
Securing Self-Virtualizing I/O Devices

Igor Smolyar1,2 Muli Ben-Yehuda1 Dan Tsafrir1

1Technion—Israel Institute of Technology
2The Open University of Israel

{igors,muli,dan}@cs.technion.ac.il

Abstract
Single root I/O virtualization (SRIOV) is a hard-

ware/software interface that allows devices to “self-
virtualize” and thereby remove the host from the critical
I/O path. SRIOV thus brings bare-metal performance to
untrusted guest virtual machines (VMs) in public clouds,
enterprise data centers, and high-performance comput-
ing setups. We identify a design flaw in current SRIOV
deployments that enables untrusted VMs to completely
control the throughput and latency of other, unrelated
VMs using network flow control functionality. Address-
ing this flaw with current network controllers (NICs) and
switches requires either forgoing SRIOV or forgoing flow
control, thereby trading off much of the performance ben-
efit that SRIOV provides. We present and experimentally
demonstrate the viability of the Virtualization-Aware Net-
work Flow Controller (VANFC), a secure SRIOV setup
that eliminates this flaw without requiring any changes to
the software/hardware interface.

1. Introduction
A key challenge when running untrusted virtual machines
is providing them with efficient and secure I/O. Envi-
ronments running potentially untrusted virtual machines
include enterprise data centers, public cloud computing
providers, and high-performance computing sites.

There are three common approaches to providing I/O
services to guest virtual machines: (1) the hypervisor
emulates a known device and the guest uses an unmodified
driver to interact with it [63]; (2) a paravirtual driver
is installed in the guest [18, 62]; (3) the host assigns a
real device to the guest, which then controls the device
directly [20, 48, 57, 66, 68]. When emulating a device
or using a paravirtual driver, the hypervisor intercepts
all interactions between the guest and the I/O device, as
shown in Figure 1a, leading to increased overhead and
significant performance penalty.

The hypervisor can reduce the overhead of device em-
ulation or paravirtualization by assigning I/O devices di-
rectly to virtual machines, as shown in Figure 1b. Device
assignment provides the best performance [49, 58, 68],
since it minimizes the number of I/O-related world
switches between the virtual machine and its hypervisor.
However, assignment of standard devices is not scalable:

hypervisor

(a). Traditional Virtualization (b). Direct I/O Device Assignment

Figure 1. Types of I/O Virtualization

a single host can generally run an order of magnitude
more virtual machines than it has physical I/O device
slots available.

One way to reduce I/O virtualization overhead further
and improve virtual machine performance is to offload
I/O processing to scalable self-virtualizing I/O devices.
The PCI Special Interest Group (PCI-SIG) on I/O Vir-
tualization proposed the Single Root I/O Virtualization
(SRIOV) standard for scalable device assignment. PCI de-
vices supporting the SRIOV standard present themselves
to host software as multiple virtual interfaces. The host
can assign each such partition directly to a different vir-
tual machine. With SRIOV devices, virtual machines
can achieve bare-metal performance even for the most
demanding I/O-intensive workloads [34,35]. We describe
how SRIOV works and why it benefits performance in
Section 2.

New technology such as SRIOV often provides new
capabilities but also poses new security challenges. Be-
cause SRIOV provides untrusted virtual machines with
unfettered access to the physical network, such machines
can inject malicious or harmful traffic into the network.
We analyze the security risks posed by using SRIOV in en-
vironments with untrusted virtual machines in Section 3.
We find that SRIOV, as currently deployed, is flawed and
cannot be used securely while also using network flow
control functionality.

In Section 4, we show how a malicious virtual machine
with access to an SRIOV device can use network flow
control functionality to completely control the bandwidth
and latency of other unrelated VMs using the same SRIOV
device, without their knowledge or cooperation. The
malicious virtual machine does this by transmitting a
small number of Ethernet PAUSE or Priority Flow Control
(PFC) frames every so often.

The aforementioned flaw can, however, be overcome
once we understand its fundamental cause: Ethernet flow
control functionality operates on the assumption that the
edge switch can trust the network endpoint. With SRIOV,
a single endpoint includes both the host (usually trusted)
and multiple untrusted guests, all of which share the same
link to the edge switch. The edge switch must either trust
all the guests and the host or trust none of them. The
former leads to the flow control attack we show; the latter
means doing without flow control.

The attack we describe works by having a malicious
guest send Ethernet PAUSE or PFC frames to the switch.
If the switch honors them, it will shut down traffic (for
a specified amount of time) on the link. Since the link
is shared between multiple untrusted guests and the host,
none of them will receive traffic.

In Section 5 we propose the Virtualization-Aware Net-
work Flow Controller (VANFC) to overcome this flaw. By
managing flows per virtual machine instead of per link,
VANFC only stops traffic for the virtual machine that sent
PAUSE or PFC frames. The traffic of other virtual ma-
chines and of the host that share the same link remains
unaffected; thus VANFC eliminates the attack.

We evaluate a software-based prototype of VANFC in
Section 6. VANFC is 100% effective in addressing the
attack we describe.

VANFC has no impact on throughput compared to the
baseline system not under attack but does increase latency
by the latency of a single layer 2 (L2) device (~50 µs).
We expect that an eventual hardware implementation will
eliminate the additional latency.

One could argue that flow control at the Ethernet level is
not necessary, since protocols at a higher level (e.g., TCP)
have their own flow control. We show why Converged
Enhanced Ethernet requires flow control in Section 7. We
discuss several other problems in Section 8, followed by
related work in Section 9, and our conclusions and future
work in Section 10.

2. SRIOV Primer

Hardware emulation and paravirtualized devices impose
a significant performance penalty on guest virtual ma-
chines [14, 15, 19, 20, 21]. Seeking to improve virtual I/O
performance and scalability, PCI-SIG proposed a specifi-
cation for PCIe devices with self-virtualization capabili-
ties. Known as the SRIOV specification, it defines how
host software can partition a single SRIOV PCIe device
into multiple PCIe “virtual” devices.

Each SRIOV-capable physical device has at least one
Physical Function (PF) and multiple virtual partitions
called Virtual Functions (VFs). Each PF is a standard

guest VM0

hypervisor

Figure 2. SRIOV NIC in a virtualized environment

PCIe function: host software can access it the same way
it accesses any other PCIe device. A PF also has a full
configuration space. Through the PF, host software can
control the entire PCIe device as well as perform I/O oper-
ations. Each PCIe device can have up to eight independent
PFs.

VFs, on the other hand, are “lightweight” (virtual) PCIe
functions that implement a subset of standard PCIe device
functionalities. Virtual machines driving VFs perform
only I/O operations through them. For a virtual machine
to use a VF, the host software must configure that VF
and assign it to the virtual machine. Host software often
configures a VF through its PF.VFs have a partial configu-
ration space and are usually presented to virtual machines
as PCIe devices with limited capabilities. In theory, each
PF can have up to 64K VFs. Current Intel implemen-
tations of SRIOV enable up to 63 VFs per PF [39] and
Mellanox ConnectX adapters usually have 126 VFs per
PF [53].

While PFs provide both control plane functionality and
data plane functionality, VFs provide only data plane
functionality. PFs are usually controlled by device drivers
that are part of the trusted computing base (TCB), i.e.,
reside in the privileged host operating system or hypervi-
sor. As shown in Figure 2, in virtualized environments
each VF can be directly assigned to a VM using device
assignment, which allows each VM to directly access its
corresponding VF, without hypervisor involvement on the
I/O path.

