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Abstract
Today’s complex software systems are neither secure nor

reliable. The rudimentary software protection primitives pro-
vided by current hardware forces systems to run many distrust-
ing software components (e.g., procedures, libraries, plugins,
modules) in the same protection domain, or otherwise suffer
degraded performance from address space switches.

We present CODOMs (COde-centric memory DOMains),
a novel architecture that can provide finer-grained isolation
between software components with effectively zero run-time
overhead, all at a fraction of the complexity of other ap-
proaches. An implementation of CODOMs in a cycle-accurate
full-system x86 simulator demonstrates that with the right
hardware support, finer-grained protection and run-time per-
formance can peacefully coexist.

1. Introduction
The security and reliability of computing systems are ever
growing concerns in today’s networked computing world.
Complex software systems contain a multitude of mutually
distrustful or unreliable software components, which can span
multiple granularities and purposes: individual functions, com-
pilation units, code libraries, application plugins, or device
drivers. Failing to properly isolate these components can have
severe effects, malicious and negligent alike, such as privi-
lege escalation, information leakage, denial of service, as well
as data corruption caused by buffer overflow bugs. System
security and resiliency thus require that individual software
components be isolated in separate domains.

Existing architectures, however, lack efficient support for
isolation at the software component level. Instead, they only
support a few coarse-grained protection mechanisms, which
are translated into two Operating System (OS) concepts: isolat-
ing user processes in separate address spaces, and running the
OS kernel in a privileged processor mode. Such mechanisms,
however, impose non-negligible runtime overheads and can
only be managed by the OS. This makes them unsuitable for
providing fine-grained isolation between software components
that share a single address space.

In this paper we present the COde-centric memory DO-
Mains architecture (CODOMs), which provides efficient sup-
port for protecting multiple, interacting software components
that share an address space. CODOMs is based on the ob-
servation that the instruction pointer can serve as a capability
enabling access to memory. Since software components are

composed of both code and data, a component’s data can
only be accessed by its code. Therefore, only if the instruc-
tion pointer originates from a component’s code, can the con-
stituent instruction access the component’s data.

The CODOMs design is driven by the following guidelines:
(1) Software is composed of multiple components, both trusted
and untrusted, that share the same address space.
(2) Components interact to perform actions. The system must:
(a) support cross-domain synchronous call/return with low
overhead; (b) provide protected domain entry points; and (c)
prevent callers and callees from tampering with each other.
(3) To avoid buffer copies, interacting domains must be al-
lowed to securely reference each other’s internal memory.
This requires that domains be allowed to efficiently grant and
revoke permissions to access their memory regions, as well as
to be able to verify the validity of the pointers they are given.

CODOMs operates by associating every page with a tag,
and multiple (not necessarily consecutive) pages can share the
same tag. Code pages are also associated with a list of tags
they can access (and how), as well as the ability to execute
privileged instructions. Domains are thus code-centric and
the instruction pointer itself determines which pages and priv-
ileged resources it can access. Moreover, control can switch
between domains using simple call/return instruction at neg-
ligible run-time overheads. To facilitate fast cross-domain
calls, CODOMs allows in-place sharing of data across do-
mains using application-controlled capability registers. These
facilitate secure sharing of arbitrary regions (base pointer and
size). Moreover, CODOMs offers protection against capa-
bility tampering and can perform selective, user-level capa-
bility revocations more efficiently than previously proposed
systems [30, 19, 5, 28]. Importantly, CODOMs puts special
emphasis on low-overhead revocation for the common case of
sharing in synchronous, cross-domain call/return scenarios.

We have evaluated CODOMs using a cycle-accurate x86
simulator, showing that switching domains incurs extremely
low overheads. On a larger scale, we show that CODOMs is
capable of isolating each module in the Linux kernel into its
own domain with negligible runtime cost.

The main contributions of this paper include:
Code-centric domains / instruction pointer as a capability:
A hardware-based isolation mechanism where multiple soft-
ware components can share an address space.
Simple and efficient domain switching: The code-centric or-
ganization facilitates domain management and low-latency
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Figure 1: Example domain setup where components are iso-
lated using CODOMs.

domain switching using simple call/return instructions.
Transient access grants: Application-controlled capability
registers enable fine-grained, secure sharing of memory across
domains without expensive OS intervention.
Efficient access grant revocation: CODOMs supports effi-
cient selective capability revocation at user-level. Importantly,
distinguishing between synchronous and asynchronous ca-
pabilities enables low-overhead revocation of the common
(synchronous) cross-domain call/return case.
Mechanism complementarity: CODOMs mechanisms en-
able efficient adaptation to multiple system organizations and
provide a path for systems to gradually harden their security.

2. CODOMs Concepts
The goals of the CODOMs architecture are to provide flexible
hardware mechanisms to define domains and to support low-
latency transfers of control and data across domains.

2.1. Code-Centric Isolation of Software Components

Code-centric isolation embraces the idea of software compo-
nent as a unit, identifying code, data (both dynamic and static)
and predefined interfaces for cross-component interaction. A
domain is defined as an arbitrary collection of code and data
pages, such that only the domain’s code is allowed to freely
access its code and data. This enables the instruction pointer
to serve as a capability for accessing the domain, which can
actually contain multiple components. Code-centric isolation
also enforces domain interactions; if a domain is allowed to
call into another, it can simply call a predefined entry point in
the callee domain to transfer control.

Figure 1 illustrates a simplified example where routines
from three software components (A, B and C) invoke each
other. Specifically, routine funcA from domain A invokes rou-
tine funcB from domain B. The latter then invokes routine
funcC (domain C). The figure also illustrates the two mecha-
nisms that CODOMs uses to enforce domain isolation: page
table capabilities (PTCaps) and access protection lists (APLs).

PTCaps extend page tables to include per-page tags such
that all pages that compose a specific domain share a tag
value. Besides the existing per-page permissions (R/W/X),
the mechanism also adds two new permission bits to allow
privileged operations and to store capabilities in memory (P
and S bits, respectively; see § 4.1.1). In the figure, for example,
all pages tagged with A compose domain A (data and code).

This also demonstrates that domains can be composed of non-
contiguous memory pages (i.e., a “sparse” memory region).

