H-0246 (H0611-007) November 13, 2006
Computer Science

|BM Resear ch Report

The Design and | mplementation of an | P Only Server

Muli Ben-Yehuda, Oleg Goldshmidt, Elliot K. Kolodner, Zorik Machulsky,
Vadim Makhervaks, Julian Satran, Marc Segal, L eah Shalev, |lan Shimony
IBM Research Division
Haifa Research Laboratory
Mt. Carmel 31905
Haifa, |srael

—==—=—=—=2= Research Division
£ S= 555 Almaden- Austin - Beijing - Haifa - India- T. J. Watson - Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific
requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P.
0. Box 218, Yorktown Heights, NY 10598 USA (email: reports@us.ibm.com). Some reports are available on theinternet at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

The Design and Implementation of an IP Only Server

Muli Ben-Yehuda! Oleg Goldshmidt! Elliot K. Kolodner! Zorik Machulsky!
Vadim Makhervaks? Julian Satran! Marc Segal? Leah Shalev!
Ilan Shimony!

1 {muli ,olegg,kolodner,machulsk,satran,leah, ishimony}@il .ibm.com

2vadim .makhervaks@gmail.com

3 . .
marcs@cs.technion.ac.il

IBM Haifa Research Laboratory
Haifa University Campus, Mount Carmel
Haifa, 31905, Israel

Abstract

Present day servers must support a variety of legacy I/O devices and protocols that are rarely used in the
day to day server operation, at significant costs in board layout complexity, reliability, power consumption,
heat dissipation, and ease of management. We present a design of an IP Only Server, which has a single,
unified I/O interface: IP network. All of the server’s I/O is emulated and redirected over IP/Ethernet to
a remote management station, except for the hard disks which are accessed via iSCSI. The emulation is
done in hardware, and is available from power-on to shutdown, including the pre-OS and post-OS (crash)
stages, unlike alternative solutions such as VNC which can only function when the OS is operational. The
server’s software stack — the BIOS, the OS, and applications — will run without any modifications.

We have developed a prototype IP Only Server, based on a COTS FPGA running our embedded I/O
emulation firmware. The remote station is a commodity PC running a VNC client for video, keyboard and
mouse. Initial performance evaluations with unmodified BIOS and Windows and Linux operating systems
indicate negligible network overhead and acceptable user experience. This prototype is the first attempt to
create a diskless and headless x86 server that runs unmodified industry standard software (BIOS, OS, and
applications).

This is is the revised and extended version of a short paper that was originally published in Proceedings of
USENIX ’06 Systems Practice € Experience Track.

1 Introduction

Present-day server systems support the same set of
I/O devices, controllers, and protocols as desktop
computers, including keyboard, mouse, video, IDE
and/or SCSI hard disks, floppy, CD-ROM, USB, se-
rial and parallel ports, and quite a few others. Most
of these devices are not utilized during the normal
server operation. The data accessed by a server fre-
quently exists on remote disks, and the only reason
to have a local hard drive is for the operating sys-
tem boot. However, modern networked storage —
both Fibre Channel [1] and iSCSI [2] — now sup-
ports booting off remote disk devices, so directly at-
tached hard disks are also becoming unnecessary for
this purpose. Various media devices, such as floppies
and CD-ROMs, are only used for installation of op-
erating systems and applications, and that can also
be avoided with modern remote storage management
systems.

Moreover, there are no users who work directly on
the server, using keyboard, mouse, and display —
normal administrative tasks are usually performed
over remote connections, at least while the server is
operational. Remote management is done via pro-
tocols such as Secure Shell (SSH) and X [11] for
Linux/UNIX systems, Microsoft’s Windows Termi-
nal Services [8], and cross-platform protocols such as
the Remote Framebuffer (RFB, [6]), used by the pop-
ular Virtual Network Computing (VNC, [7]) remote
display scheme — see also Section 2 below. However,
local console access is still required for some opera-
tions, including low-level BIOS configuration (pre-OS
environment) and dealing with failures, such as the
Windows “blue screen of death” and Linux kernel
panics (post-OS environments). Local console is usu-
ally provided either via the regular KVM (keyboard-
video-mouse) interface or a serial line connection.

The legacy protocols and the associated hardware
have non-negligible costs. The board must contain
and support the multitude of controllers and the as-
sociated auxiliary electrical components to deliver the
right voltage and current to each of them. This occu-
pies a significant portion of the board real estate that
could otherwise contain, say, an additional CPU or

memory. The multitude and complexity of the legacy
components reduce the mean time between failures
(MTBF), and increase the complexity of the associ-
ated system firmware and software.

We propose that future servers will only need one
or more CPUs, memory, a northbridge, and one or
more network interface cards (NICs). All the legacy
I/O that is done today over PCI or or other legacy
protocols will be done over a single, universal I/O link
— the ubiquitous TP network. All communication
with storage devices will be done over iSCSI [2], in-
cluding boot (iBOOT — Remote Boot over iSCST'),
so no local disks will be necessary. All system man-
agement tasks that require local console access will
also be performed over an IP network. Protocols such
as USB can also be emulated over IP [16], providing a
variety of remote peripherals such as CD-ROM, print-
ers, or floppy if they are needed.

To illustrate this point, Figure 1 identifies the vari-
ous components of an x86 server (an IBM HS20 blade
server in this case, chosen here for illustration because
the layout of the board is not obstructed). The CPUs,
the DRAM, the northbridge, the BIOS flash, and
the network hardware are necessary, while the south-
bridge, the SCSI and IDE controllers, the graphics
adapter, and the integrated legacy I/O chip (imple-
menting the keyboard and mouse controllers, various
timers, etc.) can be removed and their functionality
can be emulated over the network.