Studies show that direct assignment of VFs provides
virtual machines with nearly the same performance as
direct assignment of physical devices (without SRIOV)
while allowing the same level of scalability as software-
based virtualization solutions such as device emulation or
paravirtualization [29, 34, 37, 69]. Furthermore, two VMs
that share the same network device PF can communicate

2

efficiently since their VM-to-VM traffic can be switched
in the network adapter. Generally, SRIOV devices include
embedded Ethernet switch functionality capable of effi-
ciently routing traffic between VFs, reducing the burden
on the external switch. The embedded switch in SRIOV
capable devices is known as a Virtual Ethernet Bridge
(VEB) [47].

SRIOV provides virtual machines with I/O perfor-
mance and scalability that is nearly the same as bare metal.
Without SRIOV, many use cases in cloud computing, high-
performance computing and enterprise data centers would
be infeasible. With SRIOV it is possible to virtualize
High Performance Computing (HPC) setups [22, 33]. In
fact, SRIOV is considered the key enabling technology
for fully virtualized HPC clusters [50]. Cloud service
providers such as Amazon Elastic Compute Cloud (EC2)
use SRIOV as the underlying technology in EC2 HPC
services. Their Cluster Compute-optimized virtual ma-
chines with high performance enhanced networking rely
on SRIOV [2]. SRIOV is important in traditional data
centers as well. Oracle, for example, created the Ora-
cle Exalogic Elastic Cloud, an integrated hardware and
software system for data centers. Oracle Exalogic uses
SRIOV technology to share the internal network [36].

3. Analyzing SRIOV Security

Until recently, organizations designed and deployed Local
Area Networks (LANs) with the assumption that each end-
station in the LAN is connected to a dedicated port of an
access switch, also known as an edge switch.

The edge switch applies the organization’s security
policy to this dedicated port according to the level of trust
of the end-station connected to the port: some machines
and the ports they connect to are trusted and some are
not. But given a port and the machine connected to it, the
switch enforcing security policy must know how trusted
that port is.

With the introduction of virtualization technology, this
assumption of a single level of trust per port no longer
holds. In virtualized environments, the host, which is
often a trusted entity, shares the same physical link with
untrusted guest VMs. When using hardware emulation or
paravirtualized devices, the trusted host can intercept and
control all guest I/O requests to enforce the relevant secu-
rity policy. Thus, from the point of view of the network,
the host makes the port trusted again.

Hardware vendors such as Intel or Mellanox implement
strict VF management or configuration access to SRIOV
devices. Often they allow VFs driven by untrusted entities
to perform only a limited set of management or config-
uration operations. In some implementations, the VF

performs no such operations; instead, it sends requests to
perform them to the PF, which does so after first validating
them.

On the data path, the situation is markedly different.
SRIOV’s raison d’être is to avoid host involvement on
the data path. Untrusted guests with directly assigned
VFs perform data path operations—sending and receiving
network frames—directly against the device. Since the
device usually has a single link to the edge switch, the
device aggregates all traffic, both from the trusted host
and from the untrusted guests, and sends it on the single
shared link. As a result, untrusted guests can send any
network frames to the edge switch.

Giving untrusted guests uncontrolled access to the edge
switch has two implications. First, since the edge switch
uses its physical resources (CAM tables, queues, pro-
cessing power) to process untrusted guests’ traffic, the
switch becomes vulnerable to various denial of service
attacks. Second, sharing the same physical link between
trusted and untrusted entities exposes the network to
many Ethernet data-link layer network attacks such as
Address Resolution Protocol (ARP) poisoning, Media
Access Control (MAC) flooding, ARP spoofing, MAC
address spoofing, and Spanning Tree Protocol (STP) at-
tacks [13, 16, 43, 52, 65, 67]. Therefore, the edge switch
must never trust ports connected to virtualized hosts with
SRIOV device.

Although the problem of uncontrolled access of un-
trusted end-points is general to Ethernet networks, using
an SRIOV devices imposes additional limitations. As we
will see in the next few subsections, not trusting the port
sometimes means giving up the required functionality. Or-
ganizations deploying SRIOV today must choose between
SRIOV and important functionality such as Ethernet flow
control.

3.1. Traditional Lossy Ethernet

Traditional Ethernet is a lossy protocol; it does not guaran-
tee that data injected into the network will reach its desti-
nation. Data frames can be dropped for different reasons:
because a frame arrived with errors or because a received
frame was addressed to a different end-station. But most
data frame drops happen when the receiver’s buffers are
full and the receiving end-station has no memory avail-
able to store incoming data frames. In the original design
of the IEEE 802.3 Ethernet standard, reliability was to
be provided by upper-layer protocols, usually TCP [56],
with traditional Ethernet networks providing best effort
service and dropping frames whenever congestion occurs.

3

3.2. Flow Control in Traditional Ethernet

Ethernet Flow Control (FC) was proposed to control con-
gestion and create a lossless data link medium. FC enables
a receiving node to signal a sending node to temporarily
stop data transmission. According to the IEEE 802.3x
standard [6], this can be accomplished by sending a spe-
cial Ethernet PAUSE frame. The IEEE 802.3x PAUSE
frame is defined in Annex 31B of the IEEE 802.3 spec-
ification [9] and uses the MAC frame format to carry
PAUSE commands.

When a sender transmits data faster than the receiver
can process it and the receiver runs out of free buffers,
the receiver generates a MAC control frame and sends a
PAUSE request to the sender. Upon receiving the PAUSE
frame, the sender stops transmitting data. The PAUSE
frame includes information on how long to pause trans-
mission.

The pause_time is a two byte MAC Control pa-
rameter in the PAUSE frame that is measured in units
of pause_quanta. It can be between 0 to 65535
pause_quanta. The pause_time tells the send-
ing node how long to pause. The receiver can also tell
the sender to resume transmission by sending a special
PAUSE frame with the pause_time value set to 0.

Each pause_quanta equals 512 “bit times,” de-
fined as the time required to eject one bit from the NIC.
One bit time is 1 divided by the NIC speed. The max-
imal PAUSE frame pause_time value can be 65535
pause_quanta, which is 65535×512 = 33553920 bit
times.

For 1 Gbps networks, one PAUSE frame with
pause_time value of 65535 pause_quantawill tell
the sender to stop transmitting for 33553920 bit times,
i.e., 33.55392 ms. A sender operating at 10 Gbps speed
will pause for 3.355392 ms. A sender operating at 40
Gbps speed will pause for 0.838848 ms.

As shown in Table 1, sending such a PAUSE frame at
a rate of 30 frames/second will tell the sender to com-
pletely stop transmission on a 1Gbps link. For a sender
operating at 10 Gbps speed to stop transmission requires
sending 299 frames/second. For a sender operating at 40
Gbps speed to stop transmission requires sending 1193
frames/second.

3.3. Priority Flow Control in Converged Ethernet

To improve the performance and reliability of Ethernet
and make it more suitable for data centers, the IEEE
802.1 working group proposed a new set of standards.
These new Ethernet standards are known as Data Center
Bridging (DCB) or Converged Enhanced Ethernet (CEE).

link speed,
Gbps

single frame
pause time, ms

frame rate required to
stop transmission,

frames/second
1 33.554 30

10 3.355 299
40 0.849 1193

Table 1. The rate at which a network device should receive
PAUSE frames in order to stop transmission completely.
The pause_time value of each frame is 0xFFFF.

In addition to IEEE 802.3x Ethernet PAUSE, the
new standard proposed to make Ethernet truly “loss-
less” in data center environments by adding Priority-
based Flow Control (PFC), standardized in IEEE standard
802.1Qbb [8].

