
IP Only Server
Muli Ben-Yehuda1 Oleg Goldshmidt1 Elliot K. Kolodner1 Zorik Machulsky1

Vadim Makhervaks2 Julian Satran1 Marc Segal3 Leah Shalev1

Ilan Shimony1

IBM Haifa Research Laboratory

1{muli,olegg,kolodner,machulsk,satran,leah,ishimony}@il.ibm.com
2vadim.makhervaks@gmail.com

3marcs@cs.technion.ac.il

Abstract

Present day servers must support a variety of legacy I/O
devices and protocols that are rarely used in the day to
day server operation, at a significant cost in board layout
complexity, reliability, power consumption, heat dissipa-
tion, and ease of management. We present a design of
an IP Only Server, which has a single, unified I/O in-
terface: IP network. All of the server’s I/O is emulated
and redirected over IP/Ethernet to a remote management
station, except for the hard disks which are accessed via
iSCSI. The emulation is done in hardware, and is avail-
able from power-on to shutdown, including the pre-OS
and post-OS (crash) stages, unlike alternative solutions
such as VNC that can only function when the OS is op-
erational. The server’s software stack — the BIOS, the
OS, and applications — will run without any modifica-
tions.

We have developed a prototype IP Only Server, based
on a COTS FPGA running our embedded I/O emulation
firmware. The remote station is a commodity PC run-
ning a VNC client for video, keyboard and mouse. Ini-
tial performance evaluations with unmodified BIOS and
Windows and Linux operating systems indicate negli-
gible network overhead and acceptable user experience.
This prototype is the first attempt to create a diskless and
headless x86 server that runs unmodified industry stan-
dard software (BIOS, OS, and applications).

1 Introduction

Present day server systems support the same set of I/O
devices, controllers, and protocols as desktop computers,
including keyboard, mouse, video, IDE and/or SCSI hard
disks, floppy, CD-ROM, USB, serial and parallel ports,
and quite a few others. Most of these devices are not uti-
lized during the normal server operation. The data disks
are frequently remote, and both Fibre Channel and iSCSI
now support booting off remote disk devices, so directly

attached hard disks are not necessary for operating sys-
tem (OS) boot either. Removable media devices, such as
floppies and CD-ROMs, are only used for installation of
OS and applications, and that can also be avoided with
modern remote storage management systems.

Moreover, there are no users who work directly on the
server, using keyboard, mouse, and display — normal
administrative tasks are usually performed over remote
connections, at least while the server is operational. Re-
mote management is done via protocols such as Secure
Shell (SSH) and X for Linux/UNIX systems, Microsoft’s
Windows Terminal Services, and cross-platform proto-
cols such as the Remote Framebuffer (RFB, see [6]),
used by the popular Virtual Network Computing (VNC)
remote display scheme. However, local console access
is still required for some operations, including low-level
BIOS configuration (pre-OS environment) and dealing
with failures, such as the Windows “blue screen of death”
and Linux kernel panics (post-OS environments). Local
console is usually provided either via the regular KVM
(keyboard-video-mouse) interface or a serial line con-
nection.

The legacy protocols and the associated hardware have
non-negligible costs. The board must contain and sup-
port the multitude of controllers and the associated aux-
iliary electrical components each of them requires. This
occupies a significant portion of the board real estate
that could otherwise contain, say, an additional CPU or
memory. The multitude and complexity of the legacy
components also reduce the mean time between failures
(MTBF).

We propose that future servers will only need CPUs,
memory, a northbridge, and network interface cards
(NICs). All the legacy I/O that is done today, e.g., over
PCI, will be done over a single, universal I/O link — the
ubiquitous IP network. All communication with storage
devices, including boot, will be done over iSCSI, console
access will also be performed over the network. Proto-
cols such as USB can also be emulated over IP [5], pro-

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 381



viding a variety of remote peripherals such as CD-ROM,
printers, or floppy if they are needed.

Figure 1: Components of an IBM HS20 blade server.

To illustrate this point, Figure 1 identifies the vari-
ous components of an x86 server (an IBM HS20 blade
server chosen for its unobstructed layout). The CPUs,
the DRAM, the northbridge, the BIOS flash, and the net-
work hardware are necessary, while the southbridge, the
SCSI and IDE controllers, the graphics adapter, and the
integrated legacy I/O chip (implementing the keyboard
and mouse controllers, various timers, etc.) can be re-
moved and their functionality can be emulated over the
network.

