
Page Fault Support for Network Controllers

Ilya Lesokhin†,� Haggai Eran†,� Shachar Raindel� Guy Shapiro� Sagi Grimberg�

Liran Liss� Muli Ben-Yehuda† Nadav Amit†,‡ Dan Tsafrir†

†Technion – Israel Institute of Technology �Mellanox Technologies ‡VMware Research

Abstract
Direct network I/O allows network controllers (NICs) to ex-
pose multiple instances of themselves, to be used by untrusted
software without a trusted intermediary. Direct I/O thus frees
researchers from legacy software, fueling studies that inno-
vate in multitenant setups. Such studies, however, overwhelm-
ingly ignore one serious problem: direct memory accesses
(DMAs) of NICs disallow page faults, forcing systems to ei-
ther pin entire address spaces to physical memory and thereby
hinder memory utilization, or resort to APIs that pin/unpin
memory buffers before/after they are DMAed, which compli-
cates the programming model and hampers performance.

We solve this problem by designing and implementing
page fault support for InfiniBand and Ethernet NICs. A main
challenge we tackle—unique to NICs—is handling receive
DMAs that trigger page faults, leaving the NIC without
memory to store the incoming data. We demonstrate that
our solution provides all the benefits associated with “regular”
virtual memory, notably (1) a simpler programming model
that rids users from the need to pin, and (2) the ability
to employ all the canonical memory optimizations, such
as memory overcommitment and demand-paging based on
actual use. We show that, as a result, benchmark performance
improves by up to 1.9x.

1. Introduction
Virtual memory provides three key benefits (Table 1). First, it
protects applications and virtual machines (VMs) from one
another by isolating their address spaces. Second, it simpli-
fies the programming model by providing the illusion that
address spaces are contiguous, big as needed, and always
available, relieving programmers from having to explicitly
decide which portions of their address spaces to place in
primary or secondary storage at any given time. The third

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17 April 8–12, 2017, Xi’an, China.

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037710

virtual memory benefit page-fault support required
address space isolation no
simplified programming model yes
canonical memory optimizations yes
- overcommitment - swapping - copy on write
- demand paging - mmap-ed files - page migration
- delayed allocation - deduplication - transparent hugepages

Table 1. Out of the benefits of virtual memory, only isolation
can be provided without page fault support. Gray items list some
canonical memory optimizations: overcommitment allows the ag-
gregated size of all address spaces to exceed the physical memory;
demand paging and delayed allocation lazily fault-in/allocate pages
when they are actually used; swapping dynamically evicts unused
pages; memory-mapped files allow applications to access files via
load/store operations; deduplication unifies identical pages into one;
copy-on-write breaks such unifications when pages cease to be iden-
tical; page-migration permits memory hot-(un)plugging and mini-
mizes NUMA traffic; and transparent hugepages promote multiple
virtually-adjacent pages into a single physical superpage.

direct network I/O terminology
IOchannel hardware-provided virtual NIC instance
IOuser untrusted process or VM assigned with IOchannel
IOprovider trusted operating system (OS) or hypervisor

Table 2. The IOprovider allocates IOchannels to IOusers but
otherwise stays off their I/O paths, notably in multitenant setups.

benefit of virtual memory is allowing the canonical mem-
ory optimizations (demand paging etc.), which improve the
utilization of the memory and the performance of the system.

The benefits of virtual memory pertain to software that
runs on the CPU. But CPUs are not the only processing ele-
ments that access the memory. I/O devices do it too via direct
memory accesses (DMAs). Thus, programmers who write
software that initiates DMAs do not enjoy all the benefits
listed in Table 1, because DMAs are typically unable to tol-
erate page faults. This inability is mostly problematic in the
context of network controllers (NICs), due to the prolifera-
tion of direct network I/O, whose semantics/terminology are
defined in Table 2.

Direct network I/O multiplexes the NIC at the hardware
level, allowing it to expose multiple instances of itself (de-
noted IOchannels). The trusted OS or hypervisor (denoted

IOprovider) allocates IOchannels to the untrusted applica-
tions or VMs (denoted IOusers), allowing them to bypass the
IOprovider and directly interact with the NIC. Direct network
I/O is now widely available in commodity NICs via Remote
DMA (RDMA), Single-Root I/O Virtualization (SRIOV), and
the Data Plane Development Kit (DPDK) [56,87,104]. It frees
developers from legacy one-size-fits-all network stacks and
the overheads they cause due to their general-purpose nature
and their rigid interfaces, which are defined and mediated by
the IOprovider. The ability to bypass the IOprovider through
direct IOchannels allows the untrusted IOusers to special-
ize/customize their system software for their specific needs
and workloads, even in multitenant setups, like clouds, where
IOusers share the physical hardware.

Specialized IOuser software can attain 4–20x the through-
put of a well-tuned Linux process using the standard socket
POSIX API [13, 90, 93]. Such improvements, along with the
commoditization of direct network I/O, has triggered a surge
of research that exploits direct IOchannels [6, 13, 16, 29, 40,
41, 43, 64, 82, 89, 90, 105, 106] (§2.1). Understandably, such
research focuses on the improvements it delivers. But over-
whelmingly, it disregards the cost: losing virtual memory
benefits due to lack of DMA page fault support (Table 1).
NICs cannot cope with their DMAs experiencing page faults.
But an IOuser can initiate DMAs targeting any of its vir-
tual addresses, which might not be associated with accessible
physical memory, as virtual-to-physical mappings are set by
the IOprovider.

Two ways are employed to avoid DMA page faults (§2.2).
The first is statically pinning the entire IOuser address space
to physical memory [30,32,62,119]. This approach is typical
for SRIOV IOchannels, handed to production VMs [52, 113,
114] or to research OSes like Arrakis and IX [13, 90]. It
retains the simple programming model of virtual memory
but loses its canonical optimizations. Notably, it foregoes
memory overcommitment, which is problematic, as memory
is often the bottleneck resource in enterprise settings [7,
19, 39, 44, 108, 116]. The second way to avoid DMA page
faults is via dynamic pinning. IOusers dynamically ask
their IOprovider to pin/unpin DMA target buffers through
a special interface [25, 66, 74, 95, 115]. This approach is
typical for RDMA setups [14,37,81,83,103]. It facilitates the
canonical optimizations but complicates the programming
model. It ruins the illusion of an always-available address
space and forces all IOusers to continuously engage in
cumbersome, explicit memory management activity, to ensure
that DMA target buffers never fault. Moreover, frequent
dynamic pinning hampers performance substantially [5, 73].

Our goal is to eliminate the unfortunate tradeoff associated
with direct network I/O: poor memory utilization and no
canonical memory optimizations vs. complicated IOuser
code and costly pinning overheads. With commodity NICs
bringing IOchannels to the mainstream, we contend that it

makes sense for systems to learn how to support DMA page
faults of NICs, denoted as network page faults (NPFs).

The PCI-SIG recently standardized basic support for DMA
page faults [86] (§2.3). We find that this standard may suffice
for I/O devices that process local data [65, 99] (like GPUs or
hard drives) but not for NICs, which process external data.
Namely, the standard disregards the most challenging aspect
of NPFs: receive NPFs (rNPFs). When CPU page faults
occur, the corresponding thread waits until they are resolved.
In principle, devices that process local data can likewise
wait. But NICs cannot: they have no available memory to
store incoming data upon rNPFs, and more data may arrive
subsequently at full line rate, and it too might fault. We focus
on resolving this problem for InfiniBand and Ethernet NICs.
We specify our solution requirements and explain why naive
approaches like simply adding memory buffers to NICs do
not constitute viable, satisfactory solutions (§3).

We find that reliable InfiniBand connections (RC) allow
for a relatively straightforward solution. Using standard RC
commands, we modify the NIC’s firmware to instruct the
sender to temporarily suspend transmission upon rNPFs, or,
when this is impossible, to quickly retransmit the data lost
due to the rNPFs (§4). In contrast to InfiniBand, Ethernet is
lossy, requiring a more sophisticated solution. We design an
interface that, upon rNPFs, allows the NIC to fall back on a
small pinned “backup” ring buffer of the IOprovider. The NIC
alerts the IOprovider about the rNPFs by raising an interrupt.
In response, the IOprovider carefully merges this incoming
data into the associated IOchannels, keeping the IOusers
unaware. We implement a prototype approximation of such a
NIC as well as the matching IOprovider software (§5).

We experimentally evaluate our NIC prototypes (§6).
We find that NPFs rarely occur in steady states, and we
demonstrate that our system achieves its goals: increasing
memory utilization, reducing code complexity of IOusers,
and improving their performance.

2. Motivation
2.1 The Rise of Direct Network I/O
A key role of the OS is to abstract and isolate resources.
Abstraction delivers a more convenient environment for
applications, hiding hardware details and offering higher
level semantics. Isolation multiplexes the hardware and al-
lows applications to coexist. The downside of OS-provided
abstraction and isolation might be degraded performance
[13, 15, 60, 80, 90, 93, 98]. Commodity 10–100 Gbps NICs
[28] strikingly exemplify this downside: as noted in §1, cus-
tomized IOchannels software can be 4–20x more perfor-
mant than a well-tuned POSIX-compliant process [13,90,93].
This improvement is largely due to avoiding the cost of OS-
provided abstraction and isolation, as the high network vol-
ume leaves the processor with only tens to hundreds of cycles
to handle each packet.

I/
O

 d
e

v
ic

e

C
P

U

I/
O

 d
e

v
ic

e

M
M

U

T
LB

I/
O

 d
e

v
ic

e

p
h

ys
ic

a
l

m
e

m
o

ry

I/
O

 d
e

v
ic

e
I/

O
 d

e
v

ic
e

I/
O

 d
e

v
ic

e

IO
M

M
U

IO

T
LB

virtual
address

physical
address

physical
address

I/O
virtual

address

Figure 1. The IOMMU is for I/O devices what the MMU is for
CPUs. There is one important difference, however: page faults.

Overheads can be avoided if hardware, not software, sup-
ports abstraction and isolation directly, as is the case with
RDMA [104], which is available over InfiniBand, Ethernet,
and TCP fabrics [53, 54, 91, 111]. RDMA provides network
isolation and abstraction with reliable message passing and
memory transfers semantics. It allows IOusers to access re-
mote virtual memory regions while bypassing the IOproviders
in both sides. A newer direct network I/O technology sup-
ported by most NIC vendors is SRIOV [55, 87]. An IO-
provider can instruct an SRIOV-capable device to create
multiple instances of itself, to be assigned to IOusers as
PCIe devices for their exclusive use. SRIOV thus provides
hardware isolation and imposes no OS abstractions. Another
new/popular technology is DPDK [56], consisting of a set of
efficient libraries for user-level packet processing on top of
an IOchannel.

Dropping RDMA prices [61] and the wide availability
of newer direct network I/O flavors that are applicable to
Ethernet (SRIOV, DPDK) have brought direct network I/O to
the mainstream, sparking a surge of OS research that utilizes
IOchannels to improve application performance [6, 13, 16, 29,
40, 41, 43, 64, 67, 68, 82, 84, 89, 90, 96, 105, 106, 110].

2.2 The Problem
In the past, DMAs used physical addresses, which is incom-
patible with direct I/O, allowing IOusers to indirectly accesses
any memory location via their IOchannels [12,24,42,66,101,
112]. Chip vendors thus introduced I/O memory management
units (IOMMUs) [4, 10, 49, 57], which support I/O virtual
addresses (IOVAs) for DMA. The role the IOMMU plays for
I/O devices is similar to the role the regular MMU plays for
processes, as illustrated in Figure 1. Both translate virtual to
physical addresses and allow the OS to enforce isolation. Yet,
there is one crucial difference: most devices cannot tolerate
DMA page faults, which negates virtual memory features
(Table 1). In practice, there are three zero-copy ways that sys-
tems employ to avoid network DMA page faults:1 (1) static
pinning, (2) fine-grained pinning, and (3) coarse-grained pin-
ning, as explained next.

Static Pinning With static pinning, the IOprovider pins
the entire address space of IOusers [30, 32, 62, 113, 119].
This approach is standard in production setups when hand-

1 We discuss other possibilities in §3.

ing SRIOV instances to virtual machines (e.g., under the
Linux/KVM [113, 114] and VMware ESX [52] hypervisors)
or when giving DPDK channels to applications [92]; it is
also used by research OSes like Arrakis [90] and IX [13].
Static pinning is easier and simpler as compared to the al-
ternatives. Notably, it is preferable from the perspective of
IOusers, as they remain blissfully unaware of the problem, en-
joying a setup where their address spaces are always present
in memory. The downside, of course, is that the IOprovider
loses its ability to apply the canonical memory optimizations
to the pinned memory regions, which hampers memory uti-
lization: pages must be present even if unused, for example.
The inability to employ the canonical memory optimizations
(Table 1) is highly problematic, e.g., because memory ca-
pacity is oftentimes the bottleneck resource in today’s data-
centers [7, 19, 39, 44, 116], and because memory overcommit-
ment is vital in such computational environments [19, 108].