This “remoting” of I/O can be achieved without
any modifications at all to the firmware and software
stack running on a server: neither the applications,
nor the operating system, nor the BIOS need to be
modified.

This can be achieved if the protocol emulation is
done in hardware. Substituting a single hardware
component for all the legacy controllers, capturing
all the bus transactions involving the legacy devices,
remoting the transactions over the IP network (pos-
sibly including protocol translation), and performing
the actual I/O at remote stations will be completely
transparent to the BIOS and the operating system,
and thus to the applications.

lhttp://wuw.haifa.il.ibm.com/projects/storage/iboot/

xBlade - HS20

mid-plane

Figure 1: Components of an IBM HS20 blade server.

While many software based alternatives exist for
remoting IO when the operating system is up and
running (see Section 2 for a survey), doing the proto-
col emulation in hardware is essential for supporting
the pre-OS (e.g., BIOS or bootloader) and post-OS
environments.

We designed and implemented a research prototype
of such an “IP Only Server”, a server that uses Eth-
ernet /IP for all of its I/O needs. We designed and
implemented a legacy I/O controller /emulator based
on a COTS FPGA. The FPGA, connected to the
host via the PCI bus, serves as the local keyboard,
mouse, and VGA controller. All keyboard, mouse,
and VGA traffic reaches the FPGA and is sent to
a remote station over IP. The user is able to per-
form all the management operations — throughout
the lifetime of the server, i.e., during boot, BIOS, op-
erating system initialization, normal operation, and
post-0S (e.g., “blue screen of death”) stages — from
the remote station. No changes were needed for the
software running on the host. In particular, neither

the BIOS nor the operating systems were modified.

We developed two methods for remoting PCI over
IP: iPRP, a straightforward mapping of PCI to IP,
and local emulation of PCI devices with remote access
over RFB, the stock VNC protocol.

The performance of the prototype is acceptable for
the usual server management tasks. The only signif-
icant network load may come from the remote iSCSI
storage, the network utilization due to remote man-
agement is small, and the user experience is without
change.

In this paper, we present our design for an IP Only
Server and a prototype implementation. The rest of
the work is organized as follows. In Section 2 we
discuss some related work. In Section 3, we give an
overview of the server’s design, pertaining to hard-
ware, firmware, and remote station software. In Sec-
tion 4, we describe our prototype implementation. In
Section 5, we evaluate the server’s performance when
using IP for legacy I/O vs. the performance of an

unmodified server using legacy I/O controllers and
devices.

Our results show that the IP Only Server pro-
vides acceptable user experience when no accelerated
graphics are needed. In Section 6, we discuss possi-
ble enhancements to the IP Only Server, as well as
various novel uses.

2 Related Work

The concept of allowing the user to interact with a
remote computer over a network has had a long his-
tory [17, 18, 19, 20]. Today there exists a wide vari-
ety of thin clients, from the X11 remote display con-
cept [11], often used in conjunction with Secure Shell,
to Virtual Network Computing [7] to SunRay [10] to
Citrix Metaframe [9] to Windows Terminal Server [8].
Our approach differs from all these solutions in two
major ways: we allow remoting of legacy I/O over
the network without any host software modifications,
and we allow remoting of legacy I/O over the network
from the moment the computer has powered on un-
til it has powered off, including when no operating
system is present (BIOS stage as well as OS crash).

We did not do any special work on iSCSI [2] or
iBOOT (boot over iSCSI), reusing existing software.
Support for iSCSI exists in various operating systems,
notably in Linux and Windows — the operating sys-
tems we experimented with. We had iBOOT-enabled
BIOS installed on our prototype servers. The BIOS
is generic, and was not created to fit our needs. It is
expected that vendors will provide iBOOT support
in BIOSes and in hardware (HBAs) in the near fu-
ture. If iBOOT support is not available, other ways
could be used to to boot a server from a remote disk,
e.g., the Preboot Execution Environment (PXE).

The Super Dense Server research prototype [3] pre-
sented servers with no legacy I/O support (keyboard,
VGA or serial). It used Console Over Ethernet [4],
which requires operating system modifications and is
therefore operating system dependent, and supported
text mode only. The Super Dense Server ran Linux,
and also used LinuxBIOS [15] rather than a conven-
tional BIOS. In contrast, the IP Only Server runs

unmodified operating systems and BIOSes, and sup-
ports graphical VGA modes as well as text based
modes.

“USB over IP” [16] is used as a peripheral bus
extension over an IP network. Using a virtual pe-
ripheral bus driver allows the system to remote I/O
devices over an IP network with good performance
if the network is fast enough. USB/IP is similar to
our iPRP protocol (cf. Section 4.4.1): in both cases
a hardware bus is extended using a network proto-
col. The difference is that USB/IP requires a special
OS-specific driver, which grabs URBs (USB Request
Blocks) at the PDD (USB Per-Device Driver) layer,
encapsulates them, and send them over the network,
while iPRP does not require any main CPU inter-
vention — it listens on the PCI bus for transactions
using a hardware component. The more advanced
RFB protocol we use (cf. Section 4.4.2) also listens
on the PCI bus, emulates the I/O device, and sends
the compressed data over the network. USB/IP is
only available while the OS is operational, unlike our
solution.