This “remoting” of I/O can be achieved without any
modifications at all to the applications, the OS, or the
BIOS of the server if the protocol emulation is done in
hardware. Substituting a single hardware component for
all the legacy controllers, capturing all the bus transac-
tions involving the legacy devices, remoting the transac-
tions over the IP network, and performing the actual I/O
at remote systems will be completely transparent to the
BIOS and the OS, and thus to the applications.

While many software based alternatives exist for re-
moting I/O when the OS is up and running (see Sec-
tion 2), doing the protocol emulation in hardware is es-
sential for supporting the pre-OS (e.g., BIOS or boot-
loader) and post-OS environments.

We developed a research prototype of such an “IP

Only Server” that uses IP for all of its I/O needs. We
designed and implemented a legacy I/O emulator based
on a COTS FPGA. The FPGA, connected to the host via
the PCI bus, serves as the local keyboard, mouse, and
VGA controller. All keyboard, mouse, and VGA traffic
reaches the FPGA and is sent to a remote station over IP.
The user is able to perform all the management opera-
tions — throughout the lifetime of the server, i.e., dur-
ing boot, BIOS, OS initialization, normal operation, and
post-OS stages — from the remote station. No changes
were needed for the software running on the host. In par-
ticular, neither the BIOS nor the OS were modified.

The performance of the prototype is acceptable for the
usual server management tasks. The only significant net-
work load may come from the remote iSCSI storage, the
network utilization due to remote management is small,
and the user experience is acceptable.

2 Related Work

The concept of allowing the user to interact with a re-
mote computer over a network had a long history. Today
there exists a wide variety of thin clients, e.g., SSH/X11,
VNC, SunRay, Citrix Metaframe, and Windows Termi-
nal Server. Our approach differs from all these solutions
in two major ways: we allow remoting of legacy I/O over
the network a) without any host software modifications,
and b) from the moment the computer has powered on
until it has powered off, including when no operating
system is present (BIOS stage as well as OS crash).

The Super Dense Server research prototype [7] pre-
sented servers with no legacy I/O support. It used Con-
sole Over Ethernet, which is OS dependent, supported
text mode only, ran Linux, and used LinuxBIOS [4]
rather than a conventional BIOS. In contrast, the IP Only
Server runs unmodified OSes and BIOSes and supports
graphical VGA modes as well as text based modes. At-
tempting sweeping changes in the BIOS (e.g., switching
to LinuxBIOS) while requiring to support a wide variety
of boards and many different software stacks would ad-
versely affect reliability, availability, serviceability, and
system testing.

“USB over IP” [5] is used as a peripheral bus exten-
sion over an IP network. USB/IP requires a special OS-
specific driver and thus is only available when the OS is
operational, while the IP Only Server does not require
OS modifications — it listens on the PCI bus for transac-
tions using a hardware component.

Baratto et al. presented THINC [3], a remote dis-
play architecture that intercepts application display com-
mands at the OS’s device driver interface. This approach
looks promising for remoting the display while the OS is
running, but does not handle either pre-OS or exception
(post-OS) conditions. THINC could be used together

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association382



with modifications to the system’s BIOS to build a pure
software IP Only Server. However, by using specialized
hardware the system can be remoted at all times.

IBM’s JS20 PowerPC-based blades do not contain any
video/mouse/keyboard components. Instead Serial-over-
LAN (tunneling text-only serial console messages over
UDP datagrams) is used. KVM over IP products (e.g.,
Cyclades AlterPath KVM/net) provide an easy way to
remote all operating environments. However, such prod-
ucts carry a non-negligible price tag, and servers using
KVM over IP still require a full complement of hardware
components.

3 Design

The IP Only Server was designed with several guidelines
in mind.

1. The server must run unmodified software, including
OS and BIOS.

2. Remote access is needed at all times, from the BIOS
boot stage through the OS’s lifetime, and even post-
OS environments such as the “blue screen of death”
or a Linux kernel oops. This does not preclude
a more effective remote access method when the
OS is operational, such as X-Windows, or Windows
Terminal Server.

3. The server should have the minimal amount of local
state required for disconnected operation. The hard
drives should be remoted over IP, including boot.