Fine-Grained Pinning With fine-grained pinning, IOusers
dynamically pin and unpin each DMA target buffer, and cor-
respondingly map and unmap it in the IOMMU, immediately
before and right after the DMA operation. Perceived as the
safest operation mode (in the face of potentially malicious
or errant I/O devices), this approach is typically the default
scheme used by general-purpose kernels as part of their in-
ternal DMA API [5, 8, 20, 25, 50, 75, 115]. It is also used to
export IOMMU functionality to virtual machines [5, 115].
The advantage of fine-grained pinning is that only a small
fraction of the IOuser address space is pinned [74], so the
IOprovider can safely apply the canonical memory optimiza-
tions to the remaining, bigger, unpinned part. There are two
disadvantages, however. First, fine-grained pinning compli-
cates the IOuser programming model: IOusers can no longer
assume an address space that is always physically available,
which effectively forces them to actively partake in memory
management activity with explicit (un)pinning operations.
The second disadvantage is that fine-grained pinning might
degrade performance significantly, notably due to IOMMU
map/unmap overheads [17, 73, 74, 77, 88, 115].

Coarse-Grained Pinning With coarse-grained pinning, sys-
tems use a “pin-down cache” capable of enforcing an upper
bound on the size of the pinned memory. When this bound is
reached, existing pinned buffers are dynamically unpinned—
evicted from the cache—to make room for newly pinned
buffers. Given a big-enough size, pin-down caches are able
to significantly reduce the overheads of dynamic pinning,
but they complicate the code considerably. The approach is
commonly used in high-performance RDMA setups, and the
HPC community has developed a wealth of workload-based
pinning and cache-eviction strategies that optimize perfor-
mance [14,23,32,37,79,81,83,103,117]. Coarse-grained pin-
ning can be perceived as a floating point between fine-grained
and static pinning: as the upper bound for the pin-down cache
gets smaller or bigger, coarse-grained pinning becomes more
similar to fine-grained or static pinning, respectively.

pinning strategy performant memory utilization & canonical optimizations programming simplicity multitenant friendliness
static 3 7 3 7

fine-grained 7 3 @3 3

coarse-grained @3 @3 7 @3
none (NPFs) 3 3 3 3

Table 3. Pros and cons of pinning strategies. NPFs provide the only scheme that involves no tradeoffs. The@3 symbol associated with
coarse-grained pinning indicates that bigger pin-down caches conflict with multitenant friendliness and the canonical memory optimizations,
whereas smaller pin-down caches conflict with performance. The@3 symbol associated with fine-grained pinning indicates that, while this
scheme is more complex than NPFs and static pinning, it is still simpler than implementing a pin-down cache.

Bottom Line Even though (1) the SRIOV standard is ten
years old [85] and (2) most NIC vendors support it, we are
not aware of any production hypervisor/OS that allows an
SRIOV IOchannel to be assigned without statically pinning
its entire IOusers’s address space [52, 113, 114]. A research
exploration that allowed SRIOV IOchannels without static
pinning reported extremely poor performance due to fine-
grained pinning; to improve performance, it dedicated a full
extra core for pinning activity (per one 10Gbps port), it em-
ployed nontrivial optimizations, and it resorted to various
undesirable security compromises [5]. With time, it is possi-
ble that SRIOV environments will mature, overcome some of
the challenges, and develop pinning strategies that are more
performant than fine-grained pinning and less restrictive than
static pinning, similarly to pin-down caches in RDMA setups.
But then the cost would be likewise similar—programming
complexity and more and more memory that is pinned, even
if unused.

Our goal is to eliminate all undesirable tradeoffs by pro-
viding NPF support, as summarized in Table 3. Our reasoning
is simple: page faults make sense.

2.3 Existing DMA Page Faults Support
The PCI-SIG supports our reasoning. It recently acknowl-
edged the significance of DMA page faults by supplement-
ing the ATS (address translation services) PCIe standard
with PRI (page request interface) [86]. These standardize
device/IOMMU/OS cooperation that allows for basic DMA
page fault support suitable for devices that process local data
(elaborated further in §4). The problem of rNPFs caused by
incoming external data is outside the scope of ATS/PRI.

The effort to utilize ATS/PRI is spearheaded by AMD’s
HSA—heterogeneous system architecture [46]. HSA is aimed
at unifying the address spaces of CPUs and on-die GPUs,
enabling seamless page fault resolution and thereby making
pinning/copying between them unnecessary [47, 65]. The
proclaimed HSA goals are aligned with ours: making SOCs
(that combine CPU and GPU cores) “easier to program; easier
to optimize; [and provide] higher performance” [94]. GPUs
process local data only and are thus adequately served by
ATS/PRI. We aspire to achieve HSA’s goals for network
programming, which involves external data and hence rNPFs.

2.4 Connection Between NPFs & IOMMU Protection
IOMMUs provides “strict” protection against malicious/errant
devices if each DMA is preceded and followed by mapping
and unmapping of its target buffer [5,73,74,77,88]. Such pro-
tection will soon be orthogonal and complementary to NPFs.
Recent hardware supports 2D IOMMU translations, where
host and guest have different I/O page tables [4, 58]. (Guest
tables translate guest virtual to guest physical addresses,
and host tables translate guest physical to host physical ad-
dresses [18].) The hardware concatenates the two for a full
IOVA resolution. Thus, IOusers can utilize their tables for
strict protection if they wish. Independently, the IOprovider
needs NPFs for its own tables in order to apply the canon-
ical memory optimizations. The same reasoning applies to
emulated IOMMUs [5].

3. Requirements
Focusing on rNPFs (the more challenging aspect of NPFs),
we would like our solution to have the properties outlined
next; these properties help justify our design in §4 and §5.

No Additional Hardware Resources We prefer a solution
that works with existing resources rather than requires ad-
ditional hardware on NICs or switches. With rNPFs, it is
tempting to consider adding memory to the NIC, for example,
to buffer the incoming faulting data until the rNPF is resolved.
But such an approach raises the question of how much added
memory is enough. Assume that the NIC receives data in line-
rate R, that rNPFs occur, and that the time it takes to resolve
each rNPF is T . The added memory size should therefore
be no less than S = R×T , for each NIC port. Thus, if R is
100 Gbps and T is 10 milliseconds (major page fault), then
S should be 125MB. Having to add a buffer of this size for
each port would needlessly increase the NIC price. The extra
cost makes no economical sense considering (1) rNPFs are
infrequent, so this memory would rarely be used, and (2) the
host memory can be used instead when necessary.

Stream Isolation The solution should not affect unrelated
traffic. Optimally, network channels that do not encounter
NPFs should not slow down. This requirement excludes using
link-level flow control [2] to block all incoming traffic until
the rNPF is resolved. That is, in principle, flow control allows
NICs to ask their switch to temporarily buffer incoming traffic

(until the rNPF is resolved), thus preventing data loss. But
this approach will suspend all other channels, and it might
also lead to congestion spreading—switch buffers might run
out, forcing it to ask its neighbors to also stop sending, and
then the neighbors of the neighbors, and so on [97, 100].

No IOuser Pinning When implementing or running appli-
cations that use direct network I/O, it could be the case that
the buffers to pin are easily identifiable and that their com-
bined size in memory is small. For example, a virtual machine
that employs a POSIX network stack typically copies packets
to user-space from a relatively small set of kernel DMA target
buffers. In such cases, it could be claimed that pinning this
set should not be an issue, so NPF support is unneeded. This
claim is wrong for several reasons, as specified next.

The above implied assumption—that the set of memory
regions that ever served as DMA target buffers is small
and static in POSIX setups—is simply incorrect. Markuze
et al. show that the accumulated size of all such buffers
quickly becomes gigabytes after only a few minutes of
running multiple applications that stream data through TCP
connections [76]. One contributing factor to this result is
the fact that the OS relies on application contexts to copy
incoming data off TCP buffers, so if applications are delayed
due to scheduling considerations, the OS keeps the buffers
for them, pinning other buffers for DMA as a result.

Even seemingly simple pinning scenarios might become
challenging in multitenant setups, where tenants are not al-
lowed to pin as they please. For example, in POSIX, applica-
tions pin memory using the mlock system call [70], which is
limited to pinning not more than RLIMIT_MEMLOCK bytes [69],
which in Linux is only 64KB by default [71].

Regardless, we would like our NPF solution to apply not
just to the POSIX network stack but also to other types
of workloads, notably to IOusers that utilize RDMA or
zero-copy network stacks, which may provide substantial
performance improvements [13, 90] while simultaneously
mapping many more buffers as DMA targets.

Lastly, we would like to provide IOuser programmers with
a simple, easy to program environment. Instead of burdening
each and every one of the them with some pinning activity,
we would like such programmers to be completely unaware
of virtual memory management issues, as is the case with
regular applications.

No IOusers TCP Changes Ideally, rNPF recovery time
should be close to the time it takes the IOprovider to map the
faulting memory: network disruption should be minimized.
Under this constraint, upon experiencing an rNPF, we may
suspend transmission or even employ retransmission to re-
cover lost data, but only if the protocol allows the entity that
experiences the NPF to initiate fast-enough suspension and
retransmission. For example, when developing rNPF sup-
port for InfiniBand (§4), the NIC itself uses an RC protocol
message to stop the sender.

When implementing rNPF support for Ethernet (§5), it
could be (wrongfully) claimed that analogous solutions are
possible in the TCP stack of IOusers. Fast retransmit [3],
for example, allows TCP to quickly recover from loss of a
single packet by sending a small number of duplicate acks.
Fast retransmit could in principle be used to signal the sender
that an NPF has been handled, so it can resume transmission
now rather than wait for the long timeout to expire, thereby
improving performance. Another idea would be to utilize
explicit congestion notification (ECN) [34], which provides
means for the receiver to notify the sender to slow down in
order to reduce congestion. ECN could be used upon an rNPF
to limit the send rate until the rNPF is resolved.

This approach does not work. The IOuser TCP/IP stack
consists of software that runs on the CPU. However, it is the
NIC (the I/O device hardware) that experiences the rNPF
and that must decide what to do with the faulting packet P.
Importantly, there is no generally applicable way for the NIC
to forward P (or its header) to the appropriate IOuser so as to
ask it to make the decision instead. All that current NICs can
do is raise an interrupt to notify the IOuser that some packet
was lost due to an NPF. But this information is not enough.
The IOuser is unable to associate the NPF with a specific
TCP stream, making the ideas mentioned above irrelevant.

Conceivably, one could propose that the NIC will initiate
actions like sending fast retransmission acks or ECN-marked
packets. But such NIC involvement would require the hard-
ware to be aware of and to interfere with the TCP state of all
IOusers, which is of course unacceptable as a general solution.
Moreover, such an approach would only be able to work after
the TCP connection is established; it will fail before. Lastly,
as noted earlier, we would like our solution to be general and
applicable to protocols different than TCP.

No IOusers NPF Handling As noted in §1, our Ethernet
solution relies on NIC-IOprovider cooperation, which re-
volves around a small, pinned “backup” ring buffer that the
IOprovider maintains and the NIC uses in order to store fault-
ing packets. A question that may follow is why not use multi-
ple per-IOuser backup rings, such that the NIC will cooperate
directly with each IOuser. The are several reasons. Such an ap-
proach would needlessly expose each IOuser to the complex-
ities involved in handling NPFs, which goes against our moti-
vation as stated above. The approach would require a pinned
ring for each IOuser, which is wasteful. It would additionally
require some predetermined IOprovider-dependent interface
and policy, which hinders portability. The approach would
also be riskier, as interrupt handlers of IOusers might not get
scheduled immediately when NPFs fire, so their backup rings
might overflow (unlike the IOprovider, IOusers do not con-
trols the physical CPUs). Lastly, the approach would require
IOusers to be able to somehow resolve their own physical
memory page faults—to our knowledge, no hypervisor of OS
provides such a service to their virtual machines or processes.

Completeness There are optimizations that can potentially
help to alleviate the rNPFs problem. A notable example is
pre-faulting, which, upon encountering an rNPF, pre-faults all
subsequent receive buffers that will likely be referenced soon
but are currently not preset in memory. Pre-faulting does not
provide a complete solution, because it is not applicable to,
e.g., RDMA programs that randomly access remote memory,
nor to applications sensitive to packet-loss, such as those that
use UDP and rely on link-layer flow control. TCP applications
can likewise experience NPFs and suffer from slow-start
reduced performance due to the “cold ring” problem that
is caused by dropped packets (§5), regardless of pre-faulting.
Thus, while we make use of such optimizations, we require
that our solution will be complete in the sense that it will
entirely eliminate packet loss (Ethernet) or alternatively allow
for quick recovery of the data (InfiniBand).