Baratto et al. presented THINC [21], a remote dis-
play architecture that intercepts application display
commands at the OS’s device driver interface. This
approach looks promising for remoting the display
while the OS is running, but does not handle either
pre-OS or exception (post-OS) conditions. THINC
could be used together with modifications to the sys-
tem’s BIOS to build a pure software IP Only Server.
The main advantage of such an approach is that no
hardware modifications are required. Its main dis-
advantage is the necessity to combine at least two
separate software solutions — one for the BIOS, and
another for the OS. For instance, BIOS updates are
complex and costly, and affect only the pre-OS en-
vironment. Remoting post-OS exception states re-
quires the BIOS to remain available and functional
even after the OS has come up. This is not the case,
e.g., for Linux on x86. It should be noted, however,
that Linux does include post-OS remoting facilities
(e.g., netconsole and netdump).

The main reason we prefer the hardware solution
is the enhanced compatibility and robustness. By us-
ing specialized hardware for remoting I/O peripherals

the system can be remoted at all times — from power
up to power down, or even after a system crash. The
OS and the applications are not aware in any way
that the I/O is remoted, and since the I/O remot-
ing hardware includes its own processor and network
interface, controlling the system requires neither the
main CPU nor the main NIC to be operational. Ad-
ditionally, the possibility of emulating all I/O over
the network opens interesting opportunities for sys-
tem management scenarios, simplifies hardware vir-
tualization (cf. also Section 6 below), and facilitates
automatic deployment.

Another advantage of the hardware solution is
that some I/O operations are emulated locally, un-
like USB/IP[16] that requires dispatching of all I/O
operations to the remote machine. Handling events
such as a VGA framebuffer read without requiring
a network round trip alleviates the need for a high
speed/low latency network connection and improves
the interactive user experience. Even a loaded Fast
Ethernet link does not affect the system’s perfor-
mance.

Hardware vendors are investing significant efforts
in the integration of various I/O controllers into sin-
gle hardware components, sometimes into the south-
bridge. While these developments address some of
the issues mentioned above, e.g., board real estate
savings, they do not integrate external I/O channels
or protocols, nor do they provide opportunities for
multiplexing I/O as the IP Only Server does.

IBM’s JS20 PowerPC-based blades do not contain
any video/mouse/keyboard components. The main
I/O channel into those machines in the pre-OS and
post-OS states is Serial-over-LAN that tunnels text-
only serial console messages over UDP datagrams.
Once the OS is up, the usual methods of accessing it
apply (e.g., SSH and VNC).

KVM over IP products (e.g., Cyclades AlterPath
KVM/net) provide an easy way to remote all oper-
ating environments. However, such products carry
a non-negligible price tag. Servers using KVM over
IP still require a full complement of hardware com-
ponents — a graphics card, keyboard and mouse
controllers — that remain unused, thus wasting the
board real estate and power.

Several months after we conducted this research
a news report was published 2 about Sun developing
an “integrated lights-out” management processor and
a full keyboard-video-mouse-storage (KVMS) emula-
tion for their x86 servers. We do not have any fur-
ther information on the architecture, although super-
ficially it appears to be similar to our IP Only Server.

3 Design

The design of the IP Only Server was developed ac-
cording to the following guidelines:

1. The IP Only Server must preserve software back-
ward compatibility. It must be able to run un-
modified host software, including OS and BIOS.

2. The IP Only Server must provide remote access
to the host from the moment it has been pow-
ered on until the moment it has been powered off.
This includes the BIOS stage, the operating sys-
tem’s lifetime, and even post-operating system
environments such as the “blue screen of death”
or a Linux kernel oops. However, during normal
operation the OS may provide a more effective
remote console or terminal support through X-
Windows, Windows Terminal Server, or another
similar solution.

3. The server should have the minimal amount of
local state required for disconnected operation.
The hard drives should be remoted over IP (in-
cluding boot), and the RTC (Real Time Clock)
should be initialized by a remote device.

4. The IP Only Server must be able to work even
when no remote management station is con-
nected, or when one has been connected and
then disconnected. The IP Only Server must
also support arbitrarily many re-connections by
the remote management station. Obviously, the
remote storage that is necessary for boot and
normal operation of the server must be available

2h‘l:'t:p ://news.com.com/Bechtolsheims+machine+dreams/
2008--1010_3--5857470.html

even if the remote station is disconnected at any
given moment.

5. The IP Ounly Server must provide text (console)
support and graphical mode support. There is
no requirement to provide more than plain VGA
mode support — the IP Only Server is not aimed
at users who need accelerated graphics.

6. The remote management station should not
require a custom or proprietary client, e.g.,
the KVM-over-IP (Keyboard/Video/Mouse-
over-IP) protocol should be based on open
standards.

7. A single remote station should be able to control
multiple IP Only Servers concurrently.

8. Support for remoting desktop peripherals such
as USB connected devices, CD-ROM etc. should
also be provided over IP.

The IP Only Server can be based on any standard
architecture, for instance on Intel (and compatible)
x86-based servers. The CPU, memory, the north-
bridge, and the BIOS flash are not modified. The
server will include at least one network interface. The
following components, normally present in any mod-
ern server, will not be needed:

e video controller and related video memory
e hard drives or hard drive controller

e keyboard and mouse controllers

e real time clock backup battery

e southbridge

e serial port

e parallel port

e USB ports

The functionality of the above controllers can be
emulated on an ASIC (or FPGA) that presents the
legacy I/O interfaces to the host (via a PCI bus), and

remotes them over an IP based protocol to the remote
station. Such an ASIC (or FPGA) is substantially
smaller, cheaper and simpler than the sum of these
components. It leads to significant savings in board
layout complexity, power consumption, heat dissipa-
tion and ease of management, and allows the server
to run unmodified firmware and software. The choice
between an ASIC or an FPGA is a trade-off between
price and programmability: research prototypes are
likely to be based on FPGA, while subsequent mass
production may switch to ASICs. This scheme will
satisfy design guidelines 1 and 2 above.

