
WAHLIG, E. Utilizing IOMMUs for Virtualization in Linux and
Xen. In Ottawa Linux Symposium (OLS) (2006).

[23] BEN-YEHUDA, M., XENIDIS, J., OSTROWSKI, M., RISTER,
K., BRUEMMER, A., AND VAN DOORN, L. The Price of Safety:
Evaluating IOMMU Performance. In Ottawa Linux Symposium
(OLS) (2007).

[24] BIRKENHEUER, G., BRINKMANN, A., KAISER, J., KELLER,
A., KELLER, M., KLEINEWEBER, C., KONERSMANN, C.,
NIEHRSTER, O., SCHFER, T., SIMON, J., AND WILHELM, M.
Virtualized HPC: a contradiction in terms? Software: Practice
and Experience (2012).

[25] BRADNER, S., AND MCQUAID, J. Benchmarking methodology
for network interconnect devices. RFC 2544, Internet Engineer-
ing Task Force, Mar. 1999.

[26] BROADCOM CORPORATION. Broadcom BCM57810S NetXtreme
II Converged Controller, 2010. [Accessed February 2015].

[27] CHEN, Y., GRIFFITH, R., LIU, J., KATZ, R. H., AND JOSEPH,
A. D. Understanding TCP Incast Throughput Collapse in Data-
center Networks. In 1st ACM workshop on Research on Enter-
prise Networking (2009), ACM.

[28] CLARK, D. D., JACOBSON, V., ROMKEY, J., AND SALWEN,
H. An analysis of TCP processing overhead. Communications
Magazine, IEEE, 6 (1989).

[29] CONGDON, P. Enabling Truly Converged Infrastructure.
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/
talks/100313-WIOV-Congdon-dist.pdf, 2010.

[30] CONGDON, P., FISCHER, A., AND MOHAPATRA, P. A Case for
VEPA: Virtual Ethernet Port Aggregator. In 2nd Workshop on
Data CenterConverged and Virtual Ethernet Switching (2010).

[31] CONGDON, P., AND HUDSON, C. Modularization of
Edge Virtual Bridging–proposal to move forward. http:
//www.ieee802.org/1/files/public/docs2009/
new-evb-congdon-vepa-modular-0709-v01.pdf,
2009.

[32] DE SCHUYMER, B., AND FEDCHIK, N. Ebta-
bles/Iptables Interaction On A Linux-Based Bridge.
http://ebtables.sourceforge.net, 2003. [Accessed
Jul, 2014].

[33] DONG, Y., YANG, X., LI, X., LI, J., TIAN, K., AND GUAN,
H. High performance network virtualization with SR-IOV. In
IEEE International Symposium on High Performance Computer
Architecture (HPCA) (2010).

[34] FIELDING, R. T., AND KAISER, G. The Apache HTTP Server
Project. IEEE Internet Computing, 4 (1997).

[35] FITZPATRICK, B. Distributed Caching with Memcached. Linux
Journal, 124 (2004).

[36] FOONG, A. P., HUFF, T. R., HUM, H. H., PATWARDHAN, J. P.,
AND REGNIER, G. J. TCP Performance Re-visited. In Interna-
tional Symposium on Performance Analysis of Systems and Soft-
ware (2003), IEEE.

[37] GAVRILOVSKA, A., KUMAR, S., RAJ, H., SCHWAN, K.,
GUPTA, V., NATHUJI, R., NIRANJAN, R., RANADIVE, A., AND
SARAIYA, P. High-Performance Hypervisor Architectures: Vir-
tualization in HPC Systems. In Workshop on System-level Virtu-
alization for HPC (HPCVirt) (2007).

[38] GORDON, A., AMIT, N., HAR’EL, N., BEN-YEHUDA, M.,
LANDAU, A., SCHUSTER, A., AND TSAFRIR, D. ELI: bare-
metal performance for I/O virtualization. In ACM Architectural
Support for Programming Languages & Operating Systems (AS-
PLOS) (2012), ACM.

[39] HAR’EL, N., GORDON, A., LANDAU, A., BEN-YEHUDA, M.,
TRAEGER, A., AND LADELSKY, R. Efficient and Scalable Par-
avirtual I/O System. In USENIX Annual Technical Conference
(ATC) (2013).

[40] HAWLEY, A., AND EILAT, Y. Oracle Exalogic Elastic Cloud:
Advanced I/O Virtualization Architecture for Consolidating
High-Performance Workloads. An Oracle White Paper (2012).

[41] HUANG, S., AND BALDINE, I. Performance Evaluation of 10GE
NICs with SR-IOV Support: I/O Virtualization and Network
Stack Optimizations. In 16th International Conference on Mea-
surement, Modelling, and Evaluation of Computing Systems and
Dependability and Fault Tolerance (2012), Springer-Verlag.