Similar to the 802.3x FC, PFC is a link-level flow con-
trol mechanism, but it is implemented on a per-flow basis.
While 802.3x FC pauses all traffic on the link, PFC al-
lows you to pause specific flows of traffic using the same
PAUSE frame structure. PFC operates on individual flows
or traffic classes, as defined by Annex I of IEEE 802.1Q
standard [7]. Up to 8 traffic classes can be defined for
PFC per link.

3.4. Attacking VMs via Flow Control

Direct device assignment enables malicious guests to
attack the Ethernet network via well-known Layer 2
attacks [13, 16, 43, 52, 65, 67]. Even when using
virtualization-aware switching extensions such as the Vir-
tual Edge Port Aggregator (VEPA) [26,27] (also discussed
in Section 8), all guests with direct access to the VFs of
the same PF still share the same physical link to the edge
switch, and the edge switch still allocates processing re-
sources per link.

For example, both 802.3x and 802.1Qbb perform flow
control on a link-level basis, the same link that is shared
between VMs. That is, any flow control manipulation
performed by a single VM will affect the PF and all VFs
associated with this PF. This means that a malicious VM
is capable of controlling the bandwidth and latency of all
VMs that share the same adapter.

The malicious VM can pause all traffic on the link by
sending 802.3x PAUSE frames and can stop specific flows
by sending 802.1Qbb PAUSE frames. To stop all traffic
on a 10 Gbps Ethernet link, an attacker needs to transmit
PAUSE frames at a rate of 300 frames/second, which is
about 155 Kbps of bandwidth. The attacker can fully
control the bandwidth and latency of all tenant VMs with
minimal required resources and without any cooperation
from the host or from other guest VMs.

4

4. Attack Evaluation

4.1. Experimental Setup

We constructed a lab setup in which we perform and
evaluate the flow-control attack described in the previous
section. We use a Dell PowerEdge R420 server, which is
a dual socket with six cores per socket, with Intel Xeon
E5-2420 CPUs running at 1.90GHz. The chipset is the
Intel C600 series, which supports Intel virtualization tech-
nology for directed I/O (VT-d) [38]. The server includes
16GBs of memory and an SRIOV-capable Intel NIC in-
stalled in PCIe generation 3 slots with two VFs enabled.

We use the KVM Hypervisor [46] and Ubuntu server
13.10 with 3.11.0 x86_64 kernel for the host, guest VMs,
and the client. Each guest is created with 2GBs of mem-
ory, two virtual CPUs, and one VF directly assigned to it.
Client and host machines are identical servers connected
to the same dedicated switch, as shown in Figure 3.

To achieve consistent results, the server’s BIOS profile
is performance optimized, all power optimizations are
tuned off, and Non-Uniform Memory Access (NUMA)
is enabled. The guest virtual CPUs are pinned to the
cores on the same NUMA node to which the Intel PF is
connected. The host allocates to the guest memory from
the same NUMA node as well.

For our 1GbE environment, we use an Intel Ethernet
I350-T2 network interface connected to a Dell Power-
Connect 6224P 1Gb Ethernet switch. For our 10GbE
environment, we use an Intel 82599 10 Gigabit TN net-
work interface connected to an HP 5900AF 10Gb Ethernet
switch.

Host and client use their distribution’s default drivers
with default configuration settings. Guest VMs use ver-
sion 2.14.2 of the ixgbevf driver for the Intel 10G
82599 Ethernet controller virtual function and the default
igbvf version 2.0.2-k for the Intel 1G I350 Ethernet
controller virtual function. Ethernet flow control IEEE
802.3x is enabled on switch ports. We set the Ethernet
Maximal Transfer Unit (MTU) to 1500 bytes on all Ether-
net switches and network interfaces in our tests.

4.2. Benchmark Methodology

We conduct a performance evaluation according to the
methodology in RFC 2544 [23]. For throughput tests, we
use an Ethernet frame size of 1518 bytes and measure
maximal throughput without packet loss. Each throughput
test runs for at least 60 seconds and we take the average
of 5 test cycles. To measure latency, we use 64 and 1024
byte messages. Each latency test runs at least 120 seconds
and we measure the average of at least 15 test cycles.

VF1 VF2

host

client
PF

SR-IOV

enabled NIC

Figure 3. Setup scheme

Benchmark Tools: We measure throughput and la-
tency with two well-known network benchmark utili-
ties: iperf [3] and netperf [41]. The iperf and
netperf clients are run on the client machine and
iperf server and netperf servers are run on VM1.
We measure on the client the bandwidth and latency from
the client to VM1.

Traffic Generators: In addition to the traffic generated
by the benchmark tools, we use tcpdump [40] to capture
traffic and tcpreplay [5] to send previously captured
and modified frames at the desired rate.

Testbed Scheme: The testbed scheme is shown in Fig-
ure 3. Our testbed consists of two identical servers. One
server is the client and the other server is the host with
SRIOV capable NIC. We configure two VFs on the host’s
SRIOV PF. We assign VF1 to the guest VM1 and VF2 to
the guest VM2. Client and host machines are connected
to the same Ethernet switch. We generate traffic between
VM1 and the client using iperf and netperf. VM2
is the attacking VM.

4.3. Flow-Control Attack Implementation

We use the tcpreplay [5] utility to send specially crafted
802.3x PAUSE frames at the desired rate from the mali-
cious VM2. We use 802.3x PAUSE frames for the sake
of simplicity, but we could have used PFC frames instead.
PFC uses exactly the same flow control mechanism and
has the same MAC control frame format. The only dif-
ference between PFC frames and PAUSE frames is the
addition of seven pause_time fields in PFC that are
padded in 802.3x frame format.

When the switch receives a PAUSE frame from VM2,
it inhibits transmission of any traffic on the link between
the switch and the PF, including the traffic between the
client and VM1, for a certain number of pause_time
quanta. Sending PAUSE frames from VM2, we can ma-

5

0

200

400

600

800

1000

 0 10 20 30 40 50 60 70v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
s
 [

M
b

/s
]

time [seconds]

(a)

0

200

400

600

800

1000

 0 50 100 150 200 250 300

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
 [

M
b

/s
]

pause frames attacker sends
 each second [frames/second]

(b)

Figure 4. PAUSE frame attack: victim throughput in 1GbE environment

0

2

4

6

8

10

 10 20 30 40 50 60 70v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
s
 [

G
b

/s
]

time [seconds]

(a)

0

2

4

6

8

10

 0 100 200 300

v
ic

ti
m

 t
h

ro
u

g
h

p
u

t
 [

G
b

/s
]

pause frames attacker sends
 each second [frames/second]

(b)

Figure 5. PAUSE frame attack: victim throughput in 10GbE environment

nipulate the bandwidth and latency of the traffic between
VM1 and the client. The value of pause_time of each
PAUSE frame is 0xFFFF pause_quanta units. Know-
ing link speed, we can calculate PAUSE frame rate, as
described in Section 3, and impose precise bandwidth
limits and latency delays on VM1. The results of the at-
tack in both 1GbE and 10GbE environments are presented
in Section 4.4.

4.4. Attack Results

Figures 4 and 5 show the results of the PAUSE frame
attack on victim throughput in the 1GbE and 10GbE en-
vironments respectively. Figures 4a and 5a show victim
(VM1) throughput under periodic attack of VM2. Every
10 seconds, VM2 transmits PAUSE frames for 10 sec-
onds at 30 frames/second (as shown in Figure 4a) and at
300 frames/second (as shown in Figure 5a). In this test
we measure the throughput of the victim system VM1.
We can clearly see from the figures that VM2 can gain
complete control over VM1 throughput: starting from the
tenth second, the attacker completely stops traffic on the
link for ten seconds.