APLs maintain the cross-domain access and invocation per-
missions by associating each tag with a list of other tags and
the operations it can perform on their constituent pages. For
example, the APLs shown in Figure 1 indicate that code in
domain A can call into the entry points of domain B and the
code in domain B can call into domain C as well as write pages
of domain A (if allowed by the per-page permissions).

When performing an access, CODOMs checks if: (1) the
tag of the destination page is present in the APL for the tag
of the currently executing instruction, and (2) the access is
compatible with both the permission listed in the APL and the
regular per-page protection bits. This provides a way to layer
security at two levels: at domain (APL) and page granularity.
For example, granting B write access to A does not allow it to
write into the first memory page, since it is write-protected.

PTCaps and APLs are set up by the OS when the program
(or a module thereof) is loaded. Furthermore, consistency
across cores must be maintained through TLB shootdown
operations [27]. Nevertheless, since the mechanisms are used
for long-term access grants, these operations are infrequent.

The direct benefits of code-centric isolation are that it pro-
vides programmers and administrators simple mechanisms to
express and enforce cross-domain permissions while incurring
negligible runtime overheads when crossing domains. In con-
trast, more “traditional” capability systems need to explicitly
manage capabilities, which work at a much more fine gran-
ularity; for example, domain A would require three different
capabilities for its own pages (since they are not consecutive),
plus one capability for every entry point in B. CODOMs thus
provides higher performance with stronger software security
and resiliency guarantees without affecting existing software
design and synthesis methodologies.

2.2. Transient, Fine-Grained Capabilities

Software components communicate via procedure calls, whose
arguments are passed either by value (using registers) or by
reference (using pointers to memory). CODOMs preserves
synchronous call/return semantics across domains using capa-
bility registers. These enable passing data by reference and
thus avoiding costly memory copies or page remappings.

In the example, routine f uncA passes an argument to f uncB,
which forwards it to f uncC. If that argument is a pointer to
a memory buffer in domain A then f uncC will not be able to
access it since its APL will not allow it. Pure isolation requires
that buffers be reassigned their tag or copied across domains.

CODOMs therefore provides capability registers
(CapRegs), an application-managed mechanism that tem-
porarily grants access to a domain’s memory. CapRegs
are initialized by the user-level caller code to temporarily
grant the callee access to an arbitrary memory range (at byte
granularity). Once the callee is invoked, it is allowed to access
said buffer until it returns control to the caller. Moreover, the
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callee is allowed to pass the CapRegs down the call chain to
support call indirection. CODOMs provides instructions to
“create” (i.e., initialize), copy, “weaken” (a controlled form
of modification), activate/passivize (spill from/to memory),
revoke, and verify pointers against CapRegs. CapRegs
and their semantics are described in detail in § 4.1.3. For
brevity, we will use the term capability when referring to both
CapRegs and capabilities stored in memory. CODOMs only
performs checks against active capabilities (CapRegs).

CODOMs ensures that regular code cannot forge capabil-
ities by capping their authority to that of the instruction that
created it. When an instruction creates a capability, the APL
of the instruction’s code page is copied into it. For example,
suppose domain B in Figure 1 creates a capability spanning
the last four pages. The capability will use B’s APL, allowing
write access to all pages of domain A in the given range but
not to the pages of domain C, since its APL precludes such
access (thus capabilities are also “sparse”). § 4.1.3 describes
how CODOMs maintains in-memory capability integrity.

Finally, CODOMs optimizes capability revocation by distin-
guishing between synchronous and asynchronous semantics:
Synchronous capabilities are used in cases where a caller
only needs to grant temporary access rights to a callee (which
may further delegate the grant). These are, by far, the most
common type. Synchronous capabilities are implicitly revoked
at no cost when the callee returns by ensuring it does not store
them in memory; once it returns, it can no longer use them.
Asynchronous capabilities are used to grant accesses that
outlive the callee. They are useful during asynchronous data
transfers between domains (e.g., asynchronous disk read), or
when two threads exchange capabilities through the memory.
CODOMs provides efficient support to selectively revoke this
type of capabilities (see § 4.1.5).

2.3. Usage Model

CODOMs proposes flexible mechanisms to support multiple
use-cases where domains require different degrees of isolation,
allowing systems to tune performance according to their needs.

The architecture is designed to allow the programmer and
system administrator to define the desired security and fault
isolation policies. For programmers, this burden can be as
minimal as declaring that a compilation unit or a code library
be used as an isolated domain and annotating its entry points —
the routines that other domains can use to interact with it. For
administrators, this enables enforcing system-wide policies
such as using third-party modules in isolation so as to not
compromise the system or affect its resiliency.

We envision immediate usefulness of the CODOMs archi-
tecture in structured scenarios where security-aware interfaces
already exist (e.g., the user/kernel/hypervisor separation), or
where some domains are a super-set of others (e.g., a plugin/ap-
plication relationship). For example, CODOMs can subsume
the prevalent kernel/user ring protection by implementing the
kernel’s system call interface as a privileged shared library run-

ning in a separate domain, allowing applications to securely
invoke system calls without a processor trap.

CODOMs is also able to provide fine-grained component
isolation in the spirit of capability-based addressing architec-
tures [19, 5]. For example, using capabilities to traverse a
linked list. Alternatively, the domain owning the linked list
could provide an iterator interface that takes a callback to
process each element (similar to std::for_each in C++).
Nevertheless, such scenarios are beyond the scope of this
paper, since they require complex capability register manage-
ment through runtime, compiler and/or language extensions.

3. The Complexity and Performance of
Memory Protection and Isolation

Memory protection and isolation has long been studied as an
essential primitive for building secure and resilient systems.
Proposed mechanisms attempt to balance simplicity of use
with performance overheads. In this section we discuss pre-
viously proposed mechanisms while focusing on the three
main axes of this tradeoff: (1) the complexity of defining and
switching domains, (2) the performance of switching domains,
and (3) the performance of sharing data between domains.

Existing protection mechanisms either provide complex
usage semantics or incur substantial performance overheads
when switching domains (or both). As a result, programmers
typically push multiple semantic domains into a single physi-
cal one, thus compromising software security and resiliency.

Virtual memory address spaces are the most common
mechanism for domain isolation [10, 22]. Managed by the OS,
address spaces isolate arbitrary collections of memory pages
by providing processes the illusion of using the memory of a
virtually infinite standalone machine. The process abstraction,
in turn, provides a convenient programming abstraction.

