
Open Source as a Foundation for Systems Research

Muli Ben-Yehuda Eric Van Hensbergen
muli@il.ibm.com ericvanhensbergen@us.ibm.com

“Pigmaei gigantum humeris impositi plusquam
ipsi gigantes vident”1

—Sir Isaac Newton

Introduction
You are a systems researcher at a corporate research lab.
The corporation you work for deals with both proprietary
and open source software. You have an exciting new idea
that will undoubtedly revolutionize the field, but first you
need to build a working system to validate it. Before em-
barking on your exploratory research project, you must de-
cide: Do you start from scratch, or do you build upon a
mature system? And if the latter—should the system be
proprietary or open source?

The first question, “do you start from scratch?”, is pretty
easy to answer. Assuming your idea can be expressed as an
evolutionary (or even revolutionary) change to an existing
system, far reaching though it may be, building on an exist-
ing system helps jump-start the process. Starting from first
principles is often appealing from a puristic point of view,
but the reality of schedules and external pressures is such
that it is good to be able to get up to speed and show pre-
liminary results quickly. The rest of this paper deals with
the second question, namely “should the foundation for your
work be a proprietary or an open source system?”.

We posit that mature open source systems are a perfect
match for exploratory research efforts. The gist of our argu-
ment is that open source culture and processes are a natural
fit for exploratory research efforts, whereas proprietary code
culture and processes often present more barriers than bene-
fits to exploratory efforts. Open source provides an excellent
platform upon which to build the exploratory research as
well as a venue for wide-spread deployment of experimental
mechanisms to a large audience. The infrastructure is often
critical to jump-starting an exploratory project, in order to
be able to focus on the important bits. It is particularly
suitable for exploratory research efforts since the end-users
are free to reconfigure and rebuild the entire system, allow-
ing them the freedom to configure (in or out) even invasive
exploratory components. To do the same in proprietary sys-
tems would require a more complicated runtime configura-
tion infrastructure or potentially even alternate versions of
binaries.

1Commonly translated as “if I have seen farther, it is by
standing on the shoulders of giants.”

Proprietary-code projects almost always have tight code re-
lease schedules and the demands of a-priori review and test-
ing of all code that is incorporated often prohibit the inte-
gration of more exploratory components. By contrast, open
source distributes codes review and verification responsibil-
ities across the entire community, promoting a natural bal-
ance between new contributors and review workload. An-
other barrier within proprietary projects is that they often
employ proprietary tools, build, and even execution envi-
ronments. This increases both the financial cost and setup
overhead for the researcher. Successful open source projects
rely on simple, reproducible build environments in order to
promote collaboration. If a build process is too cumber-
some or the execution environment too obscure, the size of
the open source community for that project is limited, of-
ten leading to stagnation or migration to competing projects
with lower barriers to participation.

In summary, open source projects tend to evolve toward a
culture promoting inclusion. While proprietary-code projects
can be structured to promote exploratory work, it has been
our personal experience that the structure and bureaucracy
which proprietary-code culture instills often stands in the
way of synergistic activity.

So far we have shown that open source projects provide
the right foundation for exploratory efforts. The curious
reader might wonder, however, whether open source projects
stand to gain anything from being the foundation for ex-
ploratory efforts, and whether they should actively encour-
age it? We believe the answer is a resounding “yes!”. To
see why, consider that the exploratory effort offers the open
source project a possible path forward, with a more or less
clear notion of what works and what doesn’t. If the ex-
ploratory effort proves successful, it could even offer a design
and an implementation that may be directly incorporated
into the open source system. Thus, through incorporation
of lessons, ideas, design and code from the research effort,
the open source project can make progress unhindered by
its legacy.

IBM’s corporate involvement in open source technology and
collaboration has nurtured IBM research’s ability to use
open source as a platform for exploration. In support of
our argument that open source is the right foundation for
exploratory research efforts, we present the following two
projects which have been recently carried out by the au-
thors, the v9fs project and the Calgary IOMMU project.



The v9fs Project
IBM’s interest in the v9fs project [10] was originally mo-
tivated as a testbed for evaluating 9p [8, 16] as a unified
lightweight mechanism for sharing resources and services be-
tween logical partitions in a virtualized environment. The
client code was based on a previously abandoned effort by
Los Alamos National Labs to add a 9p client to the 2.4
Linux kernel. In addition to the foundations for the client
code, Linux versions of the 9p server applications were pro-
vided entirely from other open source projects from Vita
Nuova [17] and MIT [5]. Use of existing open source projects
as a base allowed for accelerated prototyping and evaluation
of the concepts without extensive development effort.