4. The IP Only Server must be able to work even
when no remote management station is connected,
or when one has been connected and then discon-
nected. Obviously, the remote storage that is nec-
essary for boot and normal operation of the server
must be available at all times.

5. Text (console) and graphical mode support must be
provided. There is no requirement to provide more
than plain VGA mode support — the IP Only Server
is not aimed at users who need accelerated graphics.

6. The remote management station should not require
a custom or proprietary client, e.g., the KVM-
over-IP (Keyboard/Video/Mouse-over-IP) protocol
should be based on open standards.

7. A single remote station should be able to control
multiple IP Only Servers concurrently.

The IP Only Server can be based on any standard
architecture (such as x86). The CPU, memory, north-
bridge, and BIOS flash are not modified. The server

will include at least one network interface. Other pe-
ripheral components will not be needed. The function-
ality of the peripheral components can be emulated by
dedicated logic that presents the legacy I/O interfaces to
the host (via a PCI bus), and remotes them over an IP
based protocol to the remote station. The logic may be
implemented as an ASIC or an FPGA depending on the
cost/programmability trade-off.

The IP Only Server will not include any local disks.
Instead, it boots from a remote boot device, such as an
iSCSI disk via iBOOT [1] or PXE. Alternatively, disk ac-
cess can be remoted like the other legacy I/O protocols.
A mixture of the two approaches is possible in princi-
ple: the emulation hardware can include an implementa-
tion of a boot-capable iSCSI initiator. This will leave the
BIOS flash as the only local state.

For the prototype described below we designed an
FPGA that presented itself as a VGA/keyboard/mouse
device. The server’s BIOS and OS accessed the FPGA
using their standard drivers. The FPGA received all host
accesses as PCI transactions, and handled them appropri-
ately.

We experimented with two different approaches to re-
moting these PCI transactions to a remote station. The
first approach, the Internet PCI Remote Protocol (iPRP)
was essentially “PCI over IP”: PCI transactions were
wrapped by IP packets, sent to the remote station, and
processed there. Responses were sent back as IP packets
as well and passed them to the local PCI bus. Clearly
iPRP does not satisfy design guideline 4 above, and was
used mainly as an intermediate debugging tool. It is de-
scribed in Section 4.1.

The second approach, using the RFB protocol, is de-
scribed in Section 4.2. In this scheme the emulation
FPGA translates keyboard, mouse, and video PCI trans-
actions into the high level RFB protocol that allows using
any VNC client (and any OS) on the remote station. PCI
transactions are processed locally by the FPGA, while
the display and user inputs are handled by the remote
station.

Figure 2: Comparison of iPRP and RFB implementa-
tions of an IP Only Server.

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 383



The difference between the two schemes is highlighted
by Figure 2: with iPRP the FPGA is essentially transpar-
ent, and the emulation is done in the remote station; with
RFB the remote station exists for the user interface only,
the emulation is done in the FPGA, and some PCI trans-
actions (reads) are handled locally inside the FPGA.

Thus, in the RFB design, if the user is not interested in
interacting with the server, the server can operate with-
out a remote station. On the other hand, a user can open
VNC sessions against multiple IP Only Servers simulta-
neously. Clearly, this approach supports design guide-
lines 4 through 7.

4 Implementation

For the prototype we used a Dini-group DN3000k10s
FPGA evaluation board with a Metanetworks Inc.
MP1000TX Ethernet prototyping plug-in board. The
FPGA is a Xilinx Virtex-II x2v8000. The design ran at
50 MHz, used 378 KB of local memory, and 8400 logic
slices (equivalent to about 1M gates).

The FPGA firmware was divided into four main mod-
ules: a PCI Interface Module, a BIOS expansion ROM, a
Network Interface Module, and a Transaction Processing
Module.

The PCI interface module answers to keyboard con-
troller addresses, VGA controller, VGA memory, and
implements an expansion ROM base address register.

The device identifies itself as a PCI-based VGA
adapter. Upon discovery of the VGA add-in card, stan-
dard BIOSes consider it as the default VGA adapter,
and configure the chipset in such a way that all
VGA I/O and memory transactions are routed to the
device. Having keyboard controller I/O addresses
routed to the device is trickier, and requires additional
northbridge and I/O bridge configuration done by the
BIOS. The expansion ROM is size 32kB, and con-
tains the VGA BIOS routines. It was based on the
GPL VGA BIOS included in the Bochs x86 emulator
(http://bochs.sourceforge.net).