Figure 6 shows the results of the PAUSE frame attack

on victim latency in the 10GbE environment. Figure 6a
shows victim latency under the same periodic attack de-
scribed above. In this test we use 64B and 1024B mes-
sages. For better result visualization, we lowered the at-
tack rate to 150 PAUSE frames/second. Figure 6a shows
that the attacker can increase victim latency to 250% by
running the attack at a rate of only 150 frames/second.

Victim throughput Figures 4b and 5b display through-
put of VM1 as a function of the rate of PAUSE frames
VM2 sends. From Figure 4b we can see that VM2 can
pause all traffic on the 1GbE link with almost no effort,
by sending PAUSE frames at a rate of 30 frames/second.
For the 10GbE link, VM2 needs to work a little bit harder
and raise its rate to 300 frames/second. This test’s results
confirm the calculations shown in Table 1. Figures 7a and
7b confirm that the measured victim throughput is exactly
as predicted. In other words, it is easily and completely
controlled by the attacker.

These tests show that a malicious VM can use the
PAUSE frame attack to control the throughput of other
VMs with precision. Furthermore, we see that the PAUSE
frame attack requires minimal effort from the attacker and
will be hard to detect amid all the other network traffic. To

6

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120

v
ic

ti
m

 l
a

te
n

c
y
 u

n
d

e
r

 p
e

ri
o

d
ic

 a
tt

a
c
k
 [

µ
s
]

time [seconds]

(a)

 0

 500

 1000

 1500

 2000

 0 50 100 150 200 250 300

v
ic

ti
m

 l
a

te
n

c
y
 [

µ
s
]

pause frames attacker sends
 each second [frames/second]

message size
64B
1024B

(b)

Figure 6. PAUSE frame attack: victim latency in 10GbE environment

200

400

600

800

1000

 0 200 400 600 800 1000

m
e
a
s
u
re

d
 t
h
ro

u
g
h
p
u
t

 [
M

b
/s

]

expected throughput [Mb/s]

(a)

0

2

4

6

8

10

 0 2 4 6 8 10

m
e
a
s
u
re

d
 t
h
ro

u
g
h
p
u
t

[G
b
/s

]

expected throughput [Gb/s]

(b)

0

500

1000

1500

2000

 0 500 1000 1500 2000

m
e
a
s
u
re

d
 l
a
te

n
c
y

 [
µ

s
]

expected latency [µs]

message size
64B
1024B

(c)

Figure 7. PAUSE frame attack: expected vs. measured throughput and latency

halt all transmissions on the 10GbE link, the attacker only
needs to send 64B PAUSE frames at 300 frames/second.
300 frames/second is approximately 0.002% of the 14.88
million frames/second maximum frame rate for 10GbE. 1

Discovering such an attack can be quite challenging, due
to the low frame rate involved, especially on a busy high-
speed link such as 10GbE or 40GbE.

Victim latency Figure 6b shows the victim’s latency as
a function of the attacker’s PAUSE frame rate. In this test
we measure the latency of 64 byte messages and 1024
byte messages. We see that the figures for both 64B and
1024B are barely distinguishable and almost converge;
the latency is the same for small and large size messages
under attack.

In Figure 7c we see that measured latency and expected
latency differ somewhat. We are currently investigating
these results to understand why. In practice, this dif-
ference means that an attacker can control the victim’s
latency with slightly less precision than it can control its
throughput, but it can still control both with high precision
and relatively little effort.

Experiments with Non-Intel Devices We also tried
the attack described above on another vendor’s 40GbE
SRIOV adapter. Whenever the attacking VM transmitted

1 The maximum frame rate equals the link speed divided by the sum
of sizes of the preamble, frame length and inter-frame gap.

MAC control frames (PAUSE frames) through its VF, the
adapter completely locked up and became unresponsive.
It stopped generating both transmit and receive interrupts,
and required manual intervention to reset it, by reloading
the PF driver on the host. This lockup appears to be a
firmware issue and has been communicated to the adapter
vendor.

Clearly, with this adapter and this firmware issue, a
malicious VM could trivially perform a straightforward
denial of service attack against its peer VMs that use this
adapter’s VFs and against the host. But since this attack
is trivial to discover, we focus instead on the stealthier
PAUSE frame attack, which is much harder to discover
and protect against.

5. Securing SRIOV

The attack described in the previous section is the result
of a fundamental limitation of SRIOV: from the network
point of view, VFs and their associated untrusted VMs are
all lumped together into a single end-station. Therefore,
to secure SRIOV and eliminate the attack while keeping
flow control functionality, we propose to enhance Ethernet
NICs and/or switch awareness of VFs of connected hosts.
We propose a system in which Ethernet flows are managed
per VF of the SRIOV device and not per physical link.

In such a system, either the VEB in the NIC or the

7

edge switch become aware of different VFs and imple-
ment flow control (and all related functionality) for each
VF. This can be done in the NIC itself, in which case the
rest of the network can remain unaware of it, or it can
be done in the edge switch. If done in the edge switch,
the switch needs to become aware of which VF a given
Ethernet frame is coming from (using its MAC address).
The switch can discover the NIC’s virtualization capabil-
ities and each of its VF’s MAC addresses and network
states through the virtual system interface (VSI) discov-
ery and configuration protocol (VDP) defined in the IEEE
802.1Qbg standard [10].

We built a prototype of such a system, where Ether-
net flows are managed per VF. The architecture of our
Virtualization-Aware Network Flow Controller (VANFC)
is shown in Figure 8. Our prototype VANFC does not
extend or change the functionality of either the Ethernet
switch or the SRIOV device, as would be required for
a hardware-based VANFC system. Instead, we approxi-
mate such a hardware-based implementation by putting a
machine running the Linux Ethernet bridge [4] between
the host’s unmodified SRIOV adapter and the unmodi-
fied Ethernet switch. This machine is a “bump on the
wire,” transparent to the host and to the switch. Using the
Ethernet bridge to direct each VF’s traffic to a different
switch port, we approximate a hardware-based VANFC
system where every VF’s flows are tracked and handled
separately.

VF1 VF2

host

PF

SR-IOV

enabled NIC

Figure 8. Virtualization-Aware Network Flow Controller

We emphasize that the eventual hardware-based VANFC
system will be implemented in more optimal way; it is
clear that assigning a dedicated port on a switch to each
VF of an SRIOV device is neither practical nor scalable.
We use this setup to demonstrate the viability of the pro-
posed system without building a new adapter or a new

switch.
The Linux bridge is configured on an x86-based com-

modity server running Ubuntu server 13.10 with kernel
3.11.0. We use Dell PowerEdge R610, which is a four-
core single-socket server with Intel Xeon E5620 CPU run-
ning at 2.40GHz. The server includes 16GB of memory
and two Intel 82599 10 Gigabit TN Network controllers
installed in PCIe gen 2 slots.

Linux Bridge Configuration We configure the Linux
bridge to use three 10GbE interfaces. One is connected
back-to-back to the host PF and the other two are con-
nected to ports A and B of the switch, as shown in Fig-
ure 8. We use ebtables [28] to configure the bridge to
route VM1’s traffic to port A and VM2’s traffic to port B
of the Ethernet switch.

The standard Ethernet bridge should not forward MAC
control frames that are used to carry PAUSE commands
since MAC control frames are designed to be processed
by Ethernet devices. Since we want the bridge to de-
liver all of the traffic from VM1 and VM2, including the
PAUSE frames sent by malicious VM2, we modify the
Linux bridging code to forward MAC control frames and
use ebtables to route frames to the relevant outgoing
interface. We also enable flow control functionality on
the switch. Our experiments use static configuration for
ebtables and for the Linux bridge, but we could have
automated the process using the VDP protocol [10].