After the Linux 2.6 client prototype was complete, the de-
cision was made to try to get it merged into the mainline
kernel. The process involved almost a complete line-for-line
rewrite of the code to try and meet community coding style
guidelines. The initial re-write was done as a spare time
project over 5 months, and then another 6 months was spent
between the time the initial patches were sent out (against
version 2.6.11) and when the code was finally included (in
kernel version 2.6.14). The Linux kernel community code re-
view process discovered (and continues to discover) dozens
of corner case error conditions and implementation bugs re-
sulting in a more mature implementation than would have
typically been present in a research prototype.

The presence of the 9p client within the mainline kernel re-
newed interest within the national labs, and the original au-
thors of the 2.4 client picked up the 2.6.14 client and began
integrating it into their cluster infrastructure [15]. Addi-
tionally, a community member was inspired to author a new
Linux 9p server infrastructure which allowed easy construc-
tion of user-space file servers. This same infrastructure was
later adopted by IBM as part of its Libra project [1, 9] al-
lowing us to share more complicated resources and services
between logical partitions. More recently, other enthusiasts
have begun work on adding enhanced cache support, au-
thentication, and other facilities. Additionally the v9fs code
is being used as part of several projects and application in-
frastructures [14]. The native Linux 9p client also inspired a
BSD client, a FUSE client, as well as a dozen language bind-
ings including ones for Ruby, C, Python, Java, Caml, LISP,
and TCL. IBM’s involvement in the v9fs project created an
ongoing relationship with LANL and Sandia National Labs
leading to collaboration on several other mutually beneficial
research activities [6, 11].

The Calgary IOMMU project
An I/O Memory Management Unit (“IOMMU”) creates one
or more unique address spaces, which are then used to con-
trol how a DMA operation initiated by a device accesses
memory. IOMMUs have long been used to address the dis-
parity between the addressing capability of some devices and
the addressing capability of the host processor. As the ad-
dressing capability of those devices was smaller than the ad-
dressing capability of the host processor, the devices could
not access all of physical memory, and the IOMMU was
used to map the limited device address space into the larger
physical memory address space (e.g., from 32-bit to 64-bit).

IOMMUs with multiple distinct address spaces, commonly

referred to as“isolation-capable IOMMUs”, can restrict a de-
vice such that the device can only access pre-assigned areas
of physical memory. Without isolation, a device controlled
by an untrusted entity (e.g., a virtual machine running on
top of a hypervisor or a non-root user-level driver when
running on bare-metal) could compromise the security or
availability of the system by corrupting the machine’s mem-
ory [3,7, 13].

IBM, by virtue of having a common chipset in some of its
PowerPC and x86 based servers, was the first x86 server ven-
dor to build an x86 server with an isolation-capable IOMMU.
The Calgary IOMMU project was initiated in order to un-
derstand the challenges inherent in adding operating system
and hypervisor support for an isolation-capable IOMMU on
the x86 platform. Considering the project goals, writing our
own OS or hypervisor were too much of a stretch. There-
fore, for all of the reasons presented in the introduction, we
picked an open source OS (Linux) and hypervisor (Xen [2])
as a basis for our work.

The first stage of the project was to verify that the hard-
ware worked and learn about the interaction between the
operating system, the hypervisor and an isolation-capable
IOMMU. This inherently exploratory stage was significantly
helped by basing it on a mature OS, Linux, which on x86
included some—albeit not all—of the necessary facilities [3]
for isolation-capable IOMMU support.

Once we prototyped IOMMU support and everything more
or less worked, we made a crucial decision: To submit the
patches upstream to be included in the Linux kernel. Even
though we had to take some time to get the patches up
to the Linux kernel style and quality, having the prototype
included in the Linux kernel had several benefits: First, it
resulted in an immediate boost in quality (due to the “many
eyeballs” effect [18]). Second, it gave interested customers
immediate access to a useful feature (isolating mis-behaving
adapters), and third, it exposed numerous shortcoming in
the Linux kernel which were subsequently fixed by both the
authors and the community. Last but not least, it also gave
us a concrete implementation to base future design decisions
on.

Next we moved on to adding isolation-capable IOMMU sup-
port to the Xen hypervisor. During the course of the Xen
implementation, numerous bugs were discovered and fixed in
Linux kernel Calgary IOMMU implementation. Those bugs
which were also applicable to the Xen environment (e.g.,
bugs related to the hardware interface) were immediately
propagated to the Xen code-base. Thus the exploratory ef-
fort benefited from the mature work without being hindered
by it.