Protection rings (or privilege levels) is a common mecha-
nism used to isolate executive code [23]. Rings are used by the
OS to isolate itself from untrusted user processes, requiring
the use of system calls for process/OS interaction.

Capability-based architectures lie on the other end of the
spectrum [19]. Capabilities are communicable and unforge-
able tokens that identify and authorize access to resources.
Capabilities allow implementing fine-grained isolation that
only grants software the minimum set of resources necessary
to perform its task (principle of least authority).

3.1. Complexity of Defining and Switching Domains

Figure 2 illustrates notable domain isolation mechanisms.
Address spaces (Figure 2b) implicitly define domains for

processes by encoding access permissions in the page table.
Since the use of page tables (or similar forms of protection
tables [15, 29]) is transparent to the application, address spaces
provide a simple programming abstraction. However, as tables
are privileged resources, managing them is costly and requires
OS mediation. Furthermore, processes burden the programmer
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(*) Caller and callee execute within the same page/protection table.

Figure 2: Illustration of domain crossings and data sharing
for notable isolation mechanisms. The Time column illus-
trates the stages of a domain crossing, indicating the grants
(regions of memory) available at each stage at the bottom;
the Grants column shows the per-domain configuration of
each mechanism; the Memory column shows the layout (and
grants) from the point of view of each domain.

with managing concurrency and data movement/sharing.
Protection rings (Figure 2a) provide a hierarchical domain

scheme. All rings (domains) share an address space, and code
in one ring can access resources of all less privileged rings.
The totally-ordered hierarchical structure of ring domains is
less flexible than that of separate address spaces. For example,
Linux kernel modules do not naturally fit this scheme: placing
two completely independent modules in separate rings will
unnecessarily give one full access to the other.

Capability systems (Figure 2e) grant access to memory re-
sources through a set of “root” capabilities, and a domain is
defined as the transitive closure of these roots. This requires
using multiple capabilities to cover all the components that
conform a single domain, and domain switches require switch-
ing all of them (e.g., in Figure 2e the caller has two “root”
capabilities). Explicitly managing the roots burdens the pro-
grammer, so such systems have typically embedded high-level
semantics into the domain-switching hardware. For example,
protected procedures in the Plessey System 250 [19] define the
notion of process in hardware, which handles the root capabili-
ties. This design breaks backwards compatibility and imposes
specific structure and isolation policies to the software.

CODOMs tries to take the best from each mechanism. A
page-table system is used to aggregate domain resources, yet it

allows multiple domains to share an address space, as well as
invoke privileged operations. Importantly, this design makes
code-centric domains compatible with existing software. Even
though domains are managed by the OS they can be switched
with simple control flow instructions, thereby simplifying their
use and deployment. Finally, capabilities allow domains to
share data at arbitrary granularity, thereby obviating expensive
memory copies and OS-managed page table modifications.

3.2. Overhead of Switching Domains

Domain switching reconfigures some architectural resources
and thus incurs in runtime overheads; at the very least, intro-
ducing a pipeline RAW dependency that affects ILP.

The overheads are exacerbated in mechanisms that require
OS intervention to perform the switch, warranting an extra
round-trip across privileged levels (Address spaces and pro-
tection keys). Protection rings and Mondrix embed additional
cross-domain semantics in hardware, increasing these over-
heads. Traditional capability systems (Figure 2e) also incur
extra overheads as they must switch the root capabilities (ei-
ther through software or added hardware semantics). Finally,
some address space isolation implementations need to flush
the TLB on switches, on top of the OS intervention overhead.

CODOMs circumvents all these overheads by having a code-
centric approach to protection. It allows domain switches at
user-level through regular function calls, without even paying
the price of a RAW hazard during a domain switch.

3.3. Sharing Data Between Domains

Sharing data across domains is critical for effective domain
interactions, yet the sharing facilities provided by different
isolation mechanisms impose different runtime overheads.

Protection rings (Figure 2a) only allow low-privilege rings
to easily share data with the high-privilege ones. Sharing in the
opposite direction requires costly buffer copies or changing
page table permissions. Address spaces (Figure 2b) limit
sharing to page granularity and require costly OS intervention
to modify page tables. Similarly, Mondrix (Figure 2c) requires
OS-mediated table modifications to establish a shared memory
region. Importantly, revoking or “downgrading” accesses on
table-based systems imposes costly TLB shootdowns [27].

Capabilities (Figure 2e) can be viewed as a special form of
routine arguments. In order to prevent forgery and tampering
of capabilities, some systems (e.g., Plessey System 250 [19])
used typed segments to distinguish regular data from capa-
bilities. Others (e.g., IBM System/38 [19]) allowed mixing
data and capabilities by tagging memory at the word-level,
thereby affecting memory and bandwidth utilization. In all
cases, capabilities grant access to consecutive regions, and
sharing non-consecutive regions requires setting up multiple
capabilities (e.g., cap3 and cap4 in Figure 2e). To avoid this,
data must be carefully laid out in memory, which is not al-
ways feasible for dynamic data structures. Finally, capability
systems incur overheads when revoking capabilities. Since
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Figure 3: The CODOMs architecture. Added elements are col-
ored, and extended elements are white. Light green elements
are controlled by the application, and others by the TCB.

dellocated memory can be reused, a domain must revoke capa-
bilities to unused memory regions to avoid leaking information.
Various revocation methods have been proposed [19], many of
which require OS intervention: (a) releasing entire segments
and revoking all capabilities to said segment; (b) avoiding
memory reuse until capabilities are garbage collected, which
imposes expensive memory sweeps; or (c) using indirection
tables that impose additional latency every time a capability
is used. In all but the last case, it is not possible to revoke
specific capabilities that allow a specific domain to access a
specific buffer. Instead, all capabilities granting access to said
buffer must be revoked.

The code-centric nature of CODOMs requires fewer, dis-
tinct capabilities since those are only needed for accesses
beyond what is encoded in the APL. Furthermore, CODOMs
ensures capability integrity without requiring memory tag-
ging nor segmentation (§ 4). Finally, CODOMs optimizes
revocations for the common synchronous (call/return) pattern.