The network interface consists of a Fast Ethernet MAC
and a DMA engine. The amount of the management traf-
fic is small, but it may be beneficial to use a separate port
for other reasons — for instance, if the main interface is
down or saturated (e.g., due to heavy load or to a denial
of service attack). The iSCSI storage interface may also
be separate for performance and/or security reasons.

In our prototype implementation we used the FPGA’s
Ethernet interface for KVM emulation, and the server’s
regular Ethernet interface for the other traffic, including
iSCSI.

The Transaction Processing firmware consists of a sin-
gle loop that gets PCI transactions from the PCI inter-
face, and either handles them locally or wraps them into

the appropriate network protocol (iPRP or RFB — see
Sections 4.1 and 4.2 below).

To improve network utilization subsequent write trans-
actions are coalesced into bigger network packets, while
read transactions are either handled locally (RFB ver-
sion) or sent to the network immediately (iPRP version).
In the iPRP version read responses are forwarded to the
PCI Interface Module that handles the PCI read response.
The iPRP version also supports remote keyboard gen-
erated interrupt requests (IRQ1). Since this interrupt is
reserved for the local keyboard controller we used the
chipset’s Open HCI USB legacy keyboard emulation fea-
ture to emulate it.

4.1 iPRP — Internet PCI Remote Protocol

The iPRP protocol uses the UDP protocol to emulate
memory and I/O space PCI transactions over an IP net-
work. The protocol was designed for ease of implemen-
tation, initial debugging and bring up of the hardware
and firmware. It is not very efficient nor robust (a net-
work problem or a remote side failure will cause the host
to crash or just lock up).

A command is defined is a single I/O command such
as memory read, I/O space write, or acknowledgment.
Multiple commands may be packed into a single Ether-
net frame. A message is one or more commands, mapped
into a single Ethernet PDU. In a multi-command mes-
sage only the last command may be a read type com-
mand, since the PCI-based system can not proceed until
the read data arrives back. Each commands has an at-
tached sequence number (SN).

The protocol uses the ‘go-back-N’ scheme, i.e., there
may be up to N unacknowledged commands in flight.
An ACK message acknowledges all commands with se-
quence numbers less the the ACK’s SN; in case of a read
command the ACK also contains the returned data. A
message transmit is triggered by a read, a timeout, or in
case the maximum message size is reached.

The remote station software was based on the Bochs
open source x86 emulator. We extracted the relevant PCI
device emulation code and fed it the PCI transactions
received over the iPRP payload as input. For host PCI
reads, a return packet with the response is sent back to
the FPGA.

4.2 RFB — Remote Frame Buffer

To overcome the shortcomings of the iPRP version, es-
pecially the fact that the server cannot operate without
the remote station, we have to emulate the device con-
trollers in the FPGA firmware rather than in the remote
station software. As in the iPRP version we based the
implementation on code from the Bochs emulator.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association384



To transfer the keyboard, mouse, and video events be-
tween the FPGA and the remote station we chose the Re-
mote Framebuffer (RFB) protocol [6]. To this end, we
implemented a VNC server in the FPGA firmware. We
choose RFB because it is a well known and widely used
open protocol with numerous open source clients.

Our FPGA platform was limited in both space
(350 KB of memory total) and speed (50 MHz CPU,
no memory caches). Accordingly, we started with a
straightforward hardware VGA controller emulation in
software, based on the Bochs VGA controller, and op-
timized it both in space and time to fit our FPGA envi-
ronment. For instance, by removing support for VGA
modes that were not used by either Linux or Windows,
we managed to reduce the VGA framebuffer to 128 KB.

Since the RFB protocol is TCP/IP based, we also
added a TCP/IP stack to the FPGA firmware. Due to the
limited memory and processing resources of the FPGA
we had to implement a custom embedded TCP/IP stack.
The stack is minimalistic and is specifically designed to
fit our firmware environment, but it implements a com-
plete TCP state machine and is streamlined: it has a
very low memory footprint and avoids copying of data
as much as possible.