The IP Only Server will not include any local disks.
Instead, it boots from a remote boot device, such as
an iSCSI disk via iBOOT or PXE. Alternatively, disk
access can be remoted like the other legacy I/O pro-
tocols. A mixture of the two approaches is possible in
principle: the emulation hardware can include an im-
plementation of a boot-capable iSCSI initiator. This
will satisfy design guideline 3 above.

For the prototype described below we de-
signed an FPGA that presented itself as a
VGA /keyboard/mouse device. The server’s BIOS
and OS accessed the FPGA using their standard
drivers. The FPGA received all hosts accesses as PCI
transactions, and handled them appropriately.

We experimented with two different approaches to
remoting these PCI transactions to a remote sta-
tion. The first approach, the Internet PCI Remote
Protocol (iPRP) was essentially “PCI over IP”: PCI
transactions were wrapped by IP packets, sent to
the remote station, and processed there. Responses
were sent back as IP packets as well, and the em-
ulation FPGA passed them to the PCI bus of the
host. Clearly iPRP does not satisfy design guideline
4 above, and was used mainly as an intermediate de-
bugging tool, in particular to get over the hurdle of
finding all the places in which BIOS and OS touch
local devices. It is described in Section 4.4.1.

The second approach, using the RFB protocol, is
described in Section 4.4.2. In this scheme the emu-
lation FPGA translates keyboard, mouse, and video
PCI transactions into the high level RFB protocol
that allows using any VNC client (and any operating
system) on the remote station. Communication with

a remote station is only needed to present the video
display to the user, and to accept the user’s keyboard
and mouse input. Otherwise the PCI transactions are
processed locally by the FPGA.

The difference between the two schemes is high-
lighted by the diagram in Figure 2: with iPRP the
FPGA is essentially transparent, and the emulation
is done in the remote station; with RFB the remote
station exists for the user interface only, the emula-
tion is done in the FPGA, and some PCI transactions
(reads) are handled locally inside the FPGA.

Remote
Server FPGA Network station
) "' === "‘
; ' ' Emulation,
iPRP PCI ' '
' ' 1/0, Ul
) | . '
{ ' { A
‘\
RFB PCI Emulation 1/0, Ul
—t<’
. 7 . 7

Figure 2: Comparison of iPRP and RFB implemen-
tations of an IP Only Server.

Thus, in the RFB design, if the user is not inter-
ested in interacting with the server the latter can op-
erate without a remote station. On the other hand,
a user can open VNC sessions against multiple IP
Only Servers simultaneously. Clearly, this approach
supports design guidelines 4 through 7.

Design guideline 8 — support for USB over IP and
other remote peripheral devices (CD-ROM, floppy,
etc., most of which can be provided over USB) from
power-on to power-off — was not implemented in our
prototype, and is left for future work (cf. Section 6).

4 IP Only Server Implementa-
tion
For the prototype we used an FPGA evaluation

board, Dini-group DN3000k10s with a Metanetworks
Inc. MP1000TX Ethernet prototyping plug-in board.

The FPGA is a Xilinx Virtex-II x2v8000 FPGA. The
design ran at 50 MHz, used 378 KB of local memory,
and 8400 logic slices (equivalent to about 1M gates).

The FPGA firmware was divided into four main
modules: a BIOS expansion ROM, a PCI Interface
Module, a Network Interface Module, and a Transac-
tion Processing Module. We cover these components
in more detail below.

4.1 Expansion ROM

We implemented a BIOS expansion ROM on the
evaluation board. The expansion ROM con-
tained the VGA BIOS initialization routines that
are invoked by the main system BIOS during
boot. The expansion ROM was based on the
GPL VGA BIOS included in the Bochs x86 emula-
tor (http://bochs.sourceforge.net) with insignif-
icant modifications.

4.2 PCI Interface

This module is responsible for the correct behavior
and presentation of the device on the PCI bus. The
module answers to the following addresses on the bus:

e I/0O addresses 0x60, and 0x64 — keyboard con-
troller

e I/O address ranges 0x3B0-0x3BB, 0x3C0-
0x3DF — VGA controller

e Memory address range 0xA0000-0xBFFFF —
VGA memory

The PCI configuration space of the device is set up
in such a way that the device identifies itself as a PCI-
based VGA adapter. Upon discovery of the VGA
add-in card, standard BIOSes consider it as the de-
fault VGA adapter, and configure the chipset in such
a way that all VGA I/O and memory transactions
are routed to the device. Having keyboard controller
I/O addresses routed to the device is trickier, and
requires additional northbridge and I/O bridge con-
figuration done by the BIOS. The transactions are

captured by the device and placed into a Transaction
FIFO queue which serves as the interface to Trans-
action Processing module (cf. Section 4.4 below).

4.3 Network Interface

The network interface consists of a low-level inter-
face to the board’s Ethernet adapter and a DMA en-
gine. The DMA engine transfers the packets built by
the Transaction Processing Module and the TCP /IP
stack from the FPGA memory to the Ethernet de-
vice.

In general, an TP Only Server does not need a sep-
arate management Ethernet port. The overhead of
the management traffic is small, and it is unlikely to
interfere with the rest of the server’s traffic. It may
be beneficial to use a separate management interface
for other reasons — for instance, if the main inter-
face is down or saturated (e.g., due to heavy load or
to a denial of service attack). The iSCSI storage in-
terface may also be separate, for performance and/or
security reasons.

In our prototype implementation we used separate
interfaces for iSCSI and for KVM emulation. The
former was handled by the server’s regular ethernet
interface, and the latter was handled by the FPGA’s
Ethernet interface.