4. CODOMs Implementation

CODOMs is designed to provide both security and perfor-
mance, even in high ILP out-of-order processors. Figure 3
illustrates the key elements of the CODOMs architecture. As
described below, some of the architectural elements must be
managed by the Trusted Computing Base (TCB), which is the
smallest subset of the OS required to maintain system integrity
and enforce higher-level isolation policies.

4.1. Hardware Elements and Protection Primitives

4.1.1. Page Table Capabilities (PTCaps) are implemented
as page table extensions, which include a tag (64 bits) and tag
presence (T), privileged capability (P) and capability storage
(S) bits. The latter are stored in unused bits of the page table
entries, and tags are stored in a page physically contiguous
to the page directory they extend. The T bit allows tags to
be set for entire page table sub-trees, minimizing space and
management overheads for the page table. The P bit indicates
whether privileged operations are allowed in a code page,
ensuring regular code cannot execute them. The S bit identifies
pages that can be used to store capabilities.
4.1.2. Access Protection Levels specify four totally ordered
values: None, Use, Read (including execute) and Write. Use
is overloaded based on the target page:
• Capability storage pages: allows load/store of capabilities

from/to memory and disallows regular loads/stores.
• Code pages: enables domain entry points. Permits calling

into an address aligned to a system-configurable value. If
accessed through a capability with size zero indicates an un-
aligned address and enables using arbitrary return addresses
and function pointers across domains.

4.1.3. Capability Registers (CapRegs) store the per-core
active capabilities. Capabilities occupy 256 bits (32 B) when
stored in memory, and include a base address and size (2×48
bits), a 2-bit access protection level, a revocation counter
address (48 bits), a revocation counter value (46 bits) and a tag
(64 bits). CapRegs are managed by the following operations:
Create initializes a CapReg. The application must provide all
the fields but the tag. The tag is set by the hardware (based on
the PC) to prevent forgery, and the tag’s APL is cached into
the CapReg (see § 4.2). If a revocation counter is not provided,
the capability is synchronous.
Modify is only allowed to weaken the access protection level
and to shrink the address range of the capability.
Spill is only permitted at 32 B-aligned addresses and if the the
target page is marked as capability storage and is accessible
with (at least) a Use level. Synchronous capabilities can only
be spilled into the DCS, and capability push/pop instructions
are also provided to interact with the DCS (§ 4.1.4). Since
a Use level ensures code cannot directly read or modify the
memory contents, this ensures the integrity and unforgeability
of passive capabilities.
Probe checks if dereferencing a pointer fails using a CapReg.
Usage only works with active capabilities. Two usage models
are supported: Implicit use validates memory accesses against
all active capabilities. This simplifies compiler support and
enables transparently adding capability use to existing code1.
Explicit use is provided trough separate instructions that iden-
tify which CapReg to use. Compilers can use this to minimize
the number of CapReg checks, improving energy efficiency.

1An approach similar to the sidecar registers in Mondrix [30] could also
be used to automatically bound the number of implicit capability checks.
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4.1.4. Domain Control Stack (DCS) provides memory that
can be used to spill capabilities. The DCS is a private per-
thread memory structure with capability storage pages. Since
it is private, all capabilities (synchronous and asynchronous)
can be spilled into it without breaking synchronous capability
revocation. The DCS is bounded by the dcsb and dcsp
registers (Figure 3), and code is implicitly granted Use access
to that range. Unprivileged code modifies the dcsp register
only indirectly using capability push/pop instructions. The
dcsb register controls DCS frames. It can only be modified
by the TCB, and the hardware ensures pop operations never
cross DCS frames. § 5.4 further describes the DCS operation.
4.1.5. Asynchronous Capability Revocation is based on the
revocation fields set when a capability was created. Setting
these fields is a privileged operation, since the hardware uses
them to access memory. The revocation counter address points
to a “revocation counter” stored in memory. A capability is
considered valid as long as its counter value matches that
stored in the revocation counter. When a revocation instruction
is executed, CODOMs first verifies that the instruction’s tag
matches that stored on the capability. This ensures that only
the domain that created a capability can revoke it. CODOMs
then increments the revocation counter, thereby invalidating
all capabilities that use the same counter address by setting
their protection level to None. Selective revocation is possible
by associating different capabilities to different counters.

Passive (stored in memory) asynchronous capabilities are
lazily invalidated when loaded from memory if their counter
value does not match the one in memory.

Active asynchronous capabilities that share a revocation
counter are immediately invalidated. One possible implemen-
tation uses a central directory [27] to track the active asyn-
chronous capabilities. In this case, the revoking core signals
the directory, which in turn invalidates all capabilities that use
the same revocation counter. Since most capabilities are syn-
chronous (and not asynchronous), this operation is infrequent.

A revocation counter can be reused 246− 1 times until it
overflows (raising an exception), and 248 different counters
can exist in the system. When a counter is reused after an
overflow, the system must ensure all capabilities that use the
overflowed counter and are stored in capability storage pages
of the current address space are invalidated. Nevertheless,
the magnitude of the revocation counter (246−1) makes such
events extremely infrequent. More importantly, the system
does not have to track the data capabilities grant access to.

4.2. Implementing Access Protection Lists in Hardware

The APLs of the recently used tags are cached in the per-CPU
APL cache (see Figure 3). This cache is managed by the OS
and allows multiplexing the unbounded spaces of tags and
APLs ( 0 in Figure 3). The cache maps PTCaps tags to its
hardware version HwTag and a portion of the corresponding
APL (HwAPL). HwAPLs contain the 2-bit protection levels
corresponding to cached tags (using None if not present).

Figure 4: Access protection check logic on a memory access.

On a TLB miss, CODOMs caches the tag’s APL entry in
the TLB ( 1 in Figure 3). The iTLB is extended with the
Tag, HwTag and HwAPL from the APL cache entry and the
privileged capability bit from the page table entry. The dTLB
is extended with the HwTag and the capability storage bit. This
information can be stored on a separate structure to optimize
energy and delay, since it is only needed after a TLB hit.

When an instruction is fetched, the relevant information
from the iTLB is stored in the currdom register ( 2 in Fig-
ure 3), which encodes the information of the current domain.
Since many instruction sequences reside in the same page,
this can be optimized to reduce the number of iTLB lookups
and the amount of storage required to pass that information.
Whenever the contents of the currdom register are modified,
its previous value is copied to the prevdom register, provid-
ing the identity of the previously executing domain ( 6 in
Figure 3). When a capability is created, the Tag and HwAPL
of the currdom register are copied into the CapReg ( 3 in
Figure 3). The HwAPL in an active capability is never stored
into memory, and is instead restored from the APL cache when
it is activated (loaded from memory; 5 Figure 3).

