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Abstract
Direct device assignment, where a guest virtual ma-

chine directly interacts with an I/O device without host
intervention, is appealing, because it allows an unmodi-
fied (non-hypervisor-aware) guest to achieve near-native
performance. But device assignment for unmodified
guests suffers from two serious deficiencies: (1) it re-
quires pinning all of the guest’s pages, thereby disal-
lowing memory overcommitment, and (2) it exposes the
guest’s memory to buggy device drivers.

We solve these problems by designing, implementing,
and exposing an emulated IOMMU (vIOMMU) to the
unmodified guest. We employ two novel optimizations
to make vIOMMU perform well: (1) waiting a few mil-
liseconds before tearing down an IOMMU mapping in
the hope it will be immediately reused (“optimistic tear-
down”), and (2) running the vIOMMU on a sidecore, and
thereby enabling for the first time the use of a sidecore by
unmodified guests. Both optimizations are highly effec-
tive in isolation. The former allows bare-metal to achieve
100% of a 10Gbps line rate. The combination of the two
allows an unmodified guest to do the same.

1 Introduction

I/O activity is a dominant factor in the performance of
virtualized environments [29, 37], motivating direct de-
vice assignment whereby a guest virtual machine (VM)
sees a real device and interacts with it directly. As di-
rect access does away with the software intermediary that
other I/O virtualization approaches require, it can pro-
vide much better performance than the alternative I/O
virtualization approaches. This increased performance
comes at a cost of complicating virtualization use-cases
where the hypervisor interposes on guest I/O, such as
live migration [20, 50]. Nonetheless, the importance of
increased I/O performance cannot be overstated, as it
makes virtualization applicable to common I/O-intensive
workloads that would otherwise experience unacceptable
performance degradation [26, 28, 33, 45, 48].

1.1 Motivation
Despite its advantages, direct device assignment suffers
from at least three serious deficiencies that limit its ap-
plicability. First, it requires the entire memory of the un-

modified guest to be pinned to the host physical memory.
This is so because I/O devices typically access the mem-
ory by triggering DMA (direct memory access) trans-
actions, and those can potentially target any location of
the physical memory; importantly, unlike regular mem-
ory accesses, computer systems are technically unable to
gracefully tolerate DMA page misses, reacting to them
by either ignoring the problem, by restarting the offend-
ing