Device Driver Modification We use a modified
ixgbe driver version 3.21.2 for Intel 10G 82599 net-
work controllers on the bridge machine. According to the
Intel 82599 controller data-sheet [39], the flow control
mechanism of the device receives PAUSE frames when
flow control is enabled; when flow control is disabled the
device silently drops PAUSE frames.

In our setup, we disable the flow control feature of Intel
NICs of the bridge machine (using ethtool -A ethX
autoneg off rx off tx off) and we configure
the device to forward PAUSE frames up to the OS, where
they should be processed by the bridge and ebtables.
We do this by enabling the Pass MAC Control Frames
(PMCF) bit of the MAC Flow Control (MFLCN) register,
as described in section 3.7.7.2 of the Intel 82599 data-
sheet [39].

Putting It All Together Our prototype system routes
all traffic between VM1 and the client through port A on
the switch. When malicious VM2 issues the attack and
sends PAUSE frames, the Linux bridge forwards these
frames to port B of the switch. When the switch receives a
PAUSE frame on port B, it pauses the traffic transmission
on that port for the requested amount of time and does

8

 0

 0.2

 0.4

 0.6

 0.8

 1

iperf
stream
[Mb/s]

apache
1MB

[req/s]

netperf RR
64B

[packets/s]

netperf RR
1024B

[packets/s]

memcached
[req/s]

apache
1KB

[req/s]

n
o
rm

a
liz

e
d
 t
h
ro

u
g
h
p
u
t

[r
e
la

ti
v
e
 t
o
 b

a
s
e
lin

e
 s

y
s
te

m
]

baseline system
baseline system under attack
protected system
protected system under attack

latency oriented throughput oriented

Figure 9. VANFC performance evaluation results

not pause traffic on port A. While port B inhibits trans-
missions, traffic between VM1 and the client continues
flowing through port A, without any interruption from
malicious VM2. This way, flow control in the system is
handled on a per VF and not a per link basis. Each VM,
through its assigned VF, has dedicated and independent
flow control resources on the switch.

6. Evaluating VANFC

We evaluate VANFC in several scenarios. The baseline
scenario includes an unprotected system, as shown in Fig-
ure 3, and no attack is performed during the test. In this
scenario we measure the system’s baseline throughput
and latency. The baseline system under attack includes
the same unprotected system but here VM2 runs the at-
tack during the test, sending PAUSE frames at constant
rate of 150 frames/second. In this scenario we measure
the effectiveness of the attack on an unprotected system.

In the protected system scenario, VANFC, shown in
Figure 8, replaces the unprotected system. In this scenario
VM2 does not perform any attack during the test. We
use this scenario to measure the performance overhead
introduced by VANFC compared to the baseline. In the
protected system under attack scenario, we also use
VANFC, but here the attacker VM2 sends PAUSE frames
at a constant rate of 150 frames/second. In this scenario
we verify that VANFC indeed eliminates the attack.

We perform all tests on the 10GbE network with the
same environment, equipment, and methodology as de-
scribed in Section 4.1.

Evaluation Tests To evaluate the performance of the
described scenarios, we test throughput and latency using
iperf and netperf, as previously described.

In addition, we configure the apache2 [30] web
server on VM1 to serve two files, one sized 1KB and
one sized 1MB. We use apache2 version 2.4.6 installed
from the Ubuntu repository with the default configuration.
We run the ab [1] benchmark tool from the client to test
the performance of the web server on VM1.

VM1 also runs memcached [31] server version 1.4.14,
installed from the Ubuntu repository with the default con-
figuration file. On the client we run the memslap [70]
benchmark tool, part of the libmemcached client li-
brary, to measure the performance of the memcached
server on VM1.

Figure 9 displays normalized results of the performed
tests. We group test results into two categories: through-
put oriented and latency oriented. Throughput oriented
tests are iperf running pure TCP stream and apache2
serving a 1MB file. These tests are limited by the 10GbE
link bandwidth. During the tests client and server CPUs
are almost idle.

In the throughput oriented tests we see that VANFC
completely blocks VM2’s attack and introduces no per-

9

formance penalty.
In the latency oriented tests we see that VANFC blocks

the attack effectively as well. However, in our current im-
plementation, VANFC is actually an additional L2 device
(Linux bridge) and any latency test must include some
additional constant latency due to the Linux bridge. This
constant latency is approximately 50µs in our setup. An
eventual implementation of VANFC in hardware, at either
the NIC or the edge switch, will eliminate this overhead.

7. Necessity of Flow Control

One can argue that flow control is not required for proper
functionality of high level protocols such as TCP. It then
follows from this argument that SRIOV can be made
“secure” simply by disabling flow control.

The TCP protocol does provide its own flow control
mechanism. However, many studies have shown that
TCP’s main disadvantage is high CPU utilization [24, 32,
42, 51, 59]. Relying on TCP alone for flow control leads
to increased resource utilization.

In public cloud environments, users pay for computa-
tional resources. Higher CPU utilization results in higher
charges. In enterprise data centers and high-performance
computing setups, resource consumption matters as well.
Ultimately, someone pays for it. In clouds, especially,
effective resource utilization will become increasingly
more important [12].

As part of a recent effort to converge current network in-
frastructures, many existing protocols were implemented
over Ethernet, e.g., Remote DMA over Converged Ether-
net (RoCE) [17]. RoCE significantly reduces CPU utiliza-
tion when compared with TCP.

A few recent studies about performance evaluation of
different data transfer protocols over high speed links have
been published [44, 45, 60, 64]. Kissel et al. [45] com-
pare TCP and RoCE transfers over 40GbE links using the
same application they developed for benchmarking. Us-
ing TCP, they managed to reach a speed of 22Gbps while
the sender’s CPU load was 100% and the receiver’s CPU
load was 91%. With OS-level optimizations, they man-
aged to reach a speed of 39.5 Gbps and slightly reduce the
sender’s CPU load to 43%. Using the RoCE protocol, they
managed to reach 39.2 Gbps while the CPU load of the re-
ceiver and sender was less than 2%! These results clearly
show that RoCE significantly reduces CPU utilization and
thus the overall cost of carrying out computations. It is
especially important when a large amount of data is be-
ing moved between computational nodes in HPC or data
center environments, where virtualization is becoming
prevalent and increasing in popularity [22, 33, 50].

Studies show that RoCE cannot function properly with-

out flow control [44, 45, 60, 64]. Figure 10, taken from
Kissel et al. [45], with the authors’ explicit permission,
shows the performance effect of flow control on two com-
peting data transfers using the RoCE protocol. Figure 10a
shows the performance of a single RoCE data transfer
while another RoCE data transfer is competing with it
for bandwidth and flow control is enabled. Both transfers
effectively share link bandwidth. Figure 10b shows the
performance of the same RoCE data transfer when flow
control is disabled. As can be seen in the figure, without
flow control the RoCE data transfer suffers, achieving a
fraction of the performance shown in Figure 10a.

Kissel et al. also [45] show that the same problem is
relevant not only to RoCE but can be generalized to TCP
as well. Thus we conclude that disabling flow control
would cause less effective resource utilization and lead to
higher cost for cloud customers and for any organization
deploying SRIOV. Conversely, securing SRIOV against
flow control attacks would make it possible for SRIOV
and flow control to coexist, providing the performance
benefits of both without relinquishing security.