4.4 Transaction Processing

The Transaction Processing firmware consists of a
single loop that gets the PCI transactions out of the
Transaction FIFO queue (cf. Section 4.2 above), and
either handles them locally or wraps them into the
appropriate network protocol (iPRP or RFB — see
Sections 4.4.1 and 4.4.2 below). The protocol mes-
sages are passed to the Network Interface Module
that sends them over Ethernet to the remote station.

To improve network utilization subsequent write
transactions are coalesced into bigger network pack-
ets, while read transactions are either handled locally
(in the RFB version, cf. Section 4.4.2) or sent to the
network immediately (in the iPRP implementation,
cf. Section 4.4.1), to avoid bus parking and host CPU

stalling for a long time. Traffic received from the re-
mote machine may include read response transactions
and interrupt requests. Read response transactions
are forwarded by the Transaction Processing Module
to the PCI Interface Module that releases the pend-
ing bus read request transactions.

Interrupt requests are generated by the remote ma-
chine in reaction to keyboard events. Upon receipt
of an interrupt request our prototype adapter is ex-
pected to cause IRQ1 interrupt which is associated
with the keyboard controller. An add-in card, being
a PCI device, cannot generate IRQ1 interrupt. To
overcome this obstacle we used the chipset’s Open
HCI USB legacy keyboard emulation feature to em-
ulate TRQ1 interrupt. Upon arrival of an interrupt
request the Transaction Processing Module issues a
PCI write transaction to the PCI mapped chipset
Open HCI USB register that is responsible for legacy
keyboard emulation. The chipset raises an TRQ1 in-
terrupt as a result. When interrupted, the host CPU
accesses the 0x60 I/O port of the keyboard controller
to figure out the reason for the interrupt. The ac-
cess is captured by the FPGA and is delivered to the
emulated keyboard controller, which responds with
the 0x60 content. The FPGA resets the interrupt
by writing to the appropriate Open HCI USB legacy
keyboard emulation register of the chipset.

iPRP — Internet PCI Remote Proto-
col

4.4.1

The iPRP protocol is a very simple UDP protocol
used to emulate memory and I/O space PCI trans-
actions over an IP network. The PCI configuration
space accesses are also defined for completeness. The
protocol was designed for ease of implementation: it
is not very efficient in terms of coding, and contains
redundant information. It is in no way a PCI imple-
mentation, and in its current state can not be used
for a PCI bridge: the iPRP client side is to be im-
plemented on a PCI target (and not a PCI bridge),
although it could potentially be used as a bridge, with
some modifications.

The protocol uses UDP for transport, and includes
only a simple recovery mechanism. This allows for a

quick and dirty implementation, with no need for op-
erating systems or complicated protocol stacks. The
FPGA firmware is particularly simple: the FPGA
does essentially nothing but ships the PCI transac-
tion data between the PCI and network interfaces
and back. The protocol has been designed and im-
plemented primarily to ease the initial debugging
and bring-up of the IP Only server hardware and
firmware, allowing to concentrate on the idiosyn-
crasies of the PC low level architecture (boot, BIOS,
VGA interface, PCI usage).

The protocol relies on UDP checksum for data cor-
rectness, and uses a go-back-N scheme [14] with se-
quence numbers for delivery correctness.

In the following description a command is defined
as a single I/O command such as memory read, I/0
space write, or acknowledgment. Multiple commands
may be packed into a single Ethernet frame. Accord-
ingly, a message is one or more commands, mapped
into a single Ethernet PDU. In a multi-command
message only the last command may be a read type
command, since the PCI-based system can not pro-
ceed until the read data arrives back. Each com-
mands has an attached sequence number (SN).

Each message is a single UDP datagram, which
may include one or more commands. For simplicity
the protocol acts in a dual bi-directional fashion, i.e.,
an ACK can not be attached to a message in the other
direction — it must be sent as a separate message.
A message is acknowledged by a single ACK, even if
there are multiple commands in the message — the
ACK message acknowledges all commands with se-
quence numbers less the the ACK’s SN. The protocol
uses ‘go-back-N’ acknowledgment, i.e., there may be
up to N unacknowledged commands in flight. ACKs
for read commands contain the returned data.

A read request will trigger sending a message —
like with most I/O devices strict ordering must be
kept, and the CPU must wait for the read data be-
fore continuing. In order to make sure that the dis-
play screen is updated at all times a timeout may
also trigger a message send. In case the maximum
message size is reached the message is also sent.

Since this protocol is an extension to a local PCI

bus it is expected that the host will crash (or just
lock up) due of a broken connection. No provisions
were made to keep the host alive in case of a network
problem or a remote side failure. This was enough for
our purposes: iPRP was essentially a debugging tool.
In practice the protocol exhibited rather remarkable
robustness given its simplicity: we successfully ran
(not heavily loaded) servers for hours and even days
on end.

The remote station software was based on the
Bochs open source x86 emulator. We extracted the
relevant PCI device emulation code, for instance the
code for a VGA and keyboard/mouse controllers, and
fed it the PCI transactions received as iPRP pay-
load as input. For host PCI write transactions the
VGA and keyboard/mouse state machines are up-
dated, and the Bochs VGA screen is displayed to the
user. For host PCI reads, a return packet with the
response is sent back to the FPGA.

As a particular example of using iPRP for debug-
ging it is instructive to mention that it is trivial to ex-
tract and log the actual PCI transactions performed
by the server on the remote station. The transac-
tion log can then be used to drive a standalone or
emulation version of the RFB-based FPGA firmware
(see Section 4.4.2) to verify its correctness and debug
the possible problems. We used this technique on a
number of occasions.