When an APL cache entry is modified, the HwTag and
HwAPL values in the CapRegs and TLB entries of that CPU
need to be reloaded. No TLB shootdown-like operations are
required, since there is one independent APL cache per CPU,
and its information does not leak into passive capabilities.

Figure 4 depicts CODOMs access checks ( 4 in Figure 3).
The HwTag in the dTLB is used to index the HwAPL of the
currdom register and retrieve the protection level for the tar-
get address. Conversely, the HwTag in the currdom register
is used to check control flow instructions. For example, an
APL cache with 32 entries requires a 5-bit HwTag and a 64-bit
HwAPL (32 entries of 2 bits). The same applies to capabilities,
except that weakened capabilities are implemented by using
the stricter of the capability and the HwAPL access protection
level. The protection checks are performed in parallel to the
actual cache access to hide their latency.

4.3. Domain Switches and Out-of-Order Execution

4.3.1. Protection Domain Checks and Switches on out-
of-order processors are efficiently implemented through the
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currdom register. The information provided by the iTLB is
sent to the rename stage. The currdom register is renamed
every time a domain switch occurs (when its contents change).
Since the register is not changed beyond that stage, the rename
stage itself can set the new value and mark the register as ready.
This eliminates RAW hazards during domain switches and al-
lows maintaining instructions from different domains in-flight.
Experimental measurements show that 6 physical currdom
registers are sufficient to eliminate all RAW hazards.
4.3.2. Capability Registers may also generate RAW hazards
when modified. CODOMs alleviates this by providing a 2-
wide register window for active capabilities. Register capX is
used by the current instruction sequence, and capXn for the
“next” window. Writing into capX also writes into capXn.
The windows are swapped on protection domain switches,
thus allowing software to eliminate RAW hazards on capX.

5. System Software:
Gradual Security Hardening

CODOMs primitives support multiple isolation granularities,
ranging from simple user/kernel isolation to fine-grained iso-
lation, with a performance profile tuned for each specific
case. The degree of software component isolation depends on
whether code can be modified to fully exploit CODOMs and
the trust relationship between each pair of domains.

5.1. Domain Management

PTCaps and APLs are managed by the TCB. As domains are
identified by their tag, domain creation takes an unused tag and
constructs an APL for it. The APL initially contains a single
Write grant to its own tag. Long-term cross-domain grants add
entries into other APLs, while short-term grants can be directly
handled through capabilities. By managing the PTCaps, the
TCB can accurately control which pages store capabilities and
which ones have access to privileged instructions.

5.2. Domain Boundaries

System policies dictate the desired domain boundaries: which
software components are grouped into a single domain, and
what type of isolation is required between domains. To that
end, dynamically-loaded components can serve as the base
isolation unit; current systems make extensive use of dynamic
loading and linking, and applications (including the OS ker-
nel) comprise a patchwork of loadable modules. Domains
can consist of groups of tightly-coupled dynamically linked
components (e.g., a plugin and its utility libraries) and interact
by invoking each other’s routines.

A simple approach is to create a new domain for each pro-
cess, which can then invoke the TCB to create more domains.
The OS could also provide mechanisms to declare components
that are always isolated from user code. For example, the user-
level binary loader can be part of the TCB and can use cues
encoded as binary format extensions, file system permissions

Figure 5: Example coarse-grained domain setup.

or mandatory access control systems like AppArmor [1]. This
applies both to domain relationships and their entry points.

Existing loaders identify the public entry points of a dy-
namic module through its Procedure Linkage Table (PLT [18]).
The PLT is an array of function trampolines (generated by the
loader) that interfaces the entry points with the code that in-
vokes them. The loader can harness this to enforce these entry
points by giving a caller only Use access to the PLT (which,
in turn, is given full access to the callee).

5.3. Example: Coarse-Grained Isolation

The code-centric approach enables coarse-grained isolation
with minimal or no changes in the code. For example, Figure 5
shows a User that is isolated from the kernel, and Network
and Disk subsystems that are isolated from each other.

CODOMs subsumes the implementation of privilege levels
by: (1) giving User only Use access to call Tramp, a system
call trampoline that then jumps into Kernel (similar to the
vdso in Linux, or the KIP in L4 [16]); (2) setting the privi-
leged capability bit on the Kernel code pages; and (3) giving
all kernel-level domains full access to User (a simple return
can resume execution at the user). Unlike privilege levels,
CODOMs can also encode hierarchical domain relationships
that are not totally ordered. For example, the Network and Disk
subsystems in the example can be isolated from each other.
Since they are dynamically loaded as Linux kernel modules,
a PLT can be used to control their access to Kernel, provided
that it uses capabilities when passing data to them. Given the
flexibility of CODOMs, a backwards-compatible alternative
that ensures subsystem isolation exists: give subsystems full
access to Kernel, but not among themselves.

The same technique can also be applied at user-level. For
example, an application can be granted only Use access to
a an encryption component, which in turn has full access to
the application. This allows the use of encryption without
exposing the encryption keys to the application.

5.4. Example: Fine-Grained Isolation

In more fine-grained scenarios where relationships are not
hierarchical, further actions are required: (1) both parties have
to use capabilities to pass references to data, and the pointers
should be verified against them; (2) since the same stack is
used across domains, capabilities are used to grant access to
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portions of them; (3) some of the architectural state in the
caller or callee might need to be hidden to the other party;
and (4) caller and callee might need to use different DCS
frames. As policies are software-provided (rather than being
hardwired), other organizations are also possible. Furthermore,
their requirements depend on the domain trust relationships.

We have developed a proof-of-concept compiler and linker
support that leverages existing ABIs to handle these cases. The
developer can tag functions and data to place them on specific
domains. This information is embedded into the ELF binaries,
together with domain trust relationships. Additionally, an
interface compiler generates caller/callee stubs for a list of
domain entry points. The routines are specialized according
to the trust relationship between domains (up to the extreme
of empty stubs if domains fully trust each other). Even though
it could be generated by the linker, for simplicity the interface
compiler also generates the PLT code (the “gate”). Like in
other systems, the lack of advanced compiler support forces
the programmer to explicitly manage pointer verification and
capabilities for data beyond stack arguments.