[42] INTEL CORPORATION. Intel 82599 10 GbE Controller
Datasheet, 2014. Revision 2.9. [Accessed August 2014].

[43] INTEL CORPORATION. Intel I350 10 GbE Controller Datasheet,
2014. Revision 2.2. [Accessed February 2015].

[44] JACOBSON, V., LERES, C., AND MCCANNE, S. Tcp-
dump: a powerful command-line packet analyzer. http://
www.tcpdump.org. [Accessed Jul, 2014].

[45] JONES, R. The Netperf Benchmark. http:
//www.netperf.org. [Accessed Jul, 2014].

[46] KAY, J., AND PASQUALE, J. The importance of non-data touch-
ing processing overheads in TCP/IP. ACM SIGCOMM Computer
Communication Review (1993).

[47] KIRAVUO, T., SARELA, M., AND MANNER, J. A Survey of Eth-
ernet LAN Security. Communications Surveys Tutorials, IEEE
(2013).

[48] KISSEL, E., AND SWANY, M. Evaluating High Performance
Data Transfer with RDMA-based Protocols in Wide-Area Net-
works. In 14th International Conference on High Performance
Computing and Communication & 9th International Confer-
ence on Embedded Software and Systems (HPCC-ICESS) (2012),
IEEE.

[49] KISSEL, E., SWANY, M., TIERNEY, B., AND POUYOUL, E.
Efficient Wide Area Data Transfer Protocols for 100 Gbps Net-
works and Beyond. In 3rd International Workshop on Network-
Aware Data Management (2013), ACM.

[50] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U.,
AND LIGUORI, A. KVM: the Linux Virtual Ma-
chine Monitor. In Ottawa Linux Symposium (OLS)
(2007). http://www.kernel.org/doc/ols/2007/
ols2007v1-pages-225-230.pdf. [Accessed Apr, 2011].

[51] KO, M., AND RECIO, R. Virtual Ethernet Bridg-
ing. http://www.ieee802.org/1/files/public/
docs2008/new-dcb-ko-VEB-0708.pdf, 2008.

http://sysrun.haifa.il.ibm.com/hrl/wiov2010/talks/100313-WIOV-Congdon-dist.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/talks/100313-WIOV-Congdon-dist.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://ebtables.sourceforge.net
http://www.tcpdump.org
http://www.tcpdump.org
http://www.netperf.org
http://www.netperf.org
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf

[52] LEVASSEUR, J., UHLIG, V., STOESS, J., AND GÖTZ, S. Un-
modified Device Driver Reuse and Improved System Dependabil-
ity via Virtual Machines. In Symposium on Operating Systems
Design & Implementation (OSDI) (2004).

[53] LIU, J. Evaluating standard-based self-virtualizing devices: A
performance study on 10 GbE NICs with SR-IOV support. In
IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS) (2010).

[54] LOCKWOOD, G. SR-IOV: The Key to Fully Virtualized HPC
Clusters. Online : http://insidehpc.com/2013/12/
30/sr-iov-key-enabling-technology-fully-
virtualized-hpc-clusters/. Presented on SC13:
International Conference for High Performance Computing,
Networking, Storage and Analysis. [Accessed Jun, 2014].

[55] MARKATOS, E. P. Speeding up TCP/IP: faster processors are
not enough. In 21st International Conference on Performance,
Computing, and Communications (2002), IEEE.

[56] MARRO, G. M. Attacks at the Data Link Layer. Master’s thesis,
University of California, Davis, 2003.

[57] MELLANOX TECHNOLOGIES. Mellanox OFED for Linux User
Manual, 2014. Revision 2.2-1.0.1. [Accessed July 2014].

[58] NAGLE, D., SERENYI, D., AND MATTHEWS, A. The Panasas
Activescale Storage Cluster: Delivering Scalable High Band-
width Storage. In ACM/IEEE conference on Supercomputing
(2004), IEEE.

[59] PCI SIG. PCI Express Base Specification, Revision 3.0, 2010.

[60] PCI SIG. Single Root I/O Virtualization and Sharing 1.1 Speci-
fication, 2010.

[61] PÉK, G., LANZI, A., SRIVASTAVA, A., BALZAROTTI, D.,
FRANCILLON, A., AND NEUMANN, C. On the Feasibility of
Software Attacks on Commodity Virtual Machine Monitors via
Direct Device Assignment. In 9th ACM Symposium on Informa-
tion, Computer and Communications Security (2014), ACM.