Like the iPRP version, the RFB-based FPGA firmware
is based on a single looping execution thread. The
firmware receives the host’s PCI transactions from the
PCI interface. Host PCI reads are answered immediately,
while PCI writes update the local device state machines.
Every so often, the frame buffer updates are sent to the
remote station to be displayed. The decision of when
to update the remote station is crucial for establishing
reasonable performance with our constrained FPGA; we
developed heuristics that performed fairly well (cf. Sec-
tion 5).

5 Performance Evaluation and Analysis

The most important performance metric for evaluating
the IP Only Server is user experience, which is notori-
ously hard to quantify. In order to approximate the user’s
experience, we performed several measurements.

All tests were performed on two identical IBM x235
servers including the PCI-based FPGA evaluation board
with a 100 Mb/s Ethernet network interface. The remote
station software ran on two R40 Thinkpad laptops with
a 1.4 GHz Pentium M CPU and 512 MB RAM each.
The servers booted either Windows 2003 Server or Red
Hat Enterprise Server Linux 3.0. The iSCSI connection
was provided through a separate network interface, and
the FPGA was not involved in communication with the
iSCSI target at all. The performance of iSCSI storage
has been studied independently, and we were primarily
interested in the performance of our FPGA-based KVM

emulation. Therefore, for the purpose of these measure-
ments we used local disks, to achieve a clean experimen-
tal environment.

First, we measured the wall time of a server boot for
each of the three scenarios: a server with native legacy
I/O peripherals, an IP Only Server with an FPGA using
iPRP, and an IP Only Server with an FPGA using RFB.
In each scenario, we measured the time from power on
until a Linux console login prompt appeared, and from
power on until a Windows 2003 Server “Welcome to
Windows” dialog showed up.

As depicted in Table 1, an unmodified server booted
to a Linux login prompt in 238 seconds while a server
using the RFB version of the FPGA booted in 330 sec-
onds. This is a 38% slowdown (for the RFB version),
which is acceptable for the very first, unoptimized pro-
totype. Additionally an unmodified server booted to the
Windows 2003 Server “Welcome to Windows” dialog in
186 seconds and the server with the RFB FPGA booted
in 289 seconds. This is slightly worse, a 55% slowdown,
but again, it is acceptable.

Server Native iPRP RFB

Linux 238 343 (144%) 330 (138%)
Windows 186 299 (160%) 289 (155%)

Table 1: Linux and Windows boot time in seconds.

It should be noted that the RFB and iPRP versions
performed nearly the same. While iPRP sends much
more traffic over the network than RFB the bulk of
the emulation in the iPRP version is performed by the
1.4 GHz Pentium M CPU of the remote station, whereas
in the RFB version it is done by the severely constrained
50 MHz FPGA CPU. This leads us to conclude that there
exists a trade off between performance and cost here: by
throwing a stronger (more expensive) FPGA or ASIC at
the emulation, the performance can be easily improved.

We measured the network utilization using the RFB
version of the FPGA in the the same Linux and Win-
dows boot scenarios described above. Table 2 shows the
number of actual data bytes exchanged, the number of
TCP packets and the throughput for both Linux and Win-
dows boot sequences. The throughput is of the order of
1 Mb/s — not a significant load for a modern local area
network, and acceptable even for a wide area connection.

Booted OS Unique Bytes Packets Throughput

Linux 52324982 189920 131488 B/s
Windows 47457592 155542 164384 B/s

Table 2: Network Utilization.

An additional observation is related to an important

Annual Tech ’06: 2006 USENIX Annual Technical ConferenceUSENIX Association 385



class of systems that may be built on the basis of IP
Only Servers— the so-called “hosted clients”. We ran
some experiments to assess whether our low level dis-
play remoting scheme could be used to support a hosted
client solution that deals with graphically intensive ap-
plications, and found, similarly to Baratto et al. [3], that
remoting the higher level graphics access APIs was more
effective than remoting the low level hardware graphic
access. This indicates that there is even less reason to
keep local graphics adapters on servers supporting hosted
clients. For such servers our emulation scheme can be
relegated to supporting the pre-OS environment and ex-
ception handling (possibly supporting more than one vir-
tual console), i.e., functions that are not graphically in-
tensive.

6 Future Work

Future IP Only Server work includes supporting more
protocols, such as USB, serial, and parallel. USB sup-
port during pre-OS and post-OS stages is particularly de-
sirable, as it would help provide support a diverse set of
devices, including floppy and CD-ROM drives.