4.4.2 RFB — Remote Frame Buffer

To overcome the shortcomings of the iPRP version,
especially the fact that the server cannot operate
without the remote station, we have to emulate the
device controllers in the FPGA firmware rather than
in the remote station software.

The Bochs code again proved immensely useful:
we took Bochs implementations of VGA, keyboard,
and mouse controllers — the same we used in the
iPRP remote client — and based our firmware on
them. In particular, we ported the relevant Bochs
C++ code to C, eliminated the use of any libraries
and system facilities unavailable on our FPGA, and
invested significant effort into reducing the footprint
and improve the efficiency of the resulting code.

To transfer the keyboard, mouse, and video events
between the FPGA and the remote station we chose
the Remote Framebuffer (RFB) protocol [6]. To this
end, we implemented a VNC server [7] in the FPGA
firmware. The choice of RFB was motivated by two
important considerations. First, RFB is a well known
and widely used open protocol, and this eliminates
the need to implement remote station software: any
VNC client on any platform will do the job. Secondly,
the Bochs emulator includes an implementation of a
VNC server as one of the choices for interface, and
we based our implementation on that, albeit with
significant modifications.

In particular, our FPGA platform was limited in
both space (350 KB of memory total) and speed
(50 MHz CPU, no memory caches). Accordingly, we
started with a straightforward hardware VGA con-
troller emulation in software, based on the Bochs
VGA controller, and optimized it both in space and
time to fit our FPGA environment. For instance, by
removing support for VGA modes that were not used
by either Linux or Windows, we managed to reduce
the VGA framebuffer to 128 KB.

Since the RFB protocol is TCP/IP based, we also
added a TCP/IP stack to the FPGA firmware. Due
to the limited memory and processing resources of
the FPGA we had to implement a custom embed-
ded TCP/IP stack. The stack is minimalistic and is
specifically designed to fit our firmware environment,
but it implements a complete TCP state machine and
is streamlined: it has a very low memory footprint
and avoids copying of data as much as possible.

Like the iPRP version, the RFB-based FPGA
firmware is based on a single looping execution
thread: there is no operating environment, no context
switching, no memory management. The firmware
receives the host’s PCI transactions from the PCI in-
terface. Unlike the iPRP version, it processes some
transactions locally. Host PCI reads are answered im-
mediately. Host PCI writes update the local device
state machines. Every so often, the frame buffer up-
dates are sent to the remote station to be displayed.
The decision of when to update the remote station is
crucial for establishing reasonable performance with
our constrained FPGA; we developed heuristics that

10

performed fairly well (cf. Section 5).

5 Performance Evaluation and
Analysis

The most important performance metric for evalu-
ating the IP Only Server is user experience, which is
notoriously hard to quantify. In order to approximate
the user’s experience, we performed several measure-
ments.

All tests were performed on two identical IBM
x235 servers including the PCI-based FPGA evalu-
ation board with a 100 Mb/s Ethernet network in-
terface. The remote station software ran on two R40
Thinkpad laptops with a 1.4 GHz Pentium M CPU
and 512 MB RAM each. The servers were booting
either Windows 2003 Server or Red Hat Enterprise
Server Linux 3.0. The iSCSI connection was pro-
vided through a separate network interface, and the
FPGA was not involved in communication with the
iSCSI target at all. The performance of iSCSI storage
has been studied independently, and we were primar-
ily interested in the performance of our FPGA-based
KVM emulation. Therefore, for the purpose of these
measurements we used local disks, to achieve a clean
experimental environment.

First, we measured the wall time of a server boot
for each of the three scenarios: a server with native
legacy I/O peripherals, an IP Only Server with an
FPGA using iPRP, and an IP Only Server with an
FPGA using RFB. In each scenario, we measured
the time from power on until a Linux console lo-
gin prompt appeared, and from power on until a
Windows 2003 Server “Welcome to Windows” dialog
showed up.

As depicted in Figure 3, an unmodified server
booted to a Linux login prompt in 238 seconds, while
a server using the iPRP version of the FPGA booted
in 343 seconds, and a server using the RFB version
of the FPGA booted in 330 seconds. This is a 38%
slowdown (for the RFB version), which is acceptable
for the very first, unoptimized prototype.

As depicted in Figure 4, an unmodified server

booted to the Windows 2003 Server “Welcome to
Windows” dialog in 186 seconds, while the server
with the iPRP FPGA booted in 299 seconds, and
the server with the RFB FPGA booted in 289 sec-
onds. This is slightly worse, a 55% slowdown, but
again, it is acceptable.

400

300+

Unmodified 1 iPRP RFB

Figure 3: Linux boot time in seconds.

constrained 50 MHz FPGA CPU. This leads us to
conclude that there exists a trade off between perfor-
mance and cost here: by throwing a stronger (more
expensive) FPGA or ASIC at the emulation, the per-
formance can be easily improved.

While the user is mostly concerned with how
quickly the IP Only Server responds, the system ad-
ministrator would be rightly concerned about the net-
work utilization of such a server. Unlike legacy I/0O
devices, which are a local resource, the IP Only Server
uses the shared network infrastructure.

We measured the network utilization using the
RFB version of the FPGA in the the same Linux
and Windows boot scenarios described above. We
used the Ethereal (http://wuw.ethereal.com) net-
work sniffer to capture all network traffic and the
tcptrace (http://www.tcptrace.com) network ana-
lyzer to process the captured data. Table 2 shows the
number of actual data bytes exchanged, the number
of TCP packets and the throughput for both Linux

Figure 4: Windows boot time in seconds.

[Server [Native] iPRP | RFB |
Linux 238 [343 (144%) [330 (138%)
Windows || 186 | 299 (160%) | 289 (155%)

Table 1: Linux and Windows boot time in seconds.