[62] PHANISHAYEE, A., KREVAT, E., VASUDEVAN, V., ANDER-
SEN, D. G., GANGER, G. R., GIBSON, G. A., AND SESHAN,
S. Measurement and Analysis of TCP Throughput Collapse in
Cluster-based Storage Systems. In USENIX Conference on File
& Storage Technologies (FAST) (2008).

[63] POSTEL, J. B. Transmission control protocol. RFC 793, Internet
Engineering Task Force, Sept. 1981.

[64] RAJ, H., AND SCHWAN, K. High Performance and Scalable
I/O Virtualization via Self-Virtualized Devices. In International
Symposium on High Performance Distributed Computer (HPDC)
(2007).

[65] RAM, K. K., SANTOS, J. R., TURNER, Y., COX, A. L., AND
RIXNER, S. Achieving 10Gbps using Safe and Transparent Net-
work Interface Virtualization. In ACM/USENIX International
Conference on Virtual Execution Environments (VEE) (2009).

[66] REGNIER, G., MAKINENI, S., ILLIKKAL, R., IYER, R.,
MINTURN, D., HUGGAHALLI, R., NEWELL, D., CLINE, L.,
AND FOONG, A. TCP Onloading for Data Center Servers. Com-
puter Magazine, IEEE (2004).

[67] REN, Y., LI, T., YU, D., JIN, S., ROBERTAZZI, T., TIERNEY,
B., AND POUYOUL, E. Protocols for Wide-Area Data-Intensive
Applications: Design and Performance Issues. In International
Conference on High Performance Computing, Networking, Stor-
age and Analysis (SC) (2012).

[68] RICHTER, A., HERBER, C., RAUCHFUSS, H., WILD, T., AND
HERKERSDORF, A. Performance Isolation Exposure in Virtual-
ized Platforms with PCI Passthrough I/O Sharing. In Architecture
of Computing Systems (ARCS). Springer International Publishing,
2014.

[69] RUSSELL, R. virtio: towards a de-facto standard for virtual I/O
devices. ACM SIGOPS Operating Systems Review (OSR) (2008).

[70] STEPHENS, B., COX, A. L., SINGLA, A., CARTER, J., DIXON,
C., AND FELTER, W. Practical DCB for Improved Data Center
Networks. In International Conference on Computer Communi-
cations (INFOCOM) (2014), IEEE.

[71] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Vir-
tualizing I/O Devices on Vmware Workstation’s Hosted Virtual
Machine Monitor. In USENIX Annual Technical Conference
(ATC) (2001).

[72] TIERNEY, B., KISSEL, E., SWANY, M., AND POUYOUL, E. Ef-
ficient Data Transfer Protocols for Big Data. In 8th International
Conference on E-Science (2012), IEEE Computer Society.

[73] TREJO, L. A., MONROY, R., AND MONSALVO, R. L. Spanning
Tree Protocol and Ethernet PAUSE Frames DDoS Attacks: Their
Efficient Mitigation. Tech. rep., Instituto Tecnolgico de Estudios
Superiores de Monterrey, ITESM-CEM, 2006.

[74] WILLMANN, P., SHAFER, J., CARR, D., MENON, A., RIXNER,
S., COX, A. L., AND ZWAENEPOEL, W. Concurrent Direct Net-
work Access for Virtual Machine Monitors. In IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA) (2007).

[75] WONG, A., AND YEUNG, A. Network Infrastructure Security.
In Network Infrastructure Security. Springer, 2009.

[76] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
Direct Device Assignment for Untrusted Fully-Virtualized Vir-
tual Machines. Tech. Rep. H-0263, IBM Research, 2008.

[77] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
On the DMA Mapping Problem in Direct Device Assignment.
In Haifa Experimental Systems Conference (SYSTOR) (2010),
ACM.

[78] ZHUANG, M., AND AKER, B. Memslap: Load Test-
ing and Benchmarking Tool for memcached. http:
//docs.libmemcached.org/bin/bin/memslap.html.
[Accessed Jul, 2014].

http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://docs.libmemcached.org/bin/bin/memslap.html
http://docs.libmemcached.org/bin/bin/memslap.html

	Introduction
	SRIOV Primer
	Analyzing SRIOV Security
	Traditional Lossy Ethernet
	Flow Control in Traditional Ethernet
	Priority Flow Control in Ethernet
	Attacking VMs via Flow Control

	Attack Evaluation
	Experimental Setup
	Benchmark Methodology
	Flow-Control Attack Implementation
	Attack Results

	Attack Ramifications
	Improving SRIOV Security
	SRIOV NIC Internals
	The vanfc design

	Evaluating vanfc
	Necessity of Flow Control
	Discussion
	Related Work
	Conclusions and Future Work