The IP Only Server prototype runs on x86 only at the
moment. A port to other architectures such as PowerPC
will validate the design.

The IP Only Server provides interesting opportunities
when combined with virtualization technologies such as
Xen [2] or VMWare. It can be used to give unmodified
guests physical device access while providing requisite
isolation and offering each guest its own view of the I/O
hardware.

The IP Only Server could also provide a transparent
virtualization layer on top of physical devices. It could
provide several sets of device control registers associated
with different virtual or physical machines. The host OS
on each server would access what appears to it as a phys-
ical device, but is actually the IP Only hardware. The
hardware or the remote station can direct the I/O to dif-
ferent real devices.

7 Conclusion

We present a novel approach to legacy I/O support in
servers. We designed an IP Only Server, utilizing the
IP network as the single I/O bus. All user interaction
throughout the lifetime of the server, i.e., during boot,
BIOS, OS initialization, normal operation, and post-OS
(e.g., “blue screen of death”) stages are done from a re-
mote station. No changes were needed for the software
running on the host — in particular, neither the BIOS nor
the OS were modified. While diskless servers have been
attempted before, and headless servers exist as well (e.g.,

IBM’s JS20 blades), as far as we know this is the first
attempt to create a diskless, headless server that runs in-
dustry standard firmware and software (BIOS, Windows
or Linux OS) without any modifications.

We also found wider than expected dependencies on
legacy devices, e.g., Windows boot touches keyboard
and video hardware more than one would expect. Our
emulation approach proved a good way to support Win-
dows without requiring difficult and expensive (and not
necessarily feasible) changes in the OS. One of the major
reasons for the popularity of the x86 architecture is that
it is affordable, and one reason for the low cost of x86
systems is ready availability of software built for large
numbers of desktops. The emulation approach is instru-
mental in keeping this argument valid.

Our research prototype implementation of the IP Only
Server provides a user experience that is comparable to
that of a regular server, with reasonable latency and low
network utilization.

The IP Only Server can provide significant savings in
hardware and software costs, power consumption, heat
dissipation and ease of management. It eliminates some
legacy aspects of the PC architecture, replacing them
with a single, simple, and modern counterpart.

Acknowledgments

The authors would like to thank Kevin Lawton and
other Bochs developers for their excellent emulator and
Michael Rodeh and Alain Azagury for their interest and
support of this project.

References

[1] iBOOT: Boot over iSCSI. http://www.haifa.il.ibm.com/
projects/storage/iboot/.

[2] B. DRAGOVIC, K. FRASER, S. HAND, T. HARRIS, A. HO,
I. PRATT, A. WARFIELD, P. BARHAM, AND R. NEUGEBAUER.
Xen and the Art of Virtualization. In Proceedings of the 19th
ASM Symposium on Operating Systems Principles (SOSP) (2003),
Bolton Landing, NY, pp. 164–177.

[3] R. BARATTO, L. KIM, AND J. NIEH. THINC: a Virtual Dis-
play Architecture for Thin-Client Computing. In Proceedings of
the 20th ACM Symposium on Operating systems (2005), Brighton,
United Kingdom, pp. 277–290.

[4] R. MINNICH, J. HENDRICKS, AND D. WEBSTER. The Linux
BIOS. In Proceedings of the 4th Annual Linux Showcase and Con-
ference (2000), Atlanta, GA.

[5] T. HIROFUCHI, E. KAWAI, K. FUJIKAWA, AND H. SUNAHARA.
USB/IP —A Peripheral Bus Extension for Device Sharing over
IP Network. In USENIX Annual Technical Conference, FREENIX
Track (2005), Anaheim, CA.

[6] T. RICHARDSON. The RFB Protocol, 2004. Version 3.8.

[7] W. M. FELTER, T. W. KELLER, M. D. KISTLER, C. LEFURGY,
K. RAJAMANI, R. RAJAMONY, F. L. RAWSON, B. A. SMITH,
AND E. VAN HENSBERGEN. On the Performance and Use of
Dense Servers. IBM Journal of R&D 47, 5/6 (2003), 671–688.

Annual Tech ’06: 2006 USENIX Annual Technical Conference USENIX Association386




