
Minding the Gap: R&D in the Linux Kernel

Muli Ben-Yehuda Eric Van Hensbergen Marc Fiuczynski
IBM Haifa Research Lab IBM Austin Research Lab Princeton University

muli@il.ibm.com ericvanhensbergen@us.ibm.com mef@cs.princeton.edu

“Hello everybody out there using minix—I’m do-
ing a (free) operating system (just a hobby, won’t
be big and professional like gnu)”
—Linus Torvalds announces the Linux kernel on
comp.os.minix, August 25th, 1991.

“Be thankful you are not my student. You would
not get a high grade for such a design :-)”
—Prof. Andrew S. Tanenbaum responds.

1. INTRODUCTION
The Linux kernel, since its inception in 1991, has captured
the interest of many thousands of developers and millions of
users. It recently celebrated its 16th anniversary, includes
many millions of lines of code, and is used in production
systems around the world. It is also advancing at an in-
creasingly rapid pace, undergoing many changes every single
day. Indeed the kernel’s importance to many large corpora-
tions has sparked a high level of contribution by those com-
panies [3] [4], including the employment of many core ker-
nel developers. Recently Linus Torvalds published statistics
relating to contributions to the kernel over the past three
years: 96,885 patches attributed to 4068 distinct authors
have been accepted [5].

Two of your co-editors claimed in an SIGOPS OSR edito-
rial [1] that mature open source systems are a perfect ve-
hicle to explore new ideas. The gist of our argument was
that open source projects tend to evolve toward a culture
promoting inclusion. However, we noted that many times
open source developers are so focused on their code that
they neglect publication of their designs, implementations,
and evaluations outside of their project’s ecosystem—i.e.,
the code is only published on the Linux kernel mailing list
(LKML).

On the flip side, Linux seems to have become the de-facto
standard for (academic) systems software research. For ex-
ample, four-fifth of the papers published in the 21st Sympo-
sium on Operating Systems Principles conference involved
experimentation with or evaluation on the Linux kernel! Un-
fortunately only 1% of the contributions to the Linux kernel
over the past three years can be attributed to the (academic)
research community [2].

Clearly there is a gap between the kernel community and
the research community. A primary motivation behind this
special topics OSR issue was to help bridge this gap by en-
couraging kernel developers to publish recent additions to

the Linux kernel as well as to provide a forum for experience
papers which describe the introduction and integration of re-
search into the mainstream Linux kernel. We have included
representative papers of each flavor, as well as papers which
discuss promising new areas of Linux research and develop-
ment. We think it is important for the research community
and the kernel community to cross pollinate more. We hope
this issue will be the first of many venues where the will be
able to do so.

2. THE PAPERS
For this OSR special issue, we welcomed technical papers
covering the latest advances that have been or will soon
be merged into the Linux kernel, as well as new idea papers
discussing promising experimental work. We encouraged pa-
pers from both the Linux kernel community and the research
community. Quoting from the original call for papers, the
OSR issue aims to:

• Expose members of the Linux kernel community to
exploratory research work that is going on which might
influence Linux’s evolution, and

• Expose members of the systems research community to
the latest happenings in a mature, production kernel
that is widely used and advancing rapidly.

The content of this special issue was determined by a peer
reviewed selection process followed by shepherding, revision,
and further review. Authors initially submitted papers for
consideration in response to a general call. Each paper was
peer reviewed by at least three reviewers and most papers
were reviewed by four or more reviewers. An editorial com-
mittee meeting was held during which committee members
vociferously argued the relative merits of each paper. The
meeting’s outcome was that half the papers were rejected,
the remaining papers were accepted pending shepherding or
invited for revision and re-submission under the the guid-
ance of one or more members of the editorial board.

To assist the reader, the editors have grouped the accepted
papers according to the area of the kernel they address.
These groups, together with a brief summary of each pa-
per’s content, follow.



2.1 Core Technologies
There is often a symbiotic relationship as a technology is
introduced into an open source project such as Linux. Paul
McKenney provides an excellent discussion of this relation-
ship while describing the introduction and evolution of Read-
Copy Update (RCU) within the Linux kernel, as well as the
introduction of Linux into RCU.

Bahmann and Froitzheim discuss the intricacies of provid-
ing efficient and reliable notification mechanisms between
the kernel and user space. They describe an extension of
the kernel Futex (fast mutex) synchronization primitives to
provide a unified event notification mechanism. The uni-
fied notification mechanism allows moving many thread ac-
tivation policy decisions into user-space, with benefits for
multi-threaded reactive applications.

Ashwin Ganti gives a detailed description of his port of
the Plan 9 authentication and capability mechanisms to
the Linux kernel. He discusses userspace extensions of the
pluggable authentication manager (PAM) to integrate these
mechanisms with existing applications and discusses the re-
sulting improvement to system security.

2.2 Resource Management
Over the past couple of years there has been much coding
activity surrounding the Linux scheduler including the in-
troduction of the Completely Fair Scheduler (CFS). Wong,
Tan, Kumari, and Wey expose a weakness in CFS’s current
allocation scheme whereby an application can receive extra
cycles by spawning more threads. They describe an algo-
rithm which attempts to rectify the problem by taking into
account which process spawned the threads.