It should be noted that the RFB and iPRP versions
performed nearly the same. While iPRP sends much
more traffic over the network than RFB the bulk of
the emulation in the iPRP version is performed by
the 1.4 GHz Pentium M CPU of the remote station,
whereas in the RFB version it is done by the severely

11

Lo and Windows boot sequences. The throughput is of
the order of 1 Mb/s — not a significant load for a
;s modern local area network, and even acceptable for
1 a wide area connection.
- [Booted OS || Unique Bytes | Packets | Throughput ||
I Linux 52324982 189920 | 131488 Bps
I Windows 47457592 155542 | 164384 Bps
0 Unmodified | iPRP T RFB !

Table 2: Network Utilization.

Figure 5 shows the throughput in bytes/sec of the
VGA traffic from the FPGA to the remote station,
as distributed throughout the boot sequence. Most
of the traffic occurs when the BIOS draws the initial
eServer logos on the screen and when grub (the Linux
bootloader) draws its graphical menus. Note that
grub can be trivially modified to use a text based
menu, which will significantly cut down on the boot
time network utilization.

An additional observation is related to an impor-
tant class of systems that may be built on the basis
of TP Only Servers— the so-called “hosted clients”.
Hosted clients are interesting for a number of rea-
sons: diskless user machines may be required for se-

thruput (bytesisec)

1

I eServer logo display

grub graphical menus display

Ltonooon ‘I "'[
I ‘
? 5. i e
- e t = i Pompop—
n2:42:00 02:44:00 02:46:00 02:45:00
time

Figure 5: Linux boot network throughput.

curity, particular applications may require a machine
with more computing power or memory on a tempo-
rary basis, several virtual clients can be consolidated
on one powerful server, etc. There are vendors that
provide hosted client solutions by capturing the low
level video access stream, processing it (mainly ap-
plying different compression schemes), and shipping
to a remote display.

We ran some experiments to assess whether our low
level display remoting scheme could be used to sup-
port a hosted client solution that deals with graphi-
cally intensive applications, and found, similarly to
Baratto et al. [21], that remoting the higher level
graphics access APIs was more effective than remot-
ing the low level hardware graphic access. The reason
is that important information accessible to graphics
device drivers is not normally available to the graph-
ics hardware. This indicates that there is even less
reason to keep local graphics adapters on servers sup-
porting hosted clients. For such servers our emulation
scheme can be relegated to supporting the pre-OS en-
vironment and exception handling (possibly support-
ing more than one virtual console), i.e., functions that
are not graphically intensive.

6 Future Work

Future IP Only Server work includes supporting more
protocols, such as USB, serial, and parallel. USB sup-
port during pre-OS and post-OS stages is particularly

12

desirable, as it would help provide support a diverse
set of devices, including floppy and CD-ROM drives.

The IP Only Server prototype runs on x86 only at
the moment, although there’s nothing inherently x86-
centric in its design. A port to other architectures
such as PowerPC [5] will validate the design.

The IP Only Server provides interesting opportu-
nities when combined with para-virtualization tech-
nologies such as Xen [12] or full virtualization tech-
nologies such as VMWare [13]. It can be used to
give unmodified guest operating systems physical de-
vice access, while providing isolation between differ-
ent guests and offering each guest its own view of the
I/0O hardware.

The IP Only Server could also be used to provide a
transparent virtualization layer on top of physical de-
vices, by providing several sets of device control reg-
isters, associating each register set with a given par-
tition. Additionally, it could provide several servers
with access to the same remote physical device. The
host OS on each server would access what appears to
it as a physical device, but is actually the IP Only
hardware. The IP Only hardware would remote the
device accesses to a remote station, which would mul-
tiplex the device usage between several servers.

Remoting all I/O— including privileged and confi-
dential I/O— over the untrusted medium of an IP
network, opens up all sorts of interesting security
questions. Which host is allowed access to which re-
mote stations, and vice versa? How can we protect
against man in the middle attacks, spoofing and other

network attacks? Disk data that may contain sensi-
tive business information must be protected. The
screen contents must be protected, since confiden-
tial information may be displayed. Keystrokes must
be protected, since they may convey passwords and
other security-sensitive data. It should be noted
that today’s remote access protocols must deal with
these issues as well. However, today one can choose
whether to use VNC or the secure local console; with
IP Only, there is no alternative. Widespread IP Only
Server use will require solving these problems.

7 Conclusion

We present a novel approach to legacy I/O support
in servers. We designed an IP Only Server, utilizing
the IP network as the single I/O bus. All user in-
teraction throughout the lifetime of the server, i.e.,
during boot, BIOS, operating system initialization,
normal operation, and post-OS (e.g., “blue screen of
death”) stages are done via the remote station. No
changes were needed for the software running on the
host — in particular, neither the BIOS nor the oper-
ating systems were modified. While diskless servers
have been attempted before, and headless servers ex-
ist as well (e.g., IBM’s JS20 blades), as far as we know
this is the first attempt to create a diskless, headless
server that runs industry standard software (BIOS,
Windows or Linux OS) without any modifications.

We assumed that in an industrial setting BIOS is
tightly coupled with the Reliability and Availability
Services, and that attempting sweeping changes in
BIOS would affect both testing and management. At
least in the IBM production setting this has proved
to be true. The emulation approach enables a grad-
ual introduction of servers that do not carry legacy
devices yet enable box testing and management to
stay unchanged and or to change gradually. We as-
sumed also that there will be a wider than expected
dependencies on legacy devices (keyboard, mouse,
timer), especially in operating environment with a
strong desktop legacy. This also proved to be true,
e.g., Windows boot touches keyboard and video hard-
ware more than one would expect. The emulation

13

approach that we took turned out a good way to sup-
port Windows without requiring difficult and expen-
sive (and not necessarily feasible) changes in the OS.
One of the major reasons for the popularity of the
x86 architecture is that it’s affordable, and one rea-
son for the low cost of x86 systems is ready availabil-
ity of software built for large numbers of desktops.
The emulation approach is instrumental in keeping
this argument valid.