8. Discussion
Notes on Implementation VANFC can be implemented
as part of an SRIOV device already equipped with an
embedded Ethernet switch or it can be implemented in
the edge switch. Adding VANFC functionality to the NIC
requires less manufacturing effort; it is also more conve-
nient and cheaper to replace a single NIC on a host than
to replace an edge switch. Nevertheless, in large-scale vir-
tualization deployments, such as those of cloud providers
or corporate virtual server farms, a single 10GbE Ether-
net switch with high port density (for example, the 48
port HP 5900AF 10Gb Ethernet switch in our testbed)
serves many host servers with SRIOV capable devices.
In such scenarios, extending the Ethernet capabilities of
each SRIOV device will greatly increase management
complexity and introduce compatibility issues. Imple-
menting VANFC in the edge switch will keep network
infrastructure converged and device management simple.
In addition, upgrade of 48 SRIOV devices connected to
the 48 port switch requires considerably more resources
than single switch upgrade.

VEB and VEPA Another important security aspect of
SRIOV is VM-to-VM traffic. In SRIOV devices with an
embedded VEB switch, VM-to-VM traffic does not leave
the host network device and is not visible to the external
edge switch, which enforces the security policy on the
edge of the network. To make all VM traffic visible to the
external switch, the VEB switch should act as a VEPA
and send all VM traffic to the adjacent switch.

10

0

1

2

3

4

5

 1 2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K32K

tr
a

n
s
fe

r
ra

te
 [

G
b

/s
]

message size [KB]

(a)

0

1

2

3

4

5

 1 2 4 8 16 32 64 128 256 5121K 2K 4K 8K16K32K

tr
a

n
s
fe

r
ra

te
 [

G
b

/s
]

message size [KB]

transmit queue depth
1
2

4
8

16
32

64
128

256

(b)

Figure 10. Performance of a single RoCE flow in the system with two competing RoCE flows. Graph (a) shows perfor-
mance with enabled flow control; graph (b) shows performance with disabled flow control.

A properly configured Ethernet switch and the use of
a VEPA device can enforce a security policy (ACL, port
security) on malicious VM traffic and prevent most L2 at-
tacks. However, while VEPA solves many manageability
and security issues that pertain to switching in virtualized
environments [25], it does not address the flow control
attack we presented earlier. This is because VEPA still
shares the same single link between multiple untrusted
guests and the host and does not manage flow control per
VF.

9. Related Work

Several recent works discussed the security of self-
virtualizing devices. Pék et al. [55] described a wide
range of attacks on host and tenant VMs using directly
assigned devices. They performed successful attacks on
PCI/PCIe configuration space, on memory mapped I/O,
and by injecting interrupts. They also described an NMI
injection attack. Most of the attacks they discussed can be
blocked by a fix in the hypervisor or by proper hardware
configuration.

Richter et al. [61] showed how a malicious VM with
a directly attached VF can perform DoS attacks on other
VMs that share the same PCIe link by overloading its own
Memory Mapped I/O (MMIO) resources and flooding
the PCIe link with write request packets. As the authors
mention, this attack can be mitigated by using the QoS
mechanisms defined by the PCIe standard [54].

All of the attacks discussed in the aforementioned pa-
pers are based on weak security implementations of soft-
ware (e.g., a hypervisor) or hardware (a chipset system
error reporting mechanism) that are internal to the host.
Our attack exploits different design aspects of SRIOV
devices: it targets the interoperability of SRIOV devices
with software and hardware external to the host.

There are ongoing efforts of the Data Center Bridging
Task Group, which is a part of the IEEE 802.1 Working
Group, to standardize configuration, management and
communication of virtual stations connected to the adja-

cent bridge. The working group proposed the 802.1Qbg
Edge Virtual Bridging [10] and 802.1BR Bridge Port Ex-
tension [11] standards. Both standards concentrate on
configuration and management of the bridge services for
virtual stations, leaving the flow control of virtual stations
out of their scope. To the best of our knowledge, our work
is the first to present the problem of self-virtualizing de-
vices in converged enhanced Ethernet environments with
flow control, and the first to suggest a solution for it.

10. Conclusions and Future Work
Self-virtualizing devices with SRIOV lie at the foundation
of modern enterprise data centers, cloud computing, and
high-performance computing setups. We have shown
that SRIOV, as currently deployed on current Ethernet
networks, is incompatible with required functionality such
as flow control. This is because flow control relies on the
assumption that each endpoint is trusted, whereas with
SRIOV, each network endpoint is comprised of multiple,
possibly untrusted, virtual machines. We show how to
overcome this flaw by teaching the network edge—either
the NIC or the edge switch—about virtual functions. We
present the prototype of such a system, VANFC, and its
evaluation. Our prototype is 100% effective in securing
SRIOV against this flaw while imposing no overhead on
throughput-oriented workloads and the latency of a single
L2 device (~50µs) on latency-oriented workloads.

Future work includes continuing to investigate the se-
curity of SRIOV devices; extending our work from Ether-
net to other networking technologies such as Infiniband
and Fiber Channel; and looking at the security of direct-
assigned self-virtualizing devices other than NICs, such
as high-end GPGPUs. On VANFC specifically, we plan to
continue our evaluation and to explore what an eventual
hardware-based implementation would look like, both at
the NIC level and at the edge switch level.

11

References
[1] Apache HTTP server benchmarking tool. https:

//httpd.apache.org/docs/2.2/programs/ab.html.
[Accessed Jul, 2014].

[2] High Performance Computing (HPC) on Amazon Elastic Com-
pute Cloud (EC2) . Online : https://aws.amazon.com/
hpc/. [Accessed Jun, 2014].

[3] Iperf - The TCP/UDP Bandwidth Measurement Tool. http:
//iperf.sourceforge.net. [Accessed Jul, 2014].

[4] Linux Ethernet Bridge. http://
www.linuxfoundation.org/collaborate/
workgroups/networking/bridge. [Accessed Jul,
2014].

[5] Tcpreplay: Pcap editing and replay tools for Unix systems.
http://tcpreplay.synfin.net/. [Accessed Jul, 2014].

[6] IEEE Standards for Local and Metropolitan Area Networks: Sup-
plements to Carrier Sense Multiple Access With Collision Detec-
tion (CSMA/CD) Access Method and Physical Layer Specifica-
tions - Specification for 802.3 Full Duplex Operation and Physical
Layer Specification for 100 Mb/s Operation on Two Pairs of Cat-
egory 3 Or Better Balanced Twisted Pair Cable (100BASE-T2).
IEEE Std 802.3x-1997 and IEEE Std 802.3y-1997 (Supplement
to ISO/IEC 8802-3: 1996; ANSI/IEEE Std 802.3, 1996 Edition),
pages 1–324, 1997.

[7] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks. IEEE Std 802.1Q-2011 (Revision of IEEE Std 802.1Q-
2005), pages 1–1365, Aug 2011.

[8] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local Area
Networks–Amendment 17: Priority-based Flow Control. IEEE
Std 802.1Qbb-2011 (Amendment to IEEE Std 802.1Q-2011 as
amended by IEEE Std 802.1Qbe-2011 and IEEE Std 802.1Qbc-
2011), pages 1–40, Sept 2011.

[9] IEEE Standard for Ethernet - Section 2. IEEE Std 802.3-2012
(Revision to IEEE Std 802.3-2008), pages 752–762, Dec 2012.

[10] IEEE Standard for Local and metropolitan area networks–Media
Access Control (MAC) Bridges and Virtual Bridged Local
Area Networks–Amendment 21: Edge Virtual Bridging. IEEE
Std 802.1Qbg-2012 (Amendment to IEEE Std 802.1Q-2011 as
amended by IEEE Std 802.1Qbe-2011, IEEE Std 802.1Qbc-2011,
IEEE Std 802.1Qbb-2011, IEEE Std 802.1Qaz-2011, IEEE Std
802.1Qbf-2011, and IEEE Std 802.aq-2012), pages 1–191, July
2012.