Processor resources aren’t the only system resource in de-
mand, and Craciunas, Kirsch, and Roeck focus on a mecha-
nism for controlling system throughput and responsiveness
by accounting for and throttling system calls associated with
I/O activity. Their approach attempts to solve the same
problem as resource containers while minimizing the intru-
siveness of code changes.

2.3 I/O
Linux has no shortage in the number of I/O mechanisms and
interfaces. Bruijn and Bos present a consolidation based on
a virtual file systems (VFS) extensions to the Unix pipeline
model. They optimize performance by limiting the number
of copies, context switches, and cache misses. Their imple-
mentation is structured in such a way as to adapt to many
different types of underlying hardware.

Ha, Rhee, and Xu describe the CUBIC extension to the TCP
stack, which builds upon the approach of BIC-TCP with a
focus on improving bandwidth fairness. The paper describes
the protocol extension in detail, as well as the particular
details of the Linux implementation and evaluates fairness,
efficiency, and stability.

The Linux file system layer includes numerous sub-systems
aimed at optimizing performance for a variety of workloads
that sometimes perform in sub-optimal and unpredictable
ways given the different characteristics of workloads, un-
derlying file systems, storage technologies, and storage net-

works. Wu, Xi, and Xu present a design for a new readahead
framework which seeks to limit complexity and provide a
platform for exploring more effective algorithms. They use
their platform to implement and evaluate readahead opti-
mizations for NFS, and describe future work which could
explore optimal techniques for varying access patterns and
back-end storage technologies.

Boutcher and Chandra present a mechanism for communi-
cating file system liveness information across the Linux file
systems and storage stack in order to improve utilization,
security, migration and caching. They describe a ”purge”
operation which can be used by file systems to pass data
to lower levels with minimal changes to the system API,
thereby letting the lower FS levels discard data that is no
longer needed.

2.4 Virtualization and Containers
The introduction of inexpensive multi-core processors has
sparked a resurgence in the research and development activ-
ities surrounding virtualization. The mainline Linux kernel
currently supports 8 different infrastructures for virtualiza-
tion. In order to contain the multitude of I/O virtualiza-
tion methods, Rusty Russell describes his virtio framework
for unifying paravirtualized I/O, which has recently been
merged into the mainline kernel and has been adopted by
KVM and is used by his lguest hypervisor implementation.

Hallyn, Bhattiprolu, Biederman and Lezcano provide an overview
of the various changes being made across the Linux kernel
in order to provide better isolation through the introduction
of private namespaces for various system services. Their
changes also provide a higher level of abstraction for many
system services which facilitates checkpoint, restart, and mi-
gration of user applications.

3. ACKNOWLEDGEMENTS
We would like to extend our thanks to the many authors
who submitted papers, including the ones we were unable
to include in this issue, for the time and effort they put into
their submissions.

We would also like to thank the members of our Editorial
Committee who did a very thorough job of evaluating the
submissions and who also shared shepherding responsibili-
ties for the accepted papers. Listed in alphabetical order,
the Editorial Committee is:

• Patrick Bridges (University of New Mexico)

• Angela Demke Brown (University of Toronto)

• Hubertus Franke (IBM Research)

• Oren Laadan (Columbia University)

• Paul McKenney (IBM Linux Technology Center)

• Chris Mason (Oracle)

• Ron Minnich (Sandia National Laboratory)

• Stephen C. Tweedie (Red Hat)

• Chris Wright (Red Hat)



• Pete Wyckoff (Ohio Supercomputer Center)

The editorial committee was ably assisted by the following
external reviewers:

• Sapan Bhatia (Princeton University)

• Eli Brosh (Columbia University)

• Fernando Laudares Camargos (Universite de Sherbrooke)

• Steven Muir (Vanu)

• Ram Pai (IBM Linux Technology Center)

• David Pressoto (Google)

• Edi Shmueli (IBM Haifa Research Lab)

• Ben-Ami Yassour (IBM Haifa Research Lab)

We would also like to thank the Operating Systems Review
editor, Jeanna Matthews, and ACM SIGOPS for supporting
a special topics issue on the Linux Kernel.

REFERENCES
[1] M. Ben-Yehuda and E. Van Hensbergen. Open source

as a foundation for systems research. SIGOPS Oper.
Syst. Rev., 42(1):2–4, January 2008.

[2] J. Corbet. 2.6.24 - some statistics. Available:
http://lwn.net/Articles/264440/ [Viewed May 30,
2008].

[3] G. Kroah-Hartman. Linux kernel development: how
fast is it going, who is doing it, what they are doing,
and who is sponsoring it. In OLS ’06: The 2006 Ottawa
Linux Symposium, pages 239–244, July 2006.

[4] G. Kroah-Hartman, J. Corbet, and A. McPherson.
Linux kernel development: how fast is it going, who is
doing it, what they are doing, and who is sponsoring it.
Available:
https://www.linuxfoundation.org/publications/
linuxkerneldevelopment.php [Viewed May 30, 2008].

[5] L. Torvalds. Linux 2.6.26-rc3. Available:
http://lkml.org/lkml/2008/5/18/319 [Viewed May 30,
2008].