4. InfiniBand Page Fault Support
I/O devices trigger interrupts, which device drivers handle.
NPF is just another type of of such an interrupt. That is, NPF
handling requires understanding the semantics of the NIC.
Next, we describe our NPF implementation for a Mellanox
Connect-IB 56 Gb/s InfiniBand NIC and Linux. The princi-
ples we outline, however, are general.

Basic NPF Support The minimum needed for DMA page
faults to work—no rNPFs just yet—is the following. The I/O
device (or IOMMU) should be able to tell the IOprovider
it encountered a page fault, and the IOprovider should be
able respond that the fault is resolved. As the I/O device (or
IOMMU) may cache translations, the IOprovider must inval-
idate these translations when the corresponding mappings
change. This is the protocol standardized by ATS/PRI [86].

We modify the driver and firmware of our Connect-IB to
provide this functionality. We do not implement ATS/PRI
per se, because we do not have a CPU with IOMMU that
supports it (ATS/PRI is relatively new), and because we
can do better (see below). Having to do without a CPU
whose IOMMU supports DMA page faults, we utilize the
functionally-equivalent IOMMU of the Connect-IB. In its
baseline implementation, all PTEs of the IOMMU page tables
must be valid. We allow them to be invalid when supporting
NPFs.

Flows Figure 2 (left) illustrates the NPF flow. (1) Process-
ing a new request, the NIC consults the IOMMU page tables
and finds and marks that one of the pages involved is not
present. (2) Our modified firmware detects this fault and
raises an NPF interrupt. (3) The driver’s NPF interrupt han-
dler queries the OS regarding the physical address of the
faulting IOVAs; if necessary, the OS allocates the pages, pos-
sibly retrieving their content from secondary storage. (4) The
driver updates the IOMMU page table with these physical
addresses and informs the firmware that the NPF has been
resolved.

OS

Driver

NIC
I/O page tables

(1)

(3)

(4)

(a)

(b) (c)

(d)

(2)

Figure 2. NPF (1–4) and invalidation (a–d) flows.

 0
 50

 100
 150
 200
 250
 300
 350
 400

(i)

(ii)

(iii)
(iv)

(v)

ti
m

e
 [

µ
s
e
c
o
n
d
s
]

(a) NPF

trigger interrupt [hw only]
driver [sw only]
update hw PT [sw + hw]
resume [hw only]

4KB

4MB

 0
 10
 20
 30
 40
 50
 60
 70

(b) invalidation

checks [sw only]
update hw PT [sw + hw]
updates [sw only]

4KB

4MB

Figure 3. Execution breakdown of NPF and invalidation.

message size 50% 95% 99% max
4KB 215µsec 250µsec 261µsec 464µsec
4MB 352µsec 431µsec 440µsec 687µsec

Table 4. Tail latency of NPFs.

As DMA buffers are no longer pinned, the OS may unmap
and reuse them at will, necessitating an invalidation flow
where it notifies the device that their IOVAs are no longer
valid. This flow is depicted in Figure 2 (right). (a) The OS
asks the driver (via a Linux MMU notifier [9]) to remove the
old IOVA and stop the device from using it. (b) The driver
updates the IOMMU page tables accordingly and issues the
invalidation. (c) The NIC acknowledges, and then (d) the
driver notifies the OS that the relevant pages can safely be
reused.

Overhead Figure 3(a) shows the average overhead break-
down of minor NPFs (no disk access) when sending 4KB
and 4MB messages, consisting of 1 and 1024 pages. Table 4
shows the corresponding tail latencies. The breakdown com-
ponents depict the time between the following events: (i) the
IOMMU observes that an NPF occurred and triggers an inter-
rupt; (ii) the driver’s NPF handler is invoked; (iii) the driver
receives from the OS the physical addresses of to the IOVAs
that should be mapped; (iv) the driver finishes updating the
IOMMU page table accordingly (as the IOMMU is on the
NIC, the driver must communicate with it when updating its
DRAM-residing page tables due to coherency issues); and
(v) the NIC identifies the update and resumes transmission.

A minor NPF takes 220µsec for a 4KB message, 90% of
which is due to hardware (firmware).2 The duration increases

2 This duration is typical for Mellanox NIC firmware activity, not just NPFs,
as the goal of the NIC circuitry that runs the firmware is usually to handle
error paths, which is why it is allowed to operate relatively slowly.

to 350µsec for 4MB message due to software, as the OS must
translate and possibly allocate many more pages. Still, the
overhead is dominated by our hardware (firmware); pushing
this functionality to silicon would thus make it much faster.
We nevertheless find that the overheads are small enough,
and that NPFs are rare enough, to allow us to enjoy good
performance (§6).

Figure 3(b) shows the invalidation flow breakdown. The
driver identifies the (InfiniBand) memory region associated
with the invalidation and checks if the page was mapped in the
IOMMU (mapping is done lazily via NPFs so the page might
not be mapped). If not, no additional overhead is incurred.
Otherwise, the driver updates the IOMMU page tables and its
own internal state. Invalidations are cheaper than NPFs and
are dominated by hardware/software interaction.

rNPFs InfiniBand supports the reliable connection (RC)
protocol, which provides reliable multi-packet message deliv-
ery through fast acknowledgments and a packet sequencing.
We utilize RC to cope with rNPFs. When a sender encounters
an NPF, it can simply stop sending and wait until the NPF is
resolved, as the faulting data is local. Receiving is trickier,
because incoming data is external. With RC, we can nonethe-
less approximate the local data approach in most cases. RC
has an end-to-end mechanism for receivers to quickly stop
senders: the receiver sends a receiver-not-ready (RNR) nega-
tive acknowledgment packet (NACK), informing the sender
to pause transmission for a specified time t. We modify the
firmware to leverage RNR NACK for suspending senders
upon rNPFs. In data center and HPC setups where Infini-
Band is common, RNR NACKs are faster than the basic NPF
overhead (Figure 3), so they do not affect performance much.

Some data is still dropped—until the RNR NACK arrives.
But retransmission is possible as RC is reliable, so the sender
must keep the data until it is acknowledged. We thus do not
require more buffers at the receiver or in switches. Impor-
tantly, packet loss is decoupled from congestion control in
InfiniBand, so retransmission does not reduce the IOchannel’s
speed.

In addition to send/receive, RC supports RDMA opera-
tions; most are handled identically when experiencing NPFs.
But in some cases RC does not permit RNR NACKs for
RDMA. When an initiator of a remote read request encoun-
ters a page fault, RC provides no way for it to ask the re-
sponder to stop. The only way to get the sender to retransmit
is by asking it to rewind, after the rNPF is resolved. Until
then, we must drop all incoming packets. There is no inherent
reason for this limitation. We thus recommend to extend the
end-to-end flow control RC standard to support remote read
operations too.

Note that we are able to immediately send protocol-level
control and retransmission messages in response to page
faults because NPFs and the transport protocol are both
implemented by the same hardware unit. Thus, interfacing
them is easy. (As opposed to, say, TCP over Ethernet.)

Optimizations We explored several NPF optimizations, but
due to space we describe the most notable three. The first
optimization relates to concurrency, which RC supports. For
example, a NIC can simultaneously be an RDMA initiator
and responder on the same connection. We can thus choose
to service multiple NPFs concurrently. It is natural to permit
concurrent NPFs in the NIC’s initiator and responder paths.
But how many per path? (Each may be associated with
multiple pending requests.) As each page fault requires
more resources from the IOprovider, and for simplicity, our
prototype limits the outstanding page faults per IOchannel to
four: read and write, for both initiator and responder. (Send
corresponds to initiator write, and receive corresponds to
responder write.)

We additionally optimize the NPF critical path by tem-
porarily bypassing the firmware when possible. For example,
our modified firmware keeps a bitmap of reported in-flight
page faults for each connection; if it encounters a new NPF
but the bit is set, the firmware handles the NPF (retransmis-
sion, RNR NACK, etc.) but does not report it. After resolving
the NPF, the driver first informs the hardware it can resume
transmission (faster); the firmware still needs to be notified
too (slower) to clear the relevant bit and re-enable NPFs of
that type.

A third effective optimization was avoiding ATS/PRI
restrictions, which dictate one page per PRI request (page
fault event). By Figure 3, if we constrained ourselves to
doing that, and avoided batching, minor page fault overhead
induced by sending a cold 4MB message would have been
prohibitive (more than 220 milliseconds). Our IOprovider
driver therefore exploits its understanding of the NIC. Upon
firing an interrupt, the NIC hands to the driver as much
information as possible about the page fault, including the
identity of the corresponding work queue (descriptor ring)
and the position in that queue. The driver can then parse the
relevant work request, which may include multiple scatter-
gather memory ranges that are pre-faulted. It then batches the
IOMMU page table updates.

Applicability While we focus on InfiniBand, the same RC
protocol is also implemented on top of Ethernet as part
of the RDMA over Converged Ethernet (RoCE) standard
[54]. Our solution applies to RoCE as well. In addition to
RC, InfiniBand also supports the unreliable datagram (UD)
protocol, which does not guarantee delivery or ordering of
the datagrams. The NPF solution described next applies also
to UD.

5. Ethernet Page Fault Support
Let us focus on the more mainstream scenario whereby the
IOuser utilizes a direct network channel through a regular
Ethernet NIC—in our case, a Mellanox ConnectX-3 40 Gbps.
The IOuser probably (not necessarily) uses the TCP/IP proto-
col to drive its direct channel. As in §4, we modify our NIC’s

firmware to provide basic NPF support (Figure 2), leaving us
with one missing component: how to handle receive NPFs.

In the previous section, we coped with rNPFs by relying
on the fact that InfiniBand RC handles the transport protocol
and the NPF at the same hardware unit, and that it provides
a reliable, lossless communication channel C between two
endpoints that allows for fast suspension and retransmission
of the traffic the flows through C. None of these benefits
are available for regular Ethernet NICs. Still, initially, we
hoped that—at least with TCP—simply dropping incoming
packets that experience rNPFs would constitute a reasonable
solution. The reason: like the RC protocol, TCP provides
reliable communication between two software entities, so
when a packet is lost (due to an rNPF), the other side is
guaranteed to retransmit. As it turns out, we were mistaken.
Dropping is not a viable solution for direct Ethernet I/O. A
better solution is required.

Running Example To demonstrate the problem (and high-
light the benefits of NPFs in §6), throughout the remainder
of the paper, we use a running example of an IOuser that
is coupled with a direct Ethernet channel. Our IOuser is the
memcached server [33], which is distributed memory key-
value caching system, commonly used in websites to cache
database queries and computation results in order to improve
response time. Our memcached runs inside a lightweight
VM (cgroups Linux container [78]), and it is driven by the
memaslap benchmark [1] (90% get, 10% set, 1KB values
by default). It utilizes a modified version of lwIP (user-level
TCP stack [31]) and kernel bypass direct network technology
based on the Linux verbs API to expose Ethernet hardware
rings to user-space.

Cold Ring Problem A striking example that demonstrates
why dropping packets upon rNPFs is problematic occurs
when IOusers start. Recall that no buffers are pinned, and so,
on startup, the IOuser’s receive ring is “cold”—its buffers
are unmapped and therefore rNPFs are triggered one after
the other as buffers are demand-paged and mapped for the
first time. Meanwhile, packets get dropped. We find that,
consequently, TCP retransmission and congestion avoidance
nearly deadlock the communication or, worse, completely halt
it. The cold ring problem is not limited to startup situations.
It can also happen, for example, when the VM is resumed
from suspension or brought back from swap, or due to NUMA
migration, forking with COW semantics, and so on. Moreover,
as the use of direct network I/O gets more widespread,
programmers may utilize their direct channels to implement
zero-copy stacks [13, 90], in which case occasional cold
sequences are likely.

Figure 4(a) demonstrates the problem. It compares the
throughput of the baseline memcached whose I/O buffers
are pre-pinned, to the “drop” configuration that discards
incoming packets that trigger rNPFs. Throughput is presented
as a function of time. We can see that pinning reaches the
steady state nearly immediately, whereas dropping suffers

 0

 100

 200

 0 20 40 60 80

time [seconds]

(a) throughput [KTPS]

 0.5

 2

 8

 32

 128

2
4

2
6

2
8

2
10

2
12

receive ring size

(b) time [seconds]

drop
backup

pin

Figure 4. (a) Startup with 64 entries in receive ring. (b) Time it
takes to perform 10,000 operations vs. receive ring size.

from the cold ring problem, penalizing the IOuser for nearly
60 seconds during which its throughput is effectively zero. In
this experiment, the IOuser receive ring consists of 64 entries.
Figure 4(b) demonstrates what happens if we vary the ring’s
size. We configure memaslap to perform 10K operations
and display how long they takes along the y-axis. Even
with an unreasonably small ring size of 16 entries, the drop
configuration takes over 10 seconds. Shortening this duration
by reducing the TCP retransmission timeout is problematic,
as the timeout is standardized. But even if we did reduce it,
the TCP/IP stack still counts retransmissions as failures and
gives up due to too many of them with a ring size of 128 or
above.

The throughput of dropping is poor due to the way TCP
reacts to drops. New TCP connections begin in a slow start
mode, sending at a low rate to avoid exceeding the network
capacity. Drops are considered a sign of congestion and cause
TCP to reduce the transmission rate further. Likewise, during
connection establishment stage, TCP utilizes exponential
backoff to avoid overloading the network/receiver. If the
cause of the packet loss is rNPFs, communication all but stops.
The transmitter waits for receiver acks before increasing the
transmission speed; instead, due to timeouts, it reduces the
transmission rate. The receiver, on the other hand, depends
on more packets to arrive to page-in the receive ring. The
effective behavior resembles a deadlock. The issue may
become so severe that the TCP maximal retry number is
exceeded and the stack announces a failure to the application
layer.

Backup Ring Our solution for Ethernet NPFs draws inspi-
ration from paravirtual (software-only) NICs, which handle
(CPU) page faults on guest receive rings. Incoming packets
are stored in pinned memory of the physical NIC. They are
then copied by the hypervisor to swappable buffers posted in
the paravirtual guest receive rings. The copy is done by the
CPU, so page faults are handled transparently.

Figure 5 depicts our proposed solution, which we denote as
backup ring. Traffic is received from the network (1). For each
incoming packet, the NIC inspects the target receive buffer
of the IOuser. If this buffer is available, the data is written
directly to it (2). Alternatively, if a page fault is encountered,

IOuser

IOprovider

NIC

(1)

(2)

(3) pf

(4)

Figure 5. High level design of the backup ring.

the packet is written to a small, pinned backup ring owned
by the IOprovider (3). After the IOprovider resolves the
rNPF, it copies/merges the packet into the original receive
buffer (4). The NIC skips IOuser receive descriptors that
encounter rNPFs to maintain ordering. For the same reason,
the NIC does not report the reception of new packets to the
IOuser until all previous page faults have been handled.

Our backup ring is conceptually similar to existing rings
and thus enjoys standard optimizations such interrupt coa-
lescing and NAPI [26] that make it fast enough not to run out
of space. A key difference is that, with regular rings, packets
are steered according to their content, whereas in the backup
case, they are steered according to meta data that the NIC
adds to allow the IOprovider to find the appropriate IOuser’s
buffer.

Hardware Figure 6 lists the pseudo-code of a NIC that
implements a backup ring. The head points to the first
descriptor that was not consumed as far as the IOuser is
concerned. The NIC tries to store new incoming packets
in head plus head_offset. When there are no pending
rNPFs, head_offset is zero. With pending rNPFs, head
keeps pointing to the descriptor associated with the oldest
unresolved rNPF: we cannot inform the IOuser that new
packets arrived before this rNPF is resolved. The bitmap
is used to track which descriptors currently experience rNPFs,
allowing the NIC to continue storing incoming packets in
the IOuser ring regardless of rNPFs. The bm_size is the size
of the bitmap. It places an upper bound on the number of
packets that the IOprovider is willing to store for a specific
IOuser ring.

The recv() function outlines how the NIC handles a
packet pkt that is designated for ring r. The NIC checks
if the packet can be stored in r, that is, if the target index does
not exceed the tail and if the relevant descriptor and buffers
are present. (For brevity we omit such checks as whether
the packet fits in the buffer.) Assuming the conditions hold,
we store the packet in r. If there are pending rNPFs, we
only advance head_offset. Otherwise, we advance head
and raise an interrupt to signal reception of new packets.

If the packet cannot be stored in r, the NIC attempts to
use the backup ring, which is possible if the distance from
the first unresolved packet does not exceed the IOprovider’s
limit in bm_size, and if there is room (the packet is dropped
otherwise). With the packet, the NIC also stores metadata
that the IOprovider needs to resolve the rNPF. It then marks

struct ring {
const int size, bm_size; descriptor_t *descriptor;
int tail, head, head_offset, bm_index; bit *bitmap;

};
void recv(ring r, Packet pkt) {
head = r.head + r.head_offset;
if(r.tail - r.head - r.head_offset < r.size &&

r.is_descriptor_present(head)) {
// store in IOuser ring
r.descriptor[head % r.size].store(pkt);
if(r.head_offset) { r.head_offset++; }
else { r.head++; r.raise_isr(); }

}
else if(r.head_offset < r.bm_size &&

backup.tail - backup.head < backup.size) {
// store in backup ring
i = backup.head % backup.size;
bit_index = bm_index + r.head_offset;
backup.descriptor[i].store(
{ r.id, head, bit_index, pkt });

backup.head++;
r.bitmap[bit_index % r.bm_size] = 1; r.head_offset++;
backup.raise_isr();

} // otherwise drop packet
}
void resolve_rNPFs(ring r, int bm_index) {

r.bitmap[bm_index % r.bm_size] = 0;
while (r.head_offset > 0 &&

r.bitmap[r.bm_index % r.bm_size] == 0) {
atomic { r.head_offset--; r.head++; r.bm_index++ }

}
r.raise_isr();

}

Figure 6. Hardware pseudo-code for the backup ring.

the bitmap, raises an rNPF, and advances head_offset to
skip an entry in r. We use the field bm_index to calculate the
offset in the bitmap. This field has a similar role to the head
field, holding the index of the bit corresponding to the ring
entry at head. It is required since we support bitmap sizes
(bm_size) that are different from the associated IOuser ring
sizes, thereby making the number of packets the IOprovider
agrees to hold for an IOuser independent of the IOuser’s ring
size.

The IOprovider informs the NIC when finishing to resolve
an rNPF of r. The NIC then executes resolve_rNPFs(),
which updates the bitmap, marking that the given index is
resolved. The NIC uses the bitmap to update head to point
to the next unresolved rNPF (or to the top of the ring, if
no rNPFs remain). The corresponding iteration might take
some time. But it does not exclude packet reception. Only
head and head_offset must be updated together because
the destination of new packets is determined by their sum.

Driver We next describe how the IOprovider manages the
backup ring. Recall that IOusers are unaware of this ring
and can therefore enjoy seamlessly NPF support. As noted,
the backup ring is similar to ordinary receive rings and is
thus similarly maintained. Its interrupt handler is invoked
upon packet arrival. Using the NIC-provided metadata, the
handler identifies the associated IOuser for each faulting
packet, placing the packet in a software queue q of that IOuser.
It promptly replenishes the backup ring so as not to run out

of buffers. It then wakes a thread T whose job is to resolve
the IOuser’s rNPFs. T is required, as rNPF resolution might
require sleeping, forbidden in interrupt context.

When resolving an rNPF, T first blocks until there is
room in the target IOuser ring r. It then ensures that the
corresponding descriptor and buffer(s) are present, and that
the IOMMU page tables reflect that. Finally, it copies the
packet into the buffer(s) and notifies the NIC that the rNPF
has been resolved.

In most cases, we expect r to have room for resolved
rNPF packets. But our backup ring mechanism allows the
IOprovider to buffer more packets then r’s size. The reason
underlying this design decision is the following. From the
time an rNPF fires until it is resolved, the NIC does not
notify the IOuser about newly arriving packets. Hence, the
IOuser does not post new buffers in r, risking overflow. As
the number of pending packets in q might exceed r’s size,
T might not be able to process q it in one go. Instead, it
might have to process only a few packets and then wait for
the IOuser to consume them and post additional buffers on
r. Therefore, during this period, T asks the NIC to raise an
interrupt whenever the IOuser changes the tail of r.

Prototype As noted, we utilize the Mellanox ConnectX-3
Ethernet NIC as the baseline of our prototype, with modified
firmware that provides basic NPF support (Figure 2). Imple-
menting the backup ring flows in firmware, however, is too
difficult a task. Unrealistic for us in the scope of a research
project. We therefore compromise. We prototype the backup
ring flows in the driver of the IOprovider. Doing so is made
possible by leveraging the ability of modern NICs to dupli-
cate all incoming packets into two receive rings. We build
on this feature to accurately emulate hardware-based backup
ring functionality for Ethernet rNPFs.

Instead of exclusively redirecting packets that trigger
rNPFs to the backup ring (we cannot), our prototype directs
all packets to two rings: a primary ring p with page faults
enabled, and a secondary ring s populated with pinned buffers.
In the absence of rNPFs on p, the duplicated packets in s are
discarded. But when p gets hit by an rNPF, the driver utilizes
s as the backup ring, copying faulting packets from s to an
intermediate queue q. Later, after the rNPF is resolved, the
driver copies from q to p per the true backup ring design.

There exists a subtle synchronization issue. While the
rNPF is resolved, new packets can arrive to p before we com-
plete the processing of s. These packets are also duplicated
on both rings. Lacking true rNPFs hardware support, the NIC
neither skips faulting receive ring entries, nor reports how
many packets are dropped during the rNPF, so there is a ques-
tion of when to switch back from s to p. We resolve this
question by comparing the contents of the packets in s to the
packet at the head of p and resume normal operation once the
two match.

Our prototype entails a cost. The maximal throughput at-
tainable by the testbed system that houses our ConnectX-3

NIC (see §6) is 24 Gbps, due to PCIe bus limitations. Dupli-
cating every packet halves this throughput, allowing a maxi-
mum of only 12 Gbps. Thus, our prototype models a weaker,
12 Gbps NIC. We stress that halving the throughput is not a
limitation of our proposed rNPF support for Ethernet NICs.
Rather, it is a consequence of lacking true hardware support
for rNPFs and having to emulate such support somehow. A
NIC supporting the backup ring flows in hardware will not du-
plicate the PCIe traffic; it will simply steer incoming faulting
packets to a different memory location. Duplicating is turned
on in all the evaluated Ethernet configurations—backup, drop-
ping, and pinning—to allow for an apples-to-apples compari-
son, using the same simulated NIC.

Going back to Figure 4(a), we see that the backup ring
solution performs as well as pinning. Figure 4(b) shows that,
for much larger ring sizes, while the ring is cold, the overhead
of our solution is nonnegligible but still allows the workload
to recover after a tolerable delay. When the ring warms up,
the performance of our solution becomes identical to that of
pinning—a behavior one would expect from demand-paging.

6. Evaluation
In our evaluation, we wish to answer the following questions.
Is our mechanism sufficient to sustain good performance?
Can we demand-page and utilize the memory effectively? For
example, can memory dynamically move to the IOuser that
needs it the most? And finally, does NPF support simplifies
code as argued? We demonstrate that the answer to all of
these questions is yes.

Using several real-world applications, we evaluate the im-
pact of network page faults with respect to memory utilization
(§6.1), performance overheads (§6.2), and code complexity
(§6.3). We examine use cases of high performance comput-
ing (HPC) interconnect fabric, a key-value store workload,
and a storage systems workload. We then conduct a what-if
analysis that measures the impact of NPFs on the system’s
network behavior under synthetic load (§6.4).

Our Ethernet experimental setup consists of two Dell Pow-
erEdge R210 II Rack Servers with 8GB 1333MHz mem-
ory and a 4-core Intel Xeon E3-1220 CPU at 3.10GHz run-
ning Ubuntu 13.10 with a Linux 3.11.4. The server machine
communicates through the 12 Gbps NPF-supporting proto-
type NIC described in §5. The client has the same under-
lying ConnectX-3 40Gbps without the added NPF support.
The NICs are connected back-to-back; the asymmetry be-
tween their throughputs might cause packet loss disturbing
our measurements. We avoid this problem by enabling flow
control [51].

Our InfiniBand setup consists of eight HP ProLiant
DL380p Gen8 servers with 128GB memory and a 12-core
dual socket Xeon E5-2697 v2 CPU at 2.7GHz running Red-
Hat 7.0 with Linux 3.10. Nodes communicate via NPF-
supporting 56 Gbps Connect-IB NICs described in §4. The
cluster is connected through a SwitchX-2 SX6036 switch.

memcached instances 1 2 3 4
NPF 186 311 407 484
pinning 185 310 N/A N/A

Table 5. The aggregated throughput of all the running memcached
instances in kilo transactions per second.

6.1 Memory Utilization
The ability to overcommit the memory—allowing the ag-
gregated size of all virtual address spaces to be bigger than
the physical memory such that physical pages are allocated
based on actual demand—is crucial for performance [7, 38,
45, 48, 102, 107, 109, 118]. We demonstrate how NPF sup-
port improves the IOprovider’s ability to overcommitment
the memory by using our running example described in §5 of
a memcached utilizing direct network I/O (Ethernet). While
memcached is not an optimal workload under memory pres-
sure, it serves to demonstrate how cloud operators cannot
always tell in advance the memory access pattern and seman-
tics of their applications, when deciding how to overcommit
memory. Memory overcommitment also supports easier de-
ployment. The operator can configure the system minimal
thresholds for the worst case scenario, while still benefiting
from more memory when it is available. We demonstrate this
benefit using a storage server (InfiniBand).

Key-value Store As noted in §2.2, all production IO-
providers pin the entire address space of IOusers when
assigning to them SRIOV or DPDK IOchannels [14, 30,
32, 52, 62, 113, 114, 119]. (Research by Amit et al. overcome
this difficulty by exposing a nested IOMMU to guest VMs,
finding a massive degradation in performance, which mo-
tivated the use of extra “sidecores” for pinning activity as
well as security compromises [5].) To demonstrate the prob-
lematic nature of this limitation, we conduct an experiment
whereby a VM is allocated (thinks it has) 3GB of (guest
physical) memory, but its working set is smaller than 2GB.
Recall that our testbed host machine is equipped with 8GB
of memory. It can therefore adequately support four VMs in
this case, in principle. As can be seen in Table 5, with NPF
support, it is indeed possible to run such four VMs together
in a productive manner. Conversely, without NPF support,
the IOprovider is unable to run more than two VMs, because
their aggregated virtual memory size is 9GB—bigger than
the physical memory.

In the previous experiment, the working sets of the VMs
were static. They did not change over time. NPFs, however,
additionally support dynamic reallocation of the physical
memory as the IOuser working set temporally evolves. To
demonstrate this benefit, our current experiment includes two
memcached IOusers instances whose working set changes;
that is, the aggregated size of the items that memaslap ac-
cesses changes (we configure memaslap to use 20KB per
item). For the first memcached instance, the set increases by a
factor of nine (100MB to 900MB) after 50 seconds of execu-

 0

 20

 40

 60

 80

 100

 0 100 200

th
ro

u
g
h
p
u
t
[K

H
P

S
]

(a) time [seconds]

10->90
90->10

 0 100 200

(b) time [seconds]

10->90
90->10

 0 100 200 300

(c) time [seconds]

npf
pin

Figure 7. Pinning vs. NPF with dynamic working set: with
NPFs (a), with pinning (b), and combined throughput (c).

tion. For the other instance, it shrinks by a factor of nine at the
same time (900MB to 100MB). Using cgroups, we constrain
the aggregated size of both instances to 1GB, simulating a
host with that much physical memory.

When NPFs are unsupported, pinning is required, so we
have no choice but to statically divide the physical memory
between the two, 500MB per instance. With NPF support,
no such division is necessary, as pages are mapped in the
IOMMU on demand based on actual usage. The metric we
use to report the results of this experiment is hits per second,
rather than the default transactions per second, because the
latter also include misses. (Recall that memcached is an LRU
cache, and so its hit rate is affected by its size.)

Figure 7 shows the throughput of the individual mem-
cached instances with NPF support (a) and without (b). The
change in working sets is evident in both cases at 50 sec-
onds, resulting in a short transition period after which the
system stabilizes. With NPF support, both instances enjoy
the same performance: the physical memory is big enough
to hold their working sets and DMA page faults of the direct
channels are adequately serviced. In contrast, when NPFs
are unsupported, one of the two instances always suffer: its
statically allocated memory (500MB) is too small to hold
its working set (900MB). Figure 7(c) shows the aggregated
throughput of the instances, demonstrating why NPF support
is advantageous.

Storage Modern data centers often separate compute and
storage resources, relying on remote storage using protocols
such as iSCSI. RDMA technology has been shown to im-
prove performance in such cases [21, 72], as it reduces CPU
utilization. Until now, user-space based arrays that use ker-
nel bypass and RDMA required pinned memory. One had
to statically configure the size of the buffers pinned for net-
work communication. These come at the expense of page
cache buffers that cache disk content. Our paging-capable so-
lution alleviates this problem by allowing the virtual memory
subsystem to manage the communication buffers on demand.

We evaluate the effect of NPFs on storage systems by us-
ing tgt [35], an iSCSI target implementation that supports
iSCSI extensions for RDMA (iSER) [22]. We use fio [11]
to benchmark a tgt storage target. The fio tester is using an
unmodified Linux kernel iSER initiator. We evaluate its per-
formance by measuring the random 512KB read bandwidth,

 0

 2

 4

 6

 4 5 6 7 8

b
a

n
d

w
id

th
 [

G
B

/s
e

c
]

memory [GB]

(a)

npf pin

1.4x

1.5x

1.9x

 0

 0.5

 1

 1.5

 0 20 40 60 80

pin (64KB/512KB)

npf 5
12KB

npf 64KB

m
e

m
o

ry
 u

s
a

g
e

 [
G

B
]

initiator sessions

(b)

Figure 8. Storage bandwidth with single initiator and varying
memory limit (a). Memory usage with multiple initiators and a fixed
memory limit (b).

varying the amount of memory available at the machine. The
tgt daemon exposes a single LUN of 4GB, stored on a single
high-performance hard drive. A remote machine mounts the
iSCSI LUN and performs random reads. We run the base-
line tgt with pinned network buffers and compare it against a
modified tgt that relies on NPFs for correct DMAing.

Figure 8(a) shows the results. With less than 5GB of avail-
able memory, the pinned configuration fails to load the tgt
service, whereas the NPF configuration successfully runs
with as little as 4GB of memory available. As we increase
the amount of memory available to the target machine, it is
able to cache a larger number of the blocks from the underly-
ing storage, accelerating the read operations. In the pinned
configuration, the static memory allocation leaves a smaller
amount of memory to the page cache, inducing more cache
misses. In this experiment, NPFs improve performance by
up to 1.9x. Only with 7GB or more, the pinned configuration
finally has enough memory to cache the entire disk.

The baseline tgt server statically allocates a 1GB buffer for
communication. One might wonder if such a large buffer is
needed. To answer this question, we run the same experiment
with a varying number of iSCSI initiators and a fixed memory
limitation of 6 GB. Figure 8(b) shows the amount of resident
memory used by the tgt daemon process. Increasing the num-
ber of initiators results in more communication buffers used
by the target, increasing the total memory usage. Additionally,
tgt allocates a fixed size chunk (512KB) for each transaction,
regardless of its actual size. Thus, with 64KB blocks, there
are communication buffers in the process address space that
are never used. With NPFs, these virtual addresses never get
backed by physical frames. With 512KB blocks, the memory
usage nears the amount used by the pinned configuration, al-
though because the machine is limited to use only 6 GB, there
is still enough memory pressure to cause the OS to evacuate
pages of the communication buffers.

6.2 Overhead of Pinning and Copying
Next, we compare the performance of our NPF solution
to the alternatives of pinning and unpinning dynamically,
or copying data in and out of a statically pinned buffer

10
1

10
2

2
4

2
5

2
6

2
7

ti
m

e
 [
s
e
c
,
lo

g
 s

c
a
le

]

message size [KB, log scale]

sendrecv

copy
pin
npf

1.1x

2.1x

10
1

10
2

2
4

2
5

2
6

2
7

bcast

1.1x

1.3x

10
2

10
3

2
4

2
5

2
6

2
7

alltoall

1.2x

2.2x

Figure 9. IMB runtime for IMB benchmarks as a function of
message size. The labels show the ratio between the runtimes
associated with copying and pinning.

(InfiniBand setup). Direct I/O and RDMA are commonly
used in high-performance computing environments, as the
gains in communication latency and lower CPU utilization
are advantageous for HPC applications. We thus use HPC
benchmarks to measure the effect of NPF, focusing on the
message passing interface (MPI) standard for communication.
We use OpenMPI with a Mellanox communication backend.
In order to focus on the inter-machine communication, we
run only a single process on each node.

To drive MPI, we use the Intel MPI benchmarks suite
(IMB) [27], which contains a collection of benchmarks that
measure performance of a specific MPI operation. Figure 9
shows the results of three of these benchmarks. We compare
between three configurations: NPF, copying, and pinning—a
state-of-the-art heuristic pin-down cache that is part of our
MPI communication backend. (Pin-down caches were dis-
cussed in §2.2.) We use the IMB “off_cache” mode to in-
crease the working set of the benchmark. This mode prompts
the pin-down cache logic to register multiple memory buffers
instead of just one. Figure 9, displays the throughput of the
three benchmarks as a function of the message size, highlight-
ing the advantage of RDMA (zero copy) over copying, espe-
cially for larger messages. The NPF configuration achieves
similar performance as the state-of-the-art pin-down cache.

A few of the IMB benchmarks, such as allreduce (not
shown), exhibit little difference between copying and pinning.
In the case of allreduce, the reason is that this benchmark
performs a CPU calculation as part of its reduction operation,
forcing it to copy the data into and out of the CPU cache
in any case, and thus hampering the performance gain of
RDMA. For such primitives, there is likewise no observable
difference between the pinning and the NPF configurations.

Another HPC benchmark we use is the effective communi-
cation bandwidth benchmark (“beff”) [63], designed to model
real HPC workloads. This benchmark evaluates the accumu-
lated bandwidth of the communication network by measuring
several message sizes, communication patterns, and MPI op-
erations. The results are shown in Table 6, highlighting again

app pinning NPF copying
beff 16,410±45 16,440±10 8,020±20

Table 6. Performance of beff in MB/sec.

that there is benefit in using RDMA over copying, and that
NPF provides this benefit without the need to pin.

HPC workloads typically do not swap to secondary storage
and run with enough permissions to lock the entire physical
memory if needed. Because of that, the pin-down cache
rarely needs to unpin memory and therefore oftentimes
acts more like a solution that pins everything after some
warm-up. It seems reasonable to expect, however, that with
HPC-like cloud workloads becoming more commonplace,
administrators will tighten the limitations on memory use,
as well as charge IOusers in a manner that is proportional
to the amount of resources they consume. Such setups will
drive pin-down caches to exercises their eviction policies and
dynamically pin/unpin at a finer granularity, thereby inducing
significant overheads [5, 14, 103, 117], which can be avoided
on systems that provide NPF support.

6.3 Programming Complexity
Given similar resources, a well-tuned, well-designed pin-
down cache may perform similarly to a solution based on
NPFs. But why should developers individually invest their
efforts in designing pin-down strategies when the virtual
memory subsystem can do it collectively for them based on
actual use? It is difficult to quantitatively measure the benefit
of NPFs in reducing code complexity. One possible way to
try is to consider the number of lines of code (LOC) involved.
For example, to port the tgt storage daemon to use NPFs, we
modified about 40 LOC. The daemon was able to perform
significantly better as a result.

How many LOC would we have devoted to resolve the
problem without NPFs? In the MPI middleware library
that we used, we estimate that thousands of LOC can be
disabled when using NPFs. Managing the pin-down cache,
the data structures tracking what has been pinned, and the
eviction and pinning policies can all be eliminated. Another
pin-down cache example is the Firehose algorithm [14],
whose implementation took nearly 8.5K LOC [36]. (Our
benchmarks are based on MPI, so we cannot compare them
directly with the GASNet-based Firehose algorithm, but
we expect that NPFs would provide similar performance to
Firehose when using the same resources.)

6.4 What-If Analysis
With the exception of cold rings, all of our experiments
(those we described above, and those we did not) indicated
that spontaneous rNPFs are rare. Still, our experience is
limited to the workloads we evaluated. It is possible that
other workloads will exhibit different characteristics. Here,
we evaluate the consequences of more frequent rNPFs. Our
baseline application measures maximal bandwidth, similarly
to Netperf TCP stream [59]. The sender iteratively transmits

 0

 2

 4

 6

 8

 10

 12

2
-10

2
-15

2
-20

2
-25

2
-30

th
ro

u
p
h
p
u
t
[G

b
/s

]

frequency

Ethernet

minor brng
major brng
minor drop
major drop

 0

 8

 16

 24

 32

 40

 48

2
-10

2
-15

2
-20

20%

40%

60%

80%

100%

%
 o

f
o
p
ti
m

u
m

frequency

InfiniBand

minor

Figure 10. Throughput of the stream benchmark with rNPFs;
“brng” denotes backup ring.

64KB messages using a standard Linux TCP stack. The
receiver runs our lwIP stack and counts how many packets
have been received to report throughput. To allow for a
comparison between Ethernet and InfiniBand rNPFs, we
additionally use the equivalent ib_send_bw InfiniBand stream
benchmark from the perftest package. Both benchmarks
are modified to synthetically generate rNPFs at a variable
specified frequency. They pre-fault the receive ring at startup
to eliminate the cold ring problem.

Figure 10 shows the results. The left y-axis denotes raw
throughput (benchmarks are differently scaled along this
axis). The right y-axis denotes throughput relative to the
optimum. On the left, we see that the backup ring significantly
improves performance for both major and minor rNPFs (with
and without disk access). The page fault type does not matter
when dropping, as the TCP retransmission timer is much
longer than the time it takes to resolve a major page fault.
The hardware implementation, shown on the right, notifies the
remote sender immediately upon a page fault. The notification
allows the sender to use a relatively short NPF-specific
timeout resulting in significant performance improvement
relative to dropping. Nonetheless, network utilization-wise,
this solution is less efficient then the backup ring solution.

7. Conclusion
As direct network I/O becomes more popular and widely used,
we contend that it makes sense for systems to add support for
network page faults. We design and implement such support
for InfiniBand and Ethernet NICs and show that it improves
the utilization of the memory, increases overall performance,
and simplifies the program model. Mellanox InfiniBand NICs
already provide NPF support as described in this paper (§4);
the feature is called on-demand paging (ODP).

Acknowledgments
We thank the anonymous reviewers for their helpful feedback
and Yuval Dagan, who assisted with the HPC benchmarking.
This research is partially funded by the Israeli Ministry of
Economics via the HIPER consortium.

References
[1] Brian Aker and Mingqiang Zhuang. Memaslap - load

testing and benchmarking a server. http://docs.libme
mcached.org/bin/memaslap.html. libmemcached 1.1.0
documentation. Accessed: May 2016.

[2] M. Alizadeh, B. Atikoglu, A. Kabbani, A. Lakshmikantha,
Rong Pan, B. Prabhakar, and M. Seaman. Data center
transport mechanisms: Congestion control theory and IEEE
standardization. In Communication, Control, and Comput-
ing, 2008 46th Annual Allerton Conference on, pages 1270–
1277, Sept 2008. http://dx.doi.org/10.1109/ALLERT
ON.2008.4797706.

[3] M. Allman, V. Paxson, and W. Stevens. TCP Congestion
Control. RFC 2581, Internet Engineering Task Force, April
1999.

[4] AMD Inc. AMD IOMMU architectural specification, rev
2.00. http://developer.amd.com/wordpress/media/
2012/10/488821.pdf, Mar 2011. Accessed: May 2016.

[5] Nadav Amit, Muli Ben-Yehuda, Dan Tsafrir, and Assaf
Schuster. vIOMMU: efficient IOMMU emulation. In
USENIX Annual Technical Conference (ATC), pages 73–
86, 2011. http://www.usenix.org/events/atc11/tech
/final_files/Amit.pdf.

[6] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Assaf Schuster, and Dan Tsafrir. Bare-metal
performance for virtual machines with exitless interrupts.
Communications of the ACM (CACM), 59(1):108–116, Jan
2016. http://dx.doi.org/10.1145/2845648.

[7] Nadav Amit, Dan Tsafrir, and Assaf Schuster. VSwapper: A
memory swapper for virtualized environments. In ACM Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
349–366, 2014. http://dx.doi.org/10.1145/2541940.
2541969.

[8] Apple Inc. Thunderbolt device driver programming guide:
Debugging VT-d I/O MMU virtualization. https://deve
loper.apple.com/library/mac/documentation/Hard
wareDrivers/Conceptual/ThunderboltDevGuide/Deb
uggingThunderboltDrivers/DebuggingThunderboltD
rivers.html, 2013. Accessed: May 2014.

[9] Andrea Arcangeli. Integrating KVM with the linux memory
management. In KVM Forum, 2008.

[10] ARM Holdings. ARM system memory management unit
architecture specification — SMMU architecture version
2.0. http://infocenter.arm.com/help/topic/com.ar
m.doc.ihi0062c/IHI0062C_system_mmu_architecture
_specification.pdf, 2013. Accessed: Jan 2015.

[11] Jens Axboe. Fio – flexible IO tester. http://git.kernel
.dk/?p=fio.git.

[12] Thomas Ball, Ella Bounimova, Byron Cook, Vladimir Levin,
Jakob Lichtenberg, Con McGarvey, Bohus Ondrusek, Sri-
ram K. Rajamani, and Abdullah Ustuner. Thorough static
analysis of device drivers. In ACM Eurosys, pages 73–85,
2006.

[13] Adam Belay, George Prekas, Ana Klimovic, Samuel Gross-
man, Christos Kozyrakis, and Edouard Bugnion. IX: A
protected dataplane operating system for high throughput
and low latency. In USENIX Symposium on Operating
System Design and Implementation (OSDI), pages 49–65,
2014. https://www.usenix.org/system/files/confer
ence/osdi14/osdi14-paper-belay.pdf.

[14] Christian Bell and Dan Bonachea. A new DMA registration
strategy for pinning-based high performance networks. In
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), 2003. http://dx.doi.org/10.1109/IP
DPS.2003.1213363.

[15] Muli Ben-Yehuda, Orna Agmon Ben-Yehuda, and Dan
Tsafrir. The nom profit-maximizing operating system. In
ACM International Conference on Virtual Execution Envi-
ronments (VEE), pages 145–160, 2016. http://dx.doi.o
rg/10.1145/2892242.2892250.

[16] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael
Factor, Nadav Har’El, Abel Gordon, Anthony Liguori, Orit
Wasserman, and Ben-Ami Yassour. The Turtles project: De-
sign and implementation of nested virtualization. In USENIX
Symposium on Operating System Design and Implementation
(OSDI), pages 423–436, 2010. http://www.usenix.org/e
vents/osdi10/tech/full_papers/Ben-Yehuda.pdf.

[17] Muli Ben-Yehuda, Jimi Xenidis, Michal Ostrowski, Karl
Rister, Alexis Bruemmer, and Leendert van Doorn. The
price of safety: Evaluating IOMMU performance. In Ottawa
Linux Symposium (OLS), pages 9–20, 2007. https://www.
kernel.org/doc/mirror/ols2007v1.pdf#page=9.

[18] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and
Srilatha Manne. Accelerating two-dimensional page walks
for virtualized systems. In ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 26–35, 2008. http:
//dx.doi.org/10.1145/1346281.1346286.

[19] Robert Birke, Lydia Y Chen, and Evgenia Smirni. Data
centers in the wild: A large performance study. Technical
Report RZ3820, IBM Research, 2012. http://domino.r
esearch.ibm.com/library/cyberdig.nsf/papers/0C
306B31CF0D3861852579E40045F17F.

[20] James E.J. Bottomley. Dynamic DMA mapping using the
generic device. https://git.kernel.org/cgit/linux/
kernel/git/stable/linux-stable.git/tree/Docum
entation/DMA-API.txt?id=refs/tags/v3.18.3. Linux
kernel documentation. Accessed: Jan 2015.

[21] Ethan Burns. Implementation and comparison of iSCSI over
RDMA. PhD thesis, University of New Hampshire, 2008.

[22] Mallikarjun Chadalapaka, Uri Elzur, Michael Ku, Hemal
Shah, and Patricia Thaler. A Study of iSCSI Extensions
for RDMA. In Computer-Communication Networks, August
2003.

[23] Yuqun Chen, Angelos Bilas, Stefanos N. Damianakis, Cezary
Dubnicki, and Kai Li. UTLB: A mechanism for address
translation on network interfaces. In ACM International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 193–204,

http://docs.libmemcached.org/bin/memaslap.html
http://docs.libmemcached.org/bin/memaslap.html
http://dx.doi.org/10.1109/ALLERTON.2008.4797706
http://dx.doi.org/10.1109/ALLERTON.2008.4797706
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
http://developer.amd.com/wordpress/media/2012/10/488821.pdf
http://www.usenix.org/events/atc11/tech/final_files/Amit.pdf
http://www.usenix.org/events/atc11/tech/final_files/Amit.pdf
http://dx.doi.org/10.1145/2845648
http://dx.doi.org/10.1145/2541940.2541969
http://dx.doi.org/10.1145/2541940.2541969
https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html
https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html
https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html
https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html
https://developer.apple.com/library/mac/documentation/HardwareDrivers/Conceptual/ThunderboltDevGuide/DebuggingThunderboltDrivers/DebuggingThunderboltDrivers.html
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0062c/IHI0062C_system_mmu_architecture_specification.pdf
http://git.kernel.dk/?p=fio.git
http://git.kernel.dk/?p=fio.git
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-belay.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-belay.pdf
http://dx.doi.org/10.1109/IPDPS.2003.1213363
http://dx.doi.org/10.1109/IPDPS.2003.1213363
http://dx.doi.org/10.1145/2892242.2892250
http://dx.doi.org/10.1145/2892242.2892250
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=9
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=9
http://dx.doi.org/10.1145/1346281.1346286
http://dx.doi.org/10.1145/1346281.1346286
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0C306B31CF0D3861852579E40045F17F
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0C306B31CF0D3861852579E40045F17F
http://domino.research.ibm.com/library/cyberdig.nsf/papers/0C306B31CF0D3861852579E40045F17F
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/DMA-API.txt?id=refs/tags/v3.18.3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/DMA-API.txt?id=refs/tags/v3.18.3
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/DMA-API.txt?id=refs/tags/v3.18.3

1998. http://dx.doi.org/10.1145/291069.291046.

[24] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem,
and Dawson Engler. An empirical study of operating systems
errors. In ACM Symposium on Operating Systems Principles
(SOSP), pages 73–88, 2001.

[25] Jonathan Corbet. Linux Device Drivers, chapter 15: Memory
Mapping and DMA. O’Reilly, 3rd edition, 2005.

[26] Jonathan Corbet. Newer, newer NAPI. LWN https://
lwn.net/Articles/244640/, Aug 2007. (Accessed: Aug
2016).

[27] Intel Corporation. Intel MPI benchmarks. https://so
ftware.intel.com/en-us/articles/intel-mpi-ben
chmarks, 2013.

[28] Crehan Research. Another year of robust growth and
record shipments for branded data center switches. ht
tp://www.crehanresearch.com/wp-content/uploads
/2015/03/CREHAN-2014-Data-Center-Switching-CR.
pdf, Mar 2015. (Accessed: Aug 2015).

[29] Yaozu Dong, Yu Chen, Zhenhao Pan, Jinquan Dai, and Yun-
hong Jiang. ReNIC: Architectural extension to SR-IOV I/O
virtualization for efficient replication. ACM Transactions
on Architecture and Code Optimization (TACO), 8(4):40:1–
40:22, Jan 2012. http://dx.doi.org/10.1145/2086696.
2086719.

[30] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Cas-
tro, and Orion Hodson. FaRM: Fast remote memory. In
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 401–414, 2014. https:
//www.usenix.org/conference/nsdi14/technical-s
essions/dragojevic.

[31] Adam Dunkels. Design and implementation of the lwIP
TCP/IP stack. Swedish Institute of Computer Science, 2:77,
2001.

[32] Montse Farreras, George Almasi, Calin Cascaval, and Toni
Cortes. Scalable RDMA performance in PGAS languages. In
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), 2009. http://dx.doi.org/10.1109/IP
DPS.2009.5161025.

[33] Brad Fitzpatrick. Distributed caching with memcached.
Linux Journal, 2004(124):5, Aug 2004. http://dl.acm
.org/citation.cfm?id=1012889.1012894.

[34] Sally Floyd, Dr. K. K. Ramakrishnan, and David L. Black.
The Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168, March 2013.

[35] Tomonori Fujita and Mike Christie. tgt: Framework for Stor-
age Target Drivers. In Proceedings of the Linux Symposium,
July 2006.

[36] GASNet 1.26.0. https://gasnet.lbl.gov/GASNet-1.
26.0.tar.gz, October 2015. (Accessed: May 2016).

[37] Dror Goldenberg, Michael Kagan, Ran Ravid, and Michael S.
Tsirkin. Zero copy sockets direct protocol over InfiniBand
– preliminary implementation and performance analysis.
In IEEE Symposium on High Performance Interconnects
(HOTI), pages 128–137, 2005. http://dx.doi.org/10.

1109/CONECT.2005.35.

[38] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and
Mendel Rosenblum. Cellular disco: Resource manage-
ment using virtual clusters on shared-memory multiproces-
sors. In ACM Symposium on Operating Systems Principles
(SOSP), pages 154–169, 1999. http://dx.doi.org/10.
1145/319344.319162.

[39] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Sav-
age, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker,
and Amin Vahdat. Difference engine: Harnessing memory
redundancy in virtual machines. Communications of the
ACM (CACM), pages 85–93, 2010. http://dx.doi.org
/10.1145/1831407.1831429.

[40] James Hamilton. AWS innovation at scale. https://www.
youtube.com/watch?t=113&v=JIQETrFC_SQ, Nov 2014.
(Accessed: Aug 2015).

[41] Nadav Har’El, Abel Gordon, Alex Landau, Muli Ben-
Yehuda, Avishay Traeger, and Razya Ladelsky. Efficient
and scalable paravirtual I/O system. In USENIX An-
nual Technical Conference (ATC), pages 231–242, 2013.
https://www.usenix.org/system/files/conference
/atc13/atc13-harel.pdf.

[42] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg,
and Andrew S. Tanenbaum. Failure resilience for device
drivers. In IEEE/IFIP Annual International Conference
on Dependable Systems and Networks (DSN), pages 41–50,
2007.

[43] Gregory D. Hill and Albert H. Chen. High performance
network multiplexing with IX++. Research report, Stan-
ford University, 2015. http://hselin.com/resources/C
S344g_ixplusplus_final%20paper.pdf.

[44] Michael R. Hines, Abel Gordon, Marcio Silva, Dilma
Da Silva, Kyung Ryu, and Muli Ben-Yehuda. Applica-
tions know best: Performance-driven memory overcommit
with Ginkgo. In IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pages
130–137, 2011. http://dx.doi.org/10.1109/CloudCom
.2011.27.

[45] Eric Horschman. Hypervisor memory management done
right. http://blogs.vmware.com/virtualreality/
2011/02/hypervisor-memory-management-done-rig
ht.html, 2011. (Accessed: May 2016).

[46] The HSA Foundation. http://www.hsafoundation.com/.

[47] HSA Foundation. HSA-Drivers-Linux-AMD. https://
github.com/HSAFoundation/HSA-Drivers-Linux-AMD.
(Accessed: May 2016).

[48] Woomin Hwang, Yangwoo Roh, Youngwoo Park, Ki-Woong
Park, and Kyu Ho Park. HyperDealer: Reference pattern
aware instant memory balancing for consolidated virtual
machines. In IEEE International Conference on Cloud
Computing (CLOUD), pages 426–434, 2014. http://dx
.doi.org/10.1109/CLOUD.2010.70.

[49] IBM Corporation. PowerLinux servers — 64-bit DMA con-
cepts. http://pic.dhe.ibm.com/infocenter/lnxinfo
/v3r0m0/topic/liabm/liabmconcepts.htm. Accessed:

http://dx.doi.org/10.1145/291069.291046
https://lwn.net/Articles/244640/
https://lwn.net/Articles/244640/
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://www.crehanresearch.com/wp-content/uploads/2015/03/CREHAN-2014-Data-Center-Switching-CR.pdf
http://www.crehanresearch.com/wp-content/uploads/2015/03/CREHAN-2014-Data-Center-Switching-CR.pdf
http://www.crehanresearch.com/wp-content/uploads/2015/03/CREHAN-2014-Data-Center-Switching-CR.pdf
http://www.crehanresearch.com/wp-content/uploads/2015/03/CREHAN-2014-Data-Center-Switching-CR.pdf
http://dx.doi.org/10.1145/2086696.2086719
http://dx.doi.org/10.1145/2086696.2086719
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevic
http://dx.doi.org/10.1109/IPDPS.2009.5161025
http://dx.doi.org/10.1109/IPDPS.2009.5161025
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://gasnet.lbl.gov/GASNet-1.26.0.tar.gz
https://gasnet.lbl.gov/GASNet-1.26.0.tar.gz
http://dx.doi.org/10.1109/CONECT.2005.35
http://dx.doi.org/10.1109/CONECT.2005.35
http://dx.doi.org/10.1145/319344.319162
http://dx.doi.org/10.1145/319344.319162
http://dx.doi.org/10.1145/1831407.1831429
http://dx.doi.org/10.1145/1831407.1831429
https://www.youtube.com/watch?t=113&v=JIQETrFC_SQ
https://www.youtube.com/watch?t=113&v=JIQETrFC_SQ
https://www.usenix.org/system/files/conference/atc13/atc13-harel.pdf
https://www.usenix.org/system/files/conference/atc13/atc13-harel.pdf
http://hselin.com/resources/CS344g_ixplusplus_final%20paper.pdf
http://hselin.com/resources/CS344g_ixplusplus_final%20paper.pdf
http://dx.doi.org/10.1109/CloudCom.2011.27
http://dx.doi.org/10.1109/CloudCom.2011.27
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://www.hsafoundation.com/
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
https://github.com/HSAFoundation/HSA-Drivers-Linux-AMD
http://dx.doi.org/10.1109/CLOUD.2010.70
http://dx.doi.org/10.1109/CLOUD.2010.70
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liabm/liabmconcepts.htm
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liabm/liabmconcepts.htm

May 2014.

[50] IBM Corporation. AIX kernel extensions and device sup-
port programming concepts. https://publib.boulder
.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.
kernelext/doc/kernextc/kernextc_pdf.pdf, 2013. Acc-
ssed: May 2014.

[51] IEEE. Specification for 802.3 full duplex operation. IEEE
Standard 802.3x http://dx.doi.org, 1997.

[52] VMware Inc. Configuring VMDirectPath I/O pass-through
devices on a VMware ESX or VMware ESXi host. http
s://kb.vmware.com/kb/1010789. VMware Knowledge
Base. Accessed: Aug 2016.

[53] InfiniBand Trade Association (IBTA). About InfiniBand. ht
tp://www.infinibandta.org/content/pages.php?pg=
about_us_infiniband. (Accessed: May 2016).

[54] InfiniBand Trade Association (IBTA). About RoCE. http:
//www.infinibandta.org/content/pages.php?pg=ab
out_us_RoCE. (Accessed: May 2016).

[55] Intel. PCI-SIG SR-IOV primer: An introduction to SR-
IOV technology. http://www.intel.com/content/www/
us/en/pci-express/pci-sig-sr-iov-primer-sr-iov
-technology-paper.html, Jan 2011.

[56] Intel Corporation. DPDK: Data plane development kit.
http://dpdk.org. (Accessed: May 2016).

[57] Intel Corporation. Intel virtualization technology for directed
I/O - architecture specification - specification - Rev. 2.2.
http://www.intel.com/content/dam/www/public/us/
en/documents/product-specifications/vt-directe
d-io-spec.pdf, Sep 2013. Accessed: Jan 2015.

[58] Intel Corporation. Intel virtualization technology for directed
I/O - architecture specification - Rev. 2.3. http://www.inte
l.com/content/dam/www/public/us/en/documents/p
roduct-specifications/vt-directed-io-spec.pdf,
Oct 2014.

[59] Rick A. Jones. Netperf: A network performance benchmark
(Revision 2.0). http://www.netperf.org/netperf/trai
ning/Netperf.html, 1995. Accessed: August, 2016.

[60] M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger,
Hector M. Briceño, Russell Hunt, David Mazières, Thomas
Pinckney, Robert Grimm, John Jannotti, and Kenneth Macken-
zie. Application performance and flexibility on exokernel
systems. In ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 52–65, 1997.

[61] Anuj Kalia, Michael Kaminsky, and David G. Andersen.
Design guidelines for high performance RDMA systems. In
USENIX Annual Technical Conference (ATC), pages 437–
450, 2016. https://www.usenix.org/conference/at
c16/technical-sessions/presentation/kalia.

[62] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma,
Thomas Anderson, and Arvind Krishnamurthy. High perfor-
mance packet processing with FlexNIC. In ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 67–81,
2016. http://dx.doi.org/10.1145/2872362.2872367.

[63] Alice E. Koniges, Rolf Rabenseifner, and Karl Solchenbach.
Benchmark design for characterization of balanced high-
performance architectures. In Proceedings of the 15th Inter-
national Parallel &Amp; Distributed Processing Symposium,
IPDPS ’01, pages 196–, Washington, DC, USA, 2001. IEEE
Computer Society.

[64] Yossi Kuperman, Eyal Moscovici, Joel Nider, Razya Ladel-
sky, Abel Gordon, and Dan Tsafrir. Paravirtual remote I/O.
In ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 49–65, 2016. http://dx.doi.org/10.1145/
2872362.2872378.

[65] George Kyriazis. Heterogeneous system architecture: A
technical review. Technical report, AMD Inc., Aug 2012.
Rev. 1.0 http://amd-dev.wpengine.netdna-cdn.com
/wordpress/media/2012/10/hsa10.pdf (Accessed: May
2016).

[66] Joshua LeVasseur, Volkmar Uhlig, Jan Stoess, and Stefan
Götz. Unmodified device driver reuse and improved system
dependability via virtual machines. In USENIX Symposium
on Operating System Design and Implementation (OSDI),
pages 17–30, 2004. https://www.usenix.org/legacy/
publications/library/proceedings/osdi04/tech/f
ull_papers/levasseur/levasseur.pdf.

[67] Sheng Li, Hyeontaek Lim, Victor W. Lee, Jung Ho Ahn, Anuj
Kalia, Michael Kaminsky, David G. Andersen, O. Seongil,
Sukhan Lee, and Pradeep Dubey. Architecting to achieve a
billion requests per second throughput on a single key-value
store server platform. In ACM International Symposium
on Computer Architecture (ISCA), pages 476–488, 2015.
https://doi.org/10.1145/2749469.2750416.

[68] Hyeontaek Lim, Dongsu Han, David G. Andersen, and
Michael Kaminsky. MICA: A holistic approach to fast
in-memory key-value storage. In USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI), pages
429–444, 2014. https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/lim.

[69] getrlimit(2) – Linux man page. http://linux.die.net/
man/2/getrlimit. (Accessed: May 2016).

[70] mlock(2) – Linux man page. http://linux.die.net/ma
n/2/mlock. (Accessed: May 2016).

[71] The include/uapi/linux/resource.h header file of Linux
4.5. http://lxr.free-electrons.com/source/includ
e/uapi/linux/resource.h?v=4.5#L71. (Accessed: May
2016).

[72] Jiuxing Liu, Dhabaleswar K. Panda, Jiuxing Liu Dha-
baleswar K. P, and Mohammad Banikazemi. Evaluating
the impact of RDMA on storage I/O over InfiniBand. In
SAN-03 Workshop (in conjunction with HPCA), 2004, 2004.

[73] Moshe Malka, Nadav Amit, Muli Ben-Yehuda, and Dan
Tsafrir. rIOMMU: Efficient IOMMU for I/O devices that
employ ring buffers. In ACM International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 355–368, 2015.

[74] Moshe Malka, Nadav Amit, and Dan Tsafrir. Efficient

https://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.kernelext/doc/kernextc/kernextc_pdf.pdf
https://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.kernelext/doc/kernextc/kernextc_pdf.pdf
https://publib.boulder.ibm.com/infocenter/aix/v7r1/topic/com.ibm.aix.kernelext/doc/kernextc/kernextc_pdf.pdf
http://dx.doi.org
https://kb.vmware.com/kb/1010789
https://kb.vmware.com/kb/1010789
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.infinibandta.org/content/pages.php?pg=about_us_infiniband
http://www.infinibandta.org/content/pages.php?pg=about_us_RoCE
http://www.infinibandta.org/content/pages.php?pg=about_us_RoCE
http://www.infinibandta.org/content/pages.php?pg=about_us_RoCE
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://www.intel.com/content/www/us/en/pci-express/pci-sig-sr-iov-primer-sr-iov-technology-paper.html
http://dpdk.org
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.netperf.org/netperf/training/Netperf.html
http://www.netperf.org/netperf/training/Netperf.html
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
http://dx.doi.org/10.1145/2872362.2872367
http://dx.doi.org/10.1145/2872362.2872378
http://dx.doi.org/10.1145/2872362.2872378
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/hsa10.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/levasseur/levasseur.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/levasseur/levasseur.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi04/tech/full_papers/levasseur/levasseur.pdf
https://doi.org/10.1145/2749469.2750416
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/lim
http://linux.die.net/man/2/getrlimit
http://linux.die.net/man/2/getrlimit
http://linux.die.net/man/2/mlock
http://linux.die.net/man/2/mlock
http://lxr.free-electrons.com/source/include/uapi/linux/resource.h?v=4.5#L71
http://lxr.free-electrons.com/source/include/uapi/linux/resource.h?v=4.5#L71

intra-operating system protection against harmful DMAs.
In USENIX Conference on File and Storage Technologies
(FAST), pages 29–44, 2015.

[75] Vinod Mamtani. DMA directions and Windows. http://
download.microsoft.com/download/a/f/d/afdfd50d
-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx,
2007. Accessed: May 2014.

[76] Alex Markuze, Adam Morrison, and Dan Tsafrir. It’s DAMN
time for overhead-free IOMMU protection. Submitted.

[77] Alex Markuze, Adam Morrison, and Dan Tsafrir. True
IOMMU protection from DMA attacks: When copy is faster
than zero copy. In ACM International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems (ASPLOS), pages 249–262, 2016. http:
//dx.doi.org/10.1145/2872362.2872379.

[78] Paul Menage. Cgroups. https://www.kernel.org/doc/D
ocumentation/cgroups/cgroups.txt.

[79] Frank Mietke, Robert Rex, Robert Baumgartl, Torsten Mehlan,
Torsten Hoefler, and Wolfgang Rehm. Analysis of the mem-
ory registration process in the Mellanox InfiniBand software
stack. In International European Conference on Parallel and
Distributed Computing (Euro-Par), pages 124–133, 2006.
http://dx.doi.org/10.1007/11823285_13.

[80] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox.
Practical, transparent operating system support for super-
pages. In USENIX Symposium on Operating System Design
and Implementation (OSDI), pages 89–104, 2002.

[81] Jarek Nieplocha, Vinod Tipparaju, Amina Saify, and Dha-
baleswar K. Panda. Protocols and strategies for optimizing
performance of remote memory operations on clusters. In
IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), 2002. http://dx.doi.org/10.1109/IP
DPS.2002.1016563.

[82] Radhika Niranjan Mysore, George Porter, and Amin Vahdat.
FasTrak: Enabling express lanes in multi-tenant data centers.
In ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT), pages 139–150, 2013. http:
//dx.doi.org/10.1145/2535372.2535386.

[83] Li Ou, Xubin He, and Jizhong Han. An efficient design for
fast memory registration in RDMA. Journal of Network and
Computer Applications, 2009.

[84] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit
Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker.
E2: A framework for NFV applications. In ACM Symposium
on Operating Systems Principles (SOSP), pages 121–136,
2015. https://doi.org/10.1145/2815400.2815423.

[85] PCI-SIG. Single root I/O virtualization and sharing 1.0
specification. http://www.pcisig.com/specification
s/iov/single_root/, Sep 2007. (Accessed: Aug 2016).

[86] PCI-SIG. Address Translation Services Revision 1.1. http:
//www.pcisig.com/specifications/iov/ats/, 2009.

[87] PCI-SIG. Single root I/O virtualization and sharing 1.1
specification. http://www.pcisig.com/specification
s/iov/single_root/, Jan 2010. (Accessed: Aug 2016).

[88] Omer Peleg, Adam Morrison, Benjamin Serebrin, and Dan
Tsafrir. Utilizing the IOMMU Scalably. In USENIX Annual
Technical Conference (ATC), 2015.

[89] Simon Peter, Jialin Li, Doug Woos, Irene Zhang, Dan R. K.
Ports, Thomas Anderson, Arvind Krishnamurthy, and Mark
Zbikowski. Towards high-performance application-level
storage management. In USENIX Workshop on Hot Top-
ics in Storage and File Systems (HOTSTORAGE), 2014.
https://www.usenix.org/system/files/conference
/hotstorage14/hotstorage14-paper-peter.pdf.

[90] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Tim-
othy Roscoe. Arrakis: The operating system is the con-
trol plane. In USENIX Symposium on Operating System
Design and Implementation (OSDI), pages 1–16, 2014.
https://www.usenix.org/system/files/conference
/osdi14/osdi14-paper-peter_simon.pdf.

[91] Renato J. Recio, Bernard Metzler, Paul R. Culley, Jeff Hil-
land, and Dave Garcia. A remote direct memory access
protocol specification. RFC 5040, The Internet Engineer-
ing Task Force (IETF) Network Working Group, 2007. ht
tps://tools.ietf.org/html/rfc5040 (Accessed: May
2016).

[92] Bruce Richardson. [dpdk-dev] memory pinning. http://
dpdk.org/ml/archives/dev/2014-June/003937.html,
2014. (Accessed: Aug 2016).

[93] Luigi Rizzo. Netmap: A novel framework for fast packet
I/O. In USENIX Annual Technical Conference (ATC), pages
101–112, 2012. https://www.usenix.org/conference/
atc12/technical-sessions/presentation/rizzo.

[94] Phil Rogers. Heterogeneous System Architecture (HSA):
Overview and implementation. In Hot Chips, 2013. HC25. ht
tp://www.hotchips.org/wp-content/uploads/hc_ar
chives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-I
ntro-Rogers-HSA%20Intro%20HotChips2013_Final.pd
f (Accessed: May 2016).

[95] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig.
SecVisor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. In ACM Symposium on
Operating Systems Principles (SOSP), pages 335–350, 2007.
http://dx.doi.org/10.1145/1294261.1294294.

[96] Jiaxin Shi, Youyang Yao, Rong Chen, Haibo Chen, and Feifei
Li. Fast and concurrent RDF queries with RDMA-based
distributed graph exploration. In USENIX Symposium on
Operating System Design and Implementation (OSDI), pages
317–332, 2016. https://www.usenix.org/conference/
osdi16/technical-sessions/presentation/shi.

[97] Igor Smolyar, Muli Ben-Yehuda, and Dan Tsafrir. Securing
self-virtualizing Ethernet devices. In USENIX Security
Symposium, pages 335–350, 2015.

[98] Livio Soares and Michael Stumm. FlexSC: Flexible system
call scheduling with exception-less system calls. In USENIX
Symposium on Operating System Design and Implementation
(OSDI), pages 33–46, 2010. https://www.usenix.org/l
egacy/event/osdi10/tech/full_papers/Soares.pdf.

http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx
http://download.microsoft.com/download/a/f/d/afdfd50d-6eb9-425e-84e1-b4085a80e34e/sys-t304_wh07.pptx
http://dx.doi.org/10.1145/2872362.2872379
http://dx.doi.org/10.1145/2872362.2872379
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://dx.doi.org/10.1007/11823285_13
http://dx.doi.org/10.1109/IPDPS.2002.1016563
http://dx.doi.org/10.1109/IPDPS.2002.1016563
http://dx.doi.org/10.1145/2535372.2535386
http://dx.doi.org/10.1145/2535372.2535386
https://doi.org/10.1145/2815400.2815423
http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/ats/
http://www.pcisig.com/specifications/iov/ats/
http://www.pcisig.com/specifications/iov/single_root/
http://www.pcisig.com/specifications/iov/single_root/
https://www.usenix.org/system/files/conference/hotstorage14/hotstorage14-paper-peter.pdf
https://www.usenix.org/system/files/conference/hotstorage14/hotstorage14-paper-peter.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-peter_simon.pdf
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
http://dpdk.org/ml/archives/dev/2014-June/003937.html
http://dpdk.org/ml/archives/dev/2014-June/003937.html
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
https://www.usenix.org/conference/atc12/technical-sessions/presentation/rizzo
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.0T1-Hetero-epub/HC25.25.100-Intro-Rogers-HSA%20Intro%20HotChips2013_Final.pdf
http://dx.doi.org/10.1145/1294261.1294294
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/shi
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf
https://www.usenix.org/legacy/event/osdi10/tech/full_papers/Soares.pdf

[99] Vaidyanathan Srinivasan, Anand K. Santhanam, and Mad-
havan Srinivasan. Cell Broadband Engine processor DMA
engines, Part 1: The little engines that move data. http://
www.ibm.com/developerworks/library/pa-celldmas,
2005. (Accessed: May 2016).

[100] B. Stephens, A.L. Cox, A. Singla, J. Carter, C. Dixon, and
W. Felter. Practical DCB for improved data center networks.
In INFOCOM, 2014 Proceedings IEEE, pages 1824–1832,
April 2014.

[101] Michael Swift, Brian Bershad, and Henry Levy. Improving
the reliability of commodity operating systems. ACM Trans-
actions on Computer Systems (TOCS), 23(1):77–110, Feb
2005.

[102] Taneja Group. Hypervisor shootout: Maximizing work-
load density in the virtualization platform. http://ww
w.vmware.com/files/pdf/vmware-maximize-workloa
d-density-tg.pdf, 2010. (Accessed: May 2016).

[103] Hiroshi Tezuka, Francis O’Carroll, Atsushi Hori, and Yutaka
Ishikawa. Pin-down cache: A virtual memory management
technique for zero-copy communication. In IEEE Interna-
tional Parallel Processing Symposium (IPPS), pages 308–
314, 1998. http://dx.doi.org/10.1109/IPPS.1998.
669932.

[104] Animesh Trivedi. Remote direct memory access (RDMA)
101 – quick history lesson and introduction. http://0x8086.
blogspot.com/2011/11/remote-direct-memory-acc
ess-rdma-101.html, 2011. (Accessed: May 2016).

[105] Cheng-Chun Tu, Michael Ferdman, Chao-tung Lee, and Tzi-
cker Chiueh. A comprehensive implementation and evalua-
tion of direct interrupt delivery. In ACM International Confer-
ence on Virtual Execution Environments (VEE), pages 1–15,
2016. http://dx.doi.org/10.1145/2731186.2731189.

[106] Cheng-Chun Tu, Chao-tang Lee, and Tzi-cker Chiueh. Mar-
lin: A memory-based rack area network. In ACM/IEEE
Symposium on Architectures for Networking and Commu-
nications Systems (ANCS), pages 125–136, 2014. http:
//doi.acm.org/10.1145/2658260.2658262.

[107] Gabrie van Zanten. Memory overcommit in production? YES
YES YES. http://www.gabesvirtualworld.com/memo
ry-overcommit-in-production-yes-yes-yes/, 2010.
(Accessed: May 2016).

[108] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. Large-scale
cluster management at Google with Borg. In Proceedings
of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 18:1–18:17, New York, NY, USA, 2015.
ACM.

[109] Carl A. Waldspurger. Memory resource management in
VMware ESX server. In USENIX Symposium on Operating

System Design and Implementation (OSDI), pages 181–194,
2002. https://www.usenix.org/legacy/events/osd
i02/tech/waldspurger.html.

[110] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and
Haibo Chen. Fast in-memory transaction processing using
RDMA and HTM. In ACM Symposium on Operating
Systems Principles (SOSP), pages 87–104, 2015. https:
//doi.org/10.1145/2815400.2815419.

[111] Wikipedia. iWARP – internet Wide Area RDMA Pro-
tocol. https://en.wikipedia.org/wiki/IWARP. (Ac-
cessed: Aug 2016).

[112] Dan Williams, Patrick Reynolds, Kevin Walsh, Emin Gün
Sirer, and Fred B. Schneider. Device driver safety through a
reference validation mechanism. In USENIX Symposium on
Operating System Design and Implementation (OSDI), pages
241–254, 2008.

[113] Alex Williamson. VFIO: A user’s perspective. In KVM
Forum, 2012. http://www.linux-kvm.org/images/b/
b4/2012-forum-VFIO.pdf. (Accsessed: May 2016).

[114] Alex Williamson. [qemu-devel] Intel IOMMU guest emula-
tion and vfio-pci passthrough. https://lists.gnu.org/
archive/html/qemu-devel/2015-11/msg04284.html,
Nov 2015. (Accessed: Aug 2016).

[115] Paul Willmann, Scott Rixner, and Alan L. Cox. Protection
strategies for direct access to virtualized I/O devices. In
USENIX Annual Technical Conference (ATC), pages 15–28,
2008. https://www.usenix.org/legacy/event/usenix
08/tech/full_papers/willmann/willmann.pdf.

[116] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Pe-
ter Desnoyers, Emmanuel Cecchet, and Mark D. Corner.
Memory buddies: Exploiting page sharing for smart coloca-
tion in virtualized data centers. In ACM International Confer-
ence on Virtual Execution Environments (VEE), pages 31–40,
2009. http://dx.doi.org/10.1145/1508293.1508299.

[117] Jiesheng Wu, Pete Wyckoff, and Dhabaleswar Panda. PVFS
over InfiniBand: Design and performance evaluation. In
International Conference on Parallel Processing (ICPP),
pages 125–132, 2003. http://dx.doi.org/10.1109/IC
PP.2003.1240573.

[118] Xiaowei Yang, Chuan Ye, and Qiangmin Lin. Evaluation and
enhancement to memory sharing and swapping in Xen 4.1.
In Xen Summit, 2011. http://tinyurl.com/xen-mem-s
hare-swap (Accessed: May 2016).

[119] Ben-Ami Yassour, Muli Ben-Yehuda, and Orit Wasserman.
On the DMA mapping problem in direct device assignment.
In ACM International Systems and Storage Conference (SYS-
TOR), pages 18:1–18:12, 2010. http://dx.doi.org/10.
1145/1815695.1815718.

http://www.ibm.com/developerworks/library/pa-celldmas
http://www.ibm.com/developerworks/library/pa-celldmas
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://dx.doi.org/10.1109/IPPS.1998.669932
http://dx.doi.org/10.1109/IPPS.1998.669932
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://0x8086.blogspot.com/2011/11/remote-direct-memory-access-rdma-101.html
http://dx.doi.org/10.1145/2731186.2731189
http://doi.acm.org/10.1145/2658260.2658262
http://doi.acm.org/10.1145/2658260.2658262
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger.html
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger.html
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://en.wikipedia.org/wiki/IWARP
http://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf
http://www.linux-kvm.org/images/b/b4/2012-forum-VFIO.pdf
https://lists.gnu.org/archive/html/qemu-devel/2015-11/msg04284.html
https://lists.gnu.org/archive/html/qemu-devel/2015-11/msg04284.html
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/willmann/willmann.pdf
https://www.usenix.org/legacy/event/usenix08/tech/full_papers/willmann/willmann.pdf
http://dx.doi.org/10.1145/1508293.1508299
http://dx.doi.org/10.1109/ICPP.2003.1240573
http://dx.doi.org/10.1109/ICPP.2003.1240573
http://tinyurl.com/xen-mem-share-swap
http://tinyurl.com/xen-mem-share-swap
http://dx.doi.org/10.1145/1815695.1815718
http://dx.doi.org/10.1145/1815695.1815718

	Introduction
	Motivation
	The Rise of Direct Network I/O
	The Problem
	Existing DMA Page Faults Support
	Connection Between NPFs & IOMMU Protection

	Requirements
	InfiniBand Page Fault Support
	Ethernet Page Fault Support
	Evaluation
	Memory Utilization
	Overhead of Pinning and Copying
	Programming Complexity
	What-If Analysis

	Conclusion