Figure 6 shows the organization of two domains using the
aforementioned tools. The stack is placed on a separate do-
main and is only accessible through a synchronous capability
(CapReg0). This ensures other threads will not be able to
tamper with the return address after a cross-domain call. The
gate code has the privileged capability bit (to manage DCS
frames) and Write access to all domains. Since user code
cannot access previous DCS frames, those can be safely used
to store cross-domain information. The steps required to per-
form a full call/return in a completely isolated scenario (upper
bound overheads for hybrid software/hardware isolation) are:
1) Caller: The caller stub starts by pushing into the stack
and zeroing all registers not used as arguments, concealing
from the callee all unnecessary information. The same applies
to capabilities (pushed to the DCS). The stub then pushes
any procedure arguments into the stack (if necessary), and
grants them access by deriving CapReg1 from CapReg0,
and adjusts CapReg0 to forbid access to previous frames.
Finally, it calls into the PLT, which executes the gate code.
2) Gate (call path): The gate code saves the regular stack
pointers and dcsb register into the DCS and creates a new
DCS frame by adjusting the dcsb and dcsp registers. It then
injects itself in the callee’s return path by saving the caller’s
return address to the DCS, replacing it with a pointer to its own
return path address, and creating a capability for the callee to
return into that address (CapReg2 at the top of Figure 6; note
the use of size zero to avoid alignment checks). Finally, the
gate jumps into the callee stub. Note that this jump already
exists in the PLT of dynamically loaded objects.
3) Callee: The callee stub conceals its state from the caller by
zeroing all registers and capabilities that are not results, and
then returns to the injected gate (thanks to CapReg2).
4) Gate (return path): The gate restores the state it saved,
unrolls the DCS frame, and jumps back to the caller’s return

Processor speed 2.4 GHz
Processor width 4 (insts in fetch; µops for the rest)
Register file 160 (int), 144 (float)
Load/Store/Inst. queue entries 48/32/36
ROB entries 128
i/d TLB 64 entries, 4-way
i/d Cache 32 KB, 8-way, 4 cycles
L2 cache 256 KB, 8-way, 7 cycles
L3 cache 6 MB, 12-way, 30 cycles
RAM latency 65 ns
Capability registers 8
APL cache entries 32
currdom/prevdom registers 6

Table 1: Simulator configuration

address. Unrolling the DCS frame ensures all synchronous
capabilities stored in it are implicitly revoked.

5.5. Miscellaneous

5.5.1. Shared Libraries can be mapped to different domains
by mapping their physical pages into multiple virtual ad-
dresses, one for each domain that uses them. All copies
point to the same physical memory, which eliminates memory
and cache performance overheads but increases TLB pressure
(much like Mondrix [30] and Koldinger et al. [15]).
5.5.2. Ambient Authority is a concept on which the POSIX
interface relies, as some operations require the OS to be aware
of the caller’s identity. For example, memory allocations must
be assigned to the requesting domain. This is handled by
inspecting the prevdom register or, alternatively, providing a
software capability-based interface (e.g., file descriptors).
5.5.3. Function pointers can be passed using a capability.
If the caller is considered potentially malicious, the address
must be verified against the provided capability. In order to
execute the callee outside the caller’s DCS frame, the TCB
can provide a trampoline that creates a new frame and then
calls the function (similar to the gate code above).

6. Evaluation

We have evaluated CODOMs using the cycle-accurate GEM5
simulator [4] running in full-system out-of-order mode with
version 2.6.27.62 of the Linux kernel. Our simulation parame-
ters, listed in Table 1, mimic an Intel Nehalem processor.

6.1. Micro-Benchmarks

We compare the performance of domain switching in
CODOMs and other mechanisms (see Figure 2 and §§ 3 and 7)
by calling a procedure on a different domain for 10K times.
Every benchmark tests a combination of mechanism, number
of procedure arguments, and randomly generated caller and
callee workloads (see Table 2). We compare these against a
regular call/return, taking the second of two repetitions.
6.1.1. Alternative Isolation Mechanisms are evaluated using
micro-benchmarks that measure the following:
Syscall: The overhead of using an empty system call.
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Figure 6: Example sequence of two fully-isolated domains: caller 1−→ gate 2−→ callee 3−→ gate 4−→ caller. Colors in stack/DCS
show the domain that wrote into that memory.

Parameter Values
Number of arguments 0, 5, 10
Caller/callee workload insts. 0, 25, 50, 100, 1000
Workload distribution 60% integer / 20% read / 20% write

Table 2: Micro-benchmark execution parameters.

Address Spaces: The cost of switching address spaces by
communicating data using a POSIX pipe.
NaCl [31]: The callee switches segments (cs, ds es and
gs) at user-level before and after performing its workload,
imitating a naively optimistic implementation. The technique
has also been applied at the kernel level [21].
Memory Keys (kernel) [15, 12, 14]: An approximation of a
key-based memory protection switch, used to isolate kernel
components. A system call implements the callee, switching
keys before and after the call. Optimistically assumes that the
cost of switching keys is equivalent to an instruction barrier.
Memory Keys (user) [15, 12, 14]: Like the previous one, but
used to isolate user components. Before and after its workload,
the callee invokes a system call that switches the keys.
Mondrix [30]: Implicitly switching domains using call/return
instructions. The benchmark optimistically approximates the
cost of a domain switch using an instruction barrier, and it
does not model the OS intervention and TLB-shootdown-like
costs associated to grants and revocations (see § 7).

Figure 7 depicts the mechanisms overhead. The figure show
that CODOMs and Mondrix provide the lowest overheads.
Nevertheless, experiments on a real machine (not presented
for brevity) show that the overheads of our coarse Mondrix
approximation are over an order of magnitude higher than
CODOMs. The figure shows the None (leak GPR) setting for
CODOMs (Figure 8), slightly more secure than Mondrix.