How did the mature system benefit from the exploratory ef-
fort in this case? We note that Linux has recently gained
the ability to act as a hypervisor, via both the kernel-based
virtual machine (KVM) project [12] and the lguest project
[19]. Both will require in the near future a para-virtualized
IOMMU interface. The exploratory effort done in the con-
text of the Xen Calgary IOMMU implementation provides
valuable lessons to guide the design and implementation of
such an interface in Linux [4].



Conclusions
We have shown two separate research efforts, both of which
greatly benefited from being based on mature open source
projects, to the extent that neither effort is likely to have
have been successful had it been started from scratch or
based on a proprietary code base.

This leads us to believe that systems research is best con-
ducted in an open source environment where exploratory
and mature components can easily coexist, leading to broader
review and use of the research. This wider audience often
leads to new challenges and ideas, catalyzing future research.
As such, institutions should consider rewarding open source
contribution in a similar manner to publication as they are
both peer-reviewed, relate to the broader dissemination of
knowledge and advance the state of the art.

REFERENCES
[1] G. Ammons, J. Appavoo, M. Butrico, D. D. Silva,

D. Grove, K. Kawachiya, O. Krieger, B. Rosenburg,
E. V. Hensbergen, and R. W. Wisniewski. Libra: a
library operating system for a jvm in a virtualized
execution environment. In VEE ’07: Proceedings of
the 3rd international conference on Virtual execution
environments, pages 44–54, New York, NY, USA,
2007. ACM Press.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In
SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages
164–177, New York, NY, USA, 2003. ACM Press.

[3] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis,
L. Van Doorn, A. Mallick, J. Nakajima, and
E. Wahlig. Utilizing IOMMUs for virtualization in
Linux and Xen. In OLS 2006: Proceedings of the 2006
Ottawa Linux Symposium.

[4] M. Ben-Yehuda, J. Xenidis, M. Mostrows, K. Rister,
A. Bruemmer, and L. Van Doorn. The price of safety:
Evaluating IOMMU performance. In OLS 2007:
Proceedings of the 2007 Ottawa Linux Symposium.

[5] R. Cox. Plan 9 from user space.
http://swtch.com/plan9port.

[6] C. Forsyth, J. Mckie, R. Minnich, and E. V.
Hensbergen. Petascale Plan 9. USENIX 2007 Poster.

[7] K. Fraser, S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, and M. Williamson. Reconstructing I/O.
Technical report, University of Cambridge, Computer
Laboratory, August 2004.

[8] E. V. Hensbergen. Plan 9 remote resource protocol
RFC, 2005. http://v9fs.sourceforge.net/rfc.

[9] E. V. Hensbergen. Partitioned reliable operating
system environment. Operating Systems Review, 40(2),
April 2006.

[10] E. V. Hensbergen and R. Minnich. Grave robbers from
outer space: Using 9P2000 under Linux. In Proceedings
of the 2005 UNIX Annual Technical Conference, 2005.

[11] L. Ionkov, A. Nyrhinen, and A. Mirtchovski. CellFS:
Taking ”DMA” out of cell programming.
http://www.xcpu.org/cellfs-talk.pdf.

[12] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and
A. Liguori. kvm: the Linux virtual machine monitor.

In OLS 2007: Proceedings of the 2007 Ottawa Linux
Symposium.

[13] J. LeVasseur, V. Uhlig, J. Stoess, and S. Götz.
Unmodified device driver reuse and improved system
dependability via virtual machines. In Proceedings of
the 6th Symposium on Operating Systems Design and
Implementation, San Francisco, CA, Dec. 2004.

[14] K. Maglione. Window manager improved 2.
http://www.suckless.org/wiki/wmii.

[15] A. Mirtchovski and R. Minnich. XCPU: a new,
9p-based, process management system for clusters and
grids. In Proceedings of the 2006 IEEE International
Conference on Cluster Computing, 2006.

[16] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom. Plan
9 from Bell Labs. Computing Systems, 8(3):221–254,
Summer 1995.

[17] R. Pike, D. Presotto, S. Dorward, D. M. Ritchie,
H. Trickey, and P. Winterbottom. The Inferno
operating system. Bell Labs Technical Journal, 2(1),
Winter 1997.

[18] E. S. Raymond. Cathedral & the Bazaar: Musings on
Linux and Open Source by an Accidental
Revolutionary. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 2001. Foreword by Bob Young.

[19] R. Russel. lguest: Implementing the little Linux
hypervisor. In OLS 2007: Proceedings of the 2007
Ottawa Linux Symposium.