Our research prototype implementation of the IP
Only Server provides a user experience that is com-
parable to that of a regular server, with reasonable
latency and low network utilization.

The IP Only Server can provide significant savings
in hardware and software costs, power consumption,
heat dissipation and ease of management. It elim-
inates some legacy aspects of the PC architecture,
replacing them with a single, simple, and modern
counterpart.

Acknowledgments

The authors would like to thank Kevin Lawton and
other Bochs developers for their excellent emulator
which made our work far less frustrating than it could
have been. The authors would also like to thank
Michael Rodeh and Alain Azagury for their interest
and support of this project.

References

[1] X3T9.3 Task Group of ANSI: Fibre Channel
Physical and Signaling Interface (FC-PH), Rev.
4.2, 1993

[2] K. Z. Meth, J. Satran, “Design of the iSCSI Pro-
tocol”, Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage
Systems and Technologies, pp. 116-122, 2003.

[3] W. M. Felter, T. W. Keller, M. D. Kistler, C. Le-
furgy, K. Rajamani, R. Rajamony, F. L. Rawson,
B. A. Smith, and E. van Hensbergen, “On the
Performance and Use of Dense Servers”, IBM

[4]

[5]

[6]

[7]

[9]

[10]

[11]

[12]

Journal of R & D, vol. 47, no. 5/6, pp. 671-688,
2003.

M. D. Kistler, E. van Hensbergen, and F. Raw-
son, “Console Over Ethernet”, Proceedings of
FREENIX Track, USENIX Annual Technical
Conference, pp. 125-136, 2003.

C. May, E. Silha, R. Simpson, H. Warren, “The
PowerPC Architecture: A Specification for a
New Family of RISC Processors”, Morgan Kauf-
mann, San Francisco, CA, 1994.

T. Richardson, “The RFB Protocol”, RealVNC
Ltd., Version 3.8, 2004.

T. Richardson, Q. Stafford-Fraser, K. R. Wood,
and A. Hopper, “Virtual Network Computing”,
IEEE Internet Computing, 2(1), 1998.

B. C. Cumberland, G. Carius, and A. Muir, “Mi-
crosoft Windows NT Server 4.0 Terminal Server
Edition: Technical Reference”, Microsoft Press,
Redmond, WA, 1999.

T. W. Mathers, S. P. Genoway, “Windows NT
Thin Client Solutions: Implementing Terminal
Server and Citrix Metaframe” , Macmillan Tech-
nical Publishing, Indianapolis, IN, 1998.

B. K. Schmidt, M. S. Lam, and J. D. Northcutt,
“The Interactive Performance of SLIM: A State-
less, Thin-Client Architecture”, Proceedings of
the 17th ASM Symposium on Operating Sys-
tems Principles (SOSP), v. 34, pp. 3247, Ki-
awah Island Resort, SC, 1999.

R. W. Scheifler, J. Gettys, “The X Window Sys-
tem”, ACM Transactions on Graphics, 592:79—
106, 1986.

B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, L. Pratt, A. Warfield, P. Barham, and
R. Neugebauer, “Xen and the Art of Virtual-
ization”, Proceedings of the 19th ASM Sympo-
sium on Operating Systems Principles (SOSP),
pp- 164-177, Bolton Landing, NY, 2003.

14

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Sugerman, G. Venkitachalam, B.-H. Lim,
“Virtualizing I/O Devices on VMware Worksta-
tion’s Hosted Virtual Machine Monitor”, Pro-
ceedings of General Track, USENIX Annual
Technical Conference, pp. 1-14, 2002.

D. Bertsekas, R. Gallager, “Data Networks”,
2nd ed., Simon & Schuster, Saddle River, NJ,
1991.

R. Minnich, J. Hendricks, and D. Webster, “The
Linux BIOS”, Proceedings of the 4th Annual
Linux Showcase and Conference, Atlanta, GA,
2000.

T. Hirofuchi, E. Kawai, K. Fujikawa, and
H. Sunahara. “USB/IP — A Peripheral Bus
Extension for Device Sharing over IP Net-
work”, USENIX Annual Technical Conference,
FREENIX Track, Anaheim, CA, 2005.

M. Wilkes, R. Needham, “The Cambridge Model
Distributed System”, ACM SIGOPS Operating
Systems Review, v. 24/1, pp. 21-29, 1980.

R. van Renesse, A. Tanenbaum, and G. Sharp,
“Functional Specialization in Distributed Oper-
ating Systems”, Proceedings of the 3rd ACM
SIGOPS European Workshop: Autonomy or in-
terdependence in distributed systems? Cam-
bridge, United Kingdom, pp. 1-4, 1988.

M. Hayter, D. McAuley, “The Desk-Area Net-
work”, ACM Operating System Review v. 25,
pp- 14-21, 1991.

H. Eberle, E. Oertli. “Switcherland: A QoS
Communication Architecture for Workstation
Clusters”, Proceedings of ACM ISCA 98,
Barcelona, Spain, 1998.

R. Baratto, L. Kim, J. Nieh, “THINC: a Virtual
Display Architecture for Thin-Client Comput-
ing”, Proceedings of the 20th ACM Symposium
on Operating systems, Brighton, United King-
dom, pp. 277-290, 2005.