[11] IEEE Standard for Local and metropolitan area networks–Virtual
Bridged Local Area Networks–Bridge Port Extension. IEEE Std
802.1BR-2012, pages 1–135, July 2012.

[12] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster,
and Dan Tsafrir. The Rise of RaaS: The Resource-as-a-service
Cloud. Commun. ACM, 57(7):76–84, July 2014.

[13] Hayriye Altunbasak, Sven Krasser, HenryL. Owen, Jochen Grim-
minger, Hans-Peter Huth, and Joachim Sokol. Securing Layer 2
in Local Area Networks. In Networking - ICN 2005, volume 3421
of Lecture Notes in Computer Science, page 699–706. Springer
Berlin Heidelberg, 2005.

[14] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf Schuster.
vIOMMU: efficient IOMMU emulation. In USENIX Annual
Technical Conference (ATC), 2011.

[15] Nadav Amit, Muli Ben-Yehuda, and Ben-Ami Yassour. IOMMU:
Strategies for Mitigating the IOTLB Bottleneck. In Workshop on
Interaction between Operating Systems & Computer Architecture
(WIOSCA), 2010.

[16] Oleg K Artemjev and Vladislav V Myasnyankin. Fun with the
Spanning Tree Protocol. Phrack, 11:61, 2003.

[17] InfiniBand Trade Association. InfiniBand Architecture Speci-
fication Release 1.2. 1 Annex A16: RoCE. InfiniBand Trade
Association, 2010.

[18] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Har-
ris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield.
Xen and the Art of Virtualization. volume 37, pages 164–177.
ACM, 2003.

[19] Muli Ben-Yehuda, Eran Borovik, Michael Factor, Eran Rom,
Avishay Traeger, and Ben-Ami Yassour. Adding Advanced Stor-
age Controller Functionality via Low-Overhead Virtualization.
In USENIX Conference on File & Storage Technologies (FAST),
2012.

[20] Muli Ben-Yehuda, Jon Mason, Orran Krieger, Jimi Xenidis, Leen-
dert Van Doorn, Asit Mallick, Jun Nakajima, and Elsie Wahlig.
Utilizing IOMMUs for Virtualization in Linux and Xen. In Ot-
tawa Linux Symposium (OLS), pages 71–86, 2006.

[21] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl Rister,
Alexis Bruemmer, and Leendert van Doorn. The Price of Safety:
Evaluating IOMMU Performance. In Ottawa Linux Symposium
(OLS), pages 9–20, 2007.

[22] Georg Birkenheuer, André Brinkmann, Jürgen Kaiser, Axel
Keller, Matthias Keller, Christoph Kleineweber, Christoph Kon-
ersmann, Oliver Niehörster, Thorsten Schäfer, Jens Simon, and
Maximilian Wilhelm. Virtualized HPC: a contradiction in terms?
Software: Practice and Experience, 42(4):485–500, 2012.

[23] S. Bradner and J. McQuaid. Benchmarking methodology for
network interconnect devices. RFC 2544, Internet Engineering
Task Force, March 1999.

[24] David D Clark, Van Jacobson, John Romkey, and Howard Sal-
wen. An analysis of TCP processing overhead. Communications
Magazine, IEEE, 27(6):23–29, June 1989.

[25] Paul Congdon. Enabling Truly Converged Infrastructure.
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/
talks/100313-WIOV-Congdon-dist.pdf, 2010.

[26] Paul Congdon, Anna Fischer, and Prasant Mohapatra. A Case for
VEPA: Virtual Ethernet Port Aggregator. In Proc. 2nd Workshop
on Data Center—Converged and Virtual Ethernet Switching (DC
CAVES 2010), Amsterdam, 2010.

[27] Paul Congdon and Chuck Hudson. Modularization of
Edge Virtual Bridging–proposal to move forward. http:
//www.ieee802.org/1/files/public/docs2009/
new-evb-congdon-vepa-modular-0709-v01.pdf,
2009.

[28] Bart de Schuymer and Nick Fedchik. Ebta-
bles/Iptables Interaction On A Linux-Based Bridge.
http://ebtables.sourceforge.net, 2003. [Ac-
cessed Jul, 2014].

[29] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian,
and Haibing Guan. High performance network virtualization with
SR-IOV. In IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2010.

[30] Roy T. Fielding and Gail Kaiser. The Apache HTTP Server
Project. IEEE Internet Computing, 1(4):88–90, 1997.

[31] Brad Fitzpatrick. Distributed Caching with Memcached. Linux
Journal, (124), 2004.

[32] Annie P Foong, Thomas R Huff, Herbert H Hum, Jaidev P Pat-
wardhan, and Greg J Regnier. TCP performance Re-visited. In
IEEE International Symposium on Performance Analysis of Sys-
tems and Software, pages 70–79, March 2003.

[33] Ada Gavrilovska, Sanjay Kumar, Himanshu Raj, Karsten Schwan,
Vishakha Gupta, Ripal Nathuji, Radhika Niranjan, Adit Ranadive,
and Purav Saraiya. High-Performance Hypervisor Architectures:
Virtualization in HPC Systems. In Workshop on System-level
Virtualization for HPC (HPCVirt), 2007.

[34] Abel Gordon, Nadav Amit, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Assaf Schuster, and Dan Tsafrir. ELI: bare-metal
performance for I/O virtualization. In Proceedings of the Sev-
enteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’12.
ACM, 2012.

[35] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-Yehuda,
Avishay Traeger, and Razya Ladelsky. Efficient and scalable
paravirtual i/o system. In USENIX Annual Technical Conference
(ATC), 2013.

[36] Adam Hawley and Yoav Eilat. Oracle Exalogic Elastic Cloud:
Advanced I/O Virtualization Architecture for Consolidating High-
Performance Workloads. An Oracle White Paper, 2012.

[37] Shu Huang and Ilia Baldine. Performance Evaluation of 10GE
NICs with SR-IOV Support: I/O Virtualization and Network
Stack Optimizations. In Proceedings of the 16th International
GI/ITG Conference on Measurement, Modelling, and Evaluation

12

https://httpd.apache.org/docs/2.2/programs/ab.html
https://httpd.apache.org/docs/2.2/programs/ab.html
https://aws.amazon.com/hpc/
https://aws.amazon.com/hpc/
http://iperf.sourceforge.net
http://iperf.sourceforge.net
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://tcpreplay.synfin.net/
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/talks/100313-WIOV-Congdon-dist.pdf
http://sysrun.haifa.il.ibm.com/hrl/wiov2010/talks/100313-WIOV-Congdon-dist.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://www.ieee802.org/1/files/public/docs2009/new-evb-congdon-vepa-modular-0709-v01.pdf
http://ebtables.sourceforge.net

of Computing Systems and Dependability and Fault Tolerance,
MMB’12/DFT’12, pages 197–205, Berlin, Heidelberg, 2012.
Springer-Verlag.

[38] Intel Corporation. Intel Virtualization Technology for Directed
I/O, Architecture Specification, 2013. Revision 2.2. Intel Corpo-
ration. [Accessed Sep, 2013].

[39] Intel Corporation. Intel 82599 10 GbE Controller Datasheet,
2014. Revision 2.9. [Accessed August 2014].

[40] Van Jacobson, Craig Leres, and Steven McCanne. Tcp-
dump: a powerful command-line packet analyzer. http:
//www.tcpdump.org. [Accessed Jul, 2014].

[41] Rick Jones. The Netperf Benchmark. http://
www.netperf.org. [Accessed Jul, 2014].

[42] Jonathan Kay and Joseph Pasquale. The importance of non-data
touching processing overheads in TCP/IP. ACM SIGCOMM
Computer Communication Review, 23(4):259–268, 1993.