Other mechanisms incur substantially higher overheads. All
but CODOMs, Mondrix and NaCl require intermediate system
calls (i.e., switching domains is privileged). In addition, all
mechanisms but CODOMs hinder pipeline throughput by in-
troducing RAW hazards on a domain switch. Thus, CODOMs
is the only system to eliminate both sources of overheads.
6.1.2. Domain Trust Relationship defines the overhead of
gate and stub codes (§ 5.4). We evaluate the following settings:
All: Both domains trust each other, and the callee can access
the caller (to avoid using a return capability); no state is con-
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Figure 7: Domain switch overhead for the evaluated systems.
The overhead is depicted as additional cycles over a proce-
dure call/return. Mondrix and Memory Keys are optimistically
approximated by an instruction barrier. Our Mondrix approxi-
mation does not simulate the added costs of grants and revo-
cations. CODOMs uses setting “None (leak GPR)” in Figure 8.

cealed and gate code is equivalent to a resolved PLT entry.
Caller: The callee trusts the caller, but the caller conceals its
state from the callee (e.g., kernel→module).
Callee: The opposite trust relationship (e.g., module→kernel).
None: Domains do not trust each other (≈ Caller + Callee).
None (leak GPR): Similar to None, but general-purpose reg-
isters are not concealed. Slightly more secure than Mondrix
(which provides read access to the whole stack).
None (leak all): Similar to None, but no register is concealed
(e.g., guard against dangling pointers and stack smashing).

Figure 8 depicts the overhead of switches for the different
trust relationships. The figure shows that All delivers the
best performance by avoiding RAW hazards, and only incurs
in the overhead of the jump in the gate code. In contrast,
None shows the highest overhead since it implements all the
operations described in § 5.4. Still, its overhead is lower than
other mechanisms. The rest show intermediate overheads
whose main factors are the DCS frame management, the gate’s
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Figure 8: Cycles added to domain switch operations over a
procedure call/return, for different domain trust relationships.

Benchmark CODOMs Code Total
CODOMs: All 0.45 0.09 0.54
CODOMs: Callee 0.47 2.41 2.88
CODOMs: Caller 0.49 6.69 7.18
CODOMs: None 0.50 7.57 8.07
CODOMs: None (leak GPR) 0.48 3.54 4.02
CODOMs: None (leak all) 0.47 3.01 3.48
Address Spaces - - 1280.83
NaCl - - 40.75
Syscall - - 29.42

Table 3: Average energy overheads (%), relative to a procedure
call/return. Includes setups in Figure 8 and x86 mechanisms.

return address injection, and the safeguard of the caller’s stack
pointers (this last not present in Callee). These results show
that separating mechanisms from policies allows tuning the
performance to the desired isolation properties.

6.2. Hardware Overheads

We have modeled CODOMs using McPAT [20] (32nm pro-
cess), which estimates CODOMs incurs a 1.89% per-core area
overhead. Table 3 shows CODOMs energy overheads com-
pared to other x86 mechanisms. The CODOMs overheads are
decomposed into the hardware structures and the execution
of the additional policy-specific code. The table shows that
CODOMs energy overheads are practically negligible.

6.3. Macro-Benchmarks

We have evaluated the system-wide impact of CODOMs by
considering all Linux kernel modules as separate domains.
The overall system overhead was measured for two macro-
benchmarks: a parallel Linux kernel compilation, and netperf
using the TCP bulk transfer test.

Since detailed full-system simulation is too slow, we have
extrapolated the macro-benchmarks’ timing by injecting the
domain switch overheads (obtained by the micro-benchmarks)
to the runtime of a native execution. The number of domain
switches was measured using a modified version of QEMU [2],

Domains Switches Instructions
→ ←

C
om

pi
le

kernel / ext2 6403400 1029 16
kernel / scsi 1777834 200 19
kernel / libata 1638960 360 26
kernel / cfq-iosched 1187154 390 31
kernel / unix 149170 234 13
scsi / scsi-sd 105444 21 48
libata / scsi 63270 111 13
Others 114327 - -
Total 11439559 - -

ne
tp

er
f kernel / e1000 22098737 261 41

Others 14048 - -
Total 22112785 - -

Table 4: Number of domain switches (calls & returns) during
the benchmarks’ execution. The two rightmost columns show
the arithmetic mean of instructions executed in a domain be-
fore switching into the other.

Isolation model Compile (%) netperf (%)
None 0.10 ± 0.01 0.15 ± 0.02
None (leak-GPR) 0.03 ± 0.01 0.05 ± 0.02

Table 5: Runtime overheads incurred when considering each
kernel module a separate domain.

considering every module as a separate domain by inspecting
their load addresses.

Table 4 shows that modules typically perform short bursts
of operations. This demonstrates the adequacy of providing
unsupervised domain switching and access grant primitives
with a low impact on ILP. Furthermore, more than 99.6% of
the domain switches involve no more than 8 domains.

Table 5 depicts the system slowdown. In all cases, the
overheads are effectively negligible (less than 1%), although
replacing system calls with CODOMs would actually improve
system performance. Even though our Mondrix approxima-
tion provides similar raw performance, it still requires OS
intervention and operations similar to a TLB shootdown (GLB
and PLB tables) for grants and revocations.

Figure 9 shows the memory access distribution of the do-
mains, according to the owner of that memory. Dynamically
allocated memory is owned by the domain requesting the al-
location, or the one creating an allocation pool. Most of the
non-stack accesses go to “remote” memory (of some other
domain) in the call chain (“Synch. *” accesses), suggesting
these can be handled with synchronous capabilities: the owner
is (indirectly) calling into the domain that uses that memory.
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Figure 9: Domain memory access distribution, according to
the owner of the accessed memory.
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Mechanism
Number of
hardware
domains

Domain switch Grant / revocation Hardware
CostsRuntime

overhead
User-
level

Mech-
anism

User-
level Granularity Sparse

Common Address spaces ∞ ↑↑ 7 PT 7 Page 7 -
Privilege levels ↓↓ ↑ 7 - - - - -

Virtual
Memory-
based

NaCl [31] ↓? ↓ 3 PT 7 Page 7 -
Nooks [26] ∞ ↑↑ 7 PT 7 Page 7 -
Fides [25] ∞ ↑↑↑ 7 PT 7 Page 7 -
Small spaces [21] ↓? ↓ 7 PT 7 Page 7 -
Memory keys →? ↓ 7 PT 7 Page/key 3 ↓
PLB [15] ↑? ↓♣ 7 PT 7 Page 7 ↑
Mondrix [30] ∞ ↓♣ 3 PT† 7† Range 7 ↑↑