[43] Timo Kiravuo, Mikko Sarela, and Jukka Manner. A Survey
of Ethernet LAN Security. Communications Surveys Tutorials,
IEEE, 15(3):1477–1491, Third 2013.

[44] Ezra Kissel and Martin Swany. Evaluating High Performance
Data Transfer with RDMA-based Protocols in Wide-Area Net-
works. In IEEE 14th International Conference on High Perfor-
mance Computing and Communication & IEEE 9th International
Conference on Embedded Software and Systems (HPCC-ICESS),
pages 802–811. IEEE, 2012.

[45] Ezra Kissel, Martin Swany, Brian Tierney, and Eric Pouyoul. Effi-
cient Wide Area Data Transfer Protocols for 100 Gbps Networks
and Beyond. In Proceedings of the Third International Workshop
on Network-Aware Data Management, NDM ’13, pages 3:1–3:10,
New York, NY, USA, 2013. ACM.

[46] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. KVM: the Linux Virtual Machine Monitor. In Ottawa
Linux Symposium (OLS), 2007. http://www.kernel.org/
doc/ols/2007/ols2007v1-pages-225-230.pdf.
[Accessed Apr, 2011].

[47] Mike Ko and Renato Recio. Virtual Ethernet Bridg-
ing. http://www.ieee802.org/1/files/public/
docs2008/new-dcb-ko-VEB-0708.pdf, 2008.

[48] Joshua Levasseur, Volkmar Uhlig, Jan Stoess, and Stefan Götz.
Unmodified Device Driver Reuse and Improved System Depend-
ability via Virtual Machines. In OSDI ’04: 6th conference on
Symposium on Operating Systems Design & Implementation,
page 2, 2004.

[49] Jiuxing Liu. Evaluating standard-based self-virtualizing devices:
A performance study on 10 GbE NICs with SR-IOV support. In
IPDPS ’10: IEEE International Parallel and Distributed Process-
ing Symposium, 2010.

[50] Glenn Lockwood. SR-IOV: The Key to Fully Virtualized HPC
Clusters. Online : http://insidehpc.com/2013/12/
30/sr-iov-key-enabling-technology-fully-
virtualized-hpc-clusters/. Presented on SC13:
International Conference for High Performance Computing,
Networking, Storage and Analysis. [Accessed Jun, 2014].

[51] Evangelos P Markatos. Speeding up TCP/IP: faster processors
are not enough. In 21st IEEE International Conference on Per-
formance, Computing, and Communications, pages 341–345,
2002.

[52] Guillermo Mario Marro. Attacks at the Data Link Layer. Master’s
thesis, University of California, Davis, 2003.

[53] Mellanox Technologies. Mellanox OFED for Linux User Manual,
2014. Revision 2.2-1.0.1. [Accessed July 2014].

[54] PCI SIG. PCI Express Base Specification, Revision 3.0, 2010.
[55] Gábor Pék, Andrea Lanzi, Abhinav Srivastava, Davide Balzarotti,

Aurélien Francillon, and Christoph Neumann. On the Feasibility
of Software Attacks on Commodity Virtual Machine Monitors
via Direct Device Assignment. In Proceedings of the 9th ACM
Symposium on Information, Computer and Communications Se-
curity, ASIA CCS ’14, pages 305–316. ACM, 2014.

[56] J. B. Postel. Transmission control protocol. RFC 793, Internet
Engineering Task Force, September 1981.

[57] Himanshu Raj and Karsten Schwan. High performance and
scalable I/O virtualization via self-virtualized devices. In HPDC

’07: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, pages 179–188, 2007.

[58] Kaushik K. Ram, Jose R. Santos, Yoshio Turner, Alan L. Cox,
and Scott Rixner. Achieving 10Gbps using Safe and Transparent
Network Interface Virtualization. In ACM/USENIX International
Conference on Virtual Execution Environments (VEE), 2009.

[59] G. Regnier, S. Makineni, R. Illikkal, R. Iyer, D. Minturn, R. Hug-
gahalli, D. Newell, L. Cline, and A Foong. TCP onloading for
data center servers. Computer, 37(11):48–58, Nov 2004.

[60] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, T. Robertazzi, B.L.
Tierney, and E. Pouyoul. Protocols for Wide-Area Data-Intensive
Applications: Design and Performance Issues. In International
Conference on High Performance Computing, Networking, Stor-
age and Analysis (SC), pages 1–11, Nov 2012.

[61] Andre Richter, Christian Herber, Holm Rauchfuss, Thomas Wild,
and Andreas Herkersdorf. Performance Isolation Exposure in
Virtualized Platforms with PCI Passthrough I/O Sharing. In Archi-
tecture of Computing Systems (ARCS), pages 171–182. Springer
International Publishing, 2014.

[62] Rusty Russell. virtio: towards a de-facto standard for virtual I/O
devices. SIGOPS Oper. Syst. Rev., 42(5):95–103, 2008.

[63] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim.
Virtualizing I/O Devices on Vmware Workstation’s Hosted Vir-
tual Machine Monitor. In USENIX Annual Technical Conference
(ATC), pages 1–14, 2001.

[64] Brian Tierney, Ezra Kissel, Martin Swany, and Eric Pouyoul.
Efficient Data Transfer Protocols for Big Data. In IEEE 8th
International Conference on E-Science, volume 0, pages 1–9,
Los Alamitos, CA, USA, 2012. IEEE Computer Society.

[65] Luis A. Trejo, Raúl Monroy, and Rafael López Monsalvo. Span-
ning Tree Protocol and Ethernet PAUSE Frames DDoS Attacks:
Their Efficient Mitigation. Technical report, Instituto Tecnológico
de Estudios Superiores de Monterrey, ITESM-CEM, 2006.

[66] Paul Willmann, Jeffrey Shafer, David Carr, Aravind Menon, Scott
Rixner, Alan L. Cox, and Willy Zwaenepoel. Concurrent Direct
Network Access for Virtual Machine Monitors. In IEEE Interna-
tional Symposium on High Performance Computer Architecture
(HPCA), 2007.

[67] Angus Wong and Alan Yeung. Network Infrastructure Security.
In Network Infrastructure Security, page 19–58. Springer US,
2009.

[68] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. Di-
rect device assignment for untrusted fully-virtualized virtual ma-
chines. Technical report, IBM Research Report H-0263, 2008.

[69] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman. On
the DMA mapping problem in direct device assignment. In
Proceedings of the 3rd Annual Haifa Experimental Systems Con-
ference, SYSTOR ’10, pages 18:1–18:12. ACM, 2010.

[70] Mingqiang Zhuang and Brian Aker. Memslap: Load
Testing and Benchmarking Tool for memcached. http:
//docs.libmemcached.org/bin/bin/memslap.html.
[Accessed Jul, 2014].

13

http://www.tcpdump.org
http://www.tcpdump.org
http://www.netperf.org
http://www.netperf.org
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf
http://www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-0708.pdf
http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://insidehpc.com/2013/12/30/sr-iov-key-enabling-technology-fully-virtualized-hpc-clusters/
http://docs.libmemcached.org/bin/bin/memslap.html
http://docs.libmemcached.org/bin/bin/memslap.html

	Introduction
	SRIOV Primer
	Analyzing SRIOV Security
	Traditional Lossy Ethernet
	Flow Control in Traditional Ethernet
	Priority Flow Control in Converged Ethernet
	Attacking VMs via Flow Control

	Attack Evaluation
	Experimental Setup
	Benchmark Methodology
	Flow-Control Attack Implementation
	Attack Results

	Securing SRIOV
	Evaluating vanfc
	Necessity of Flow Control
	Discussion
	Related Work
	Conclusions and Future Work