Encryption SP [17] ↓↓ ↓ 7 PT 7 Page 7 ↑
Bastion [7] ↑ ↑↑↑ 7 PT 7 Page 7 ↑↑

Capabilities Guarded ptrs. [5] ∞ ↓ 3 Reg. 7 Range 7 ↑↑
CHERI [28] ∞ ↓ 3 Reg. 7 Range 7 ↑↑

CODOMs →? ↓↓↓ 3 Reg. 3‡ Hybrid 3 →
↓↓↓ / ↓↓ / ↓ /→ / ↑ / ↑↑ / ↑↑↑ / ∞: Extremely low / Very low / Low / Medium / High / Very high / Extremely high / Unlimited

? Software multiplexing can be used to provide more domains ♣ Uses tagged associative TLB-like structures
† HW-support for transient read-only access permissions to stack area ‡ “Asynchronous” capabilities (§ 4.1.5) may require supervision

Table 6: Summary of some hardware-assisted domain isolation mechanisms (PT=Page table; Reg=Register).

Of these, most accesses point to memory owned by the
main kernel (“Synch. * (kernel)”). This is primarily due to
structures allocated at its generic layers, later accessed by
the device- or protocol-specific modules. A rewrite of the
system could minimize these accesses, as could having the
core Kernel accessible from all domains, while retaining inter-
module isolation. Still, “remote” accesses are an intrinsic
property of fine-grained isolation.

Most “remote” accesses can be handled with synchronous
capabilities (“Async., *” is small), showing the convenience
of distinguishing between capability types in CODOMs.

7. Related Work
The security and reliability issues that plague the software
world have revitalized interest in more efficient and finer-
grained memory isolation mechanisms.

Table 6 summarizes proposed domain isolation mechanisms,
starting with Common primitives such as virtual address spaces
and privilege levels. While effective, these primitives are
tuned for application-level isolation. They incur high over-
heads when switching protection domains, require costly OS
intervention [26, 25] and are limited to page granularity.

Software Fault Isolation (SFI) techniques provide fine-
grained isolation by enforcing policies in software. They
require non-trivial additions to the TCB, increasing the at-
tack surface. Some rely on specific languages and trusted
toolchains (e.g., Singularity [13] or BGI [6]), or rely on a
trusted VM (e.g., SPIN [3] or Java [11]). Others verify bina-
ries at load-time using proof-carrying code [24], or rely on
dynamic binary translation [8, 9]. Imposing languages and
tools makes it harder for third-parties to develop and distribute
their software. Furthermore, SFI has overheads on safe purely
computational code [24]. Systems like NaCl [31] mix SFI with
existing mechanisms like segmentation [31, 9] or paging [8].
Nevertheless, this hybridization only serves as a measure to
partially alleviate the overheads of SFI.

Some systems build on top of existing virtual memory primi-
tives. Nooks [26] and Fides [25] are susceptible to high domain
switching overheads, while Small Spaces [21] relies on scarce
resources like segment registers. Still, these mechanisms are
privileged and thus require costly OS intervention.

PA-RISC, Itanium and POWER 6 use key-based memory
protection [15, 12, 14] (Figure 2d). Page table entries contain
a tag identifier, and a small key set describes the tags that can
be accessed at any given time. The key set is a privileged
resource, requiring costly OS intervention, and multiplexing
the tags requires expensive TLB shootdown operations.

Koldinger et al. [15] decouple protection and translation
by running all processes on a single address space, instead
adding a Protection Lookaside Buffer (PLB); a separate TLB-
like structure that maps virtual page addresses and protection
domains to access rights. The PLB is a privileged resource,
requiring expensive OS intervention.

Mondrix [30] builds on the PLB concepts (Figure 2c), pro-
viding protection at arbitrary granularities. Unsupervised do-
main switches are supported by adding a table that controls the
ability to switch domains at call/return boundaries (separately
cached in hardware, the GLB). Both PLB and Mondrix use
tables that are managed by the OS, require expensive highly-
associative hardware caches, and revoking grants requires
expensive operations akin to TLB shootdowns [27]. Mon-
drix alleviates some of these costs by adding domain switch
semantics that control read-only grants to the stack.

Bastion [7] protects components in untrusted software
stacks using extended hardware virtualization. The hypervisor
adds a domain tag to pages of protected components. When-
ever the processor interacts with external memory, tagged
pages are encrypted and their contents verified. The use of
a hypervisor incurs in high overheads, while encryption and
hashing (interspersed with code and data) can delay memory
accesses and induce poor memory bandwidth utilization.

Several newer capability architectures have been proposed,
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such as Carter et al. [5] and CHERI [28]. The main advantage
of Carter et al. [5] lies in its integration of capabilities as pro-
tected pointers, while CHERI [28] provides a more classical
approach that avoids high-level hardware constructs. Still,
both suffer from most of the problems on previous systems:
capabilities are not sparse, do not support efficient revoca-
tion, use word-level memory tagging, and (after switching) a
domain must explicitly configure the set of capabilities that
define its “root” grants.

8. Conclusions and Future Work

This paper presents CODOMs, an architecture that enables
software components to be isolated using separate protection
domains that coexist on the same address space. These isola-
tion domains can efficiently interact through regular procedure
calls. CODOMs draws from previous works on memory pro-
tection keys and capability architectures to hybridize their
ideas in a novel architecture.

CODOMs provides the novel concept of code-centric pro-
tection domains, which simplifies the management of domains,
provides very low overheads (even in OoO processors), and
enables transparent integration. CODOMs also provides tran-
sient capabilities that do not require expensive memory tag-
ging. In addition, CODOMs capabilities support efficient
access grant and selective revocation operations.

The composable nature of CODOMs primitives avoids hard-
wiring semantics into the hardware, allowing systems to tune
performance according to their needs, and enabling software
developers to gradually harden system security and resiliency.

Our evaluation shows that CODOMs incurs low latency
protection domain switches and provides efficient access
grants and revocations. Furthermore, it can maintain pipeline
throughput even in out-of-order processors. Some of the con-
tributed techniques can also be applied to other systems.

CODOMs is a first step towards restructuring the hardware/-
software interfaces to support modular, exokernel-like hyper-
visors and OSes. To this end, we plan to extend CODOMs
to support device I/O protection in order to allow arbitrary
protection domains to safely and directly operate with devices.
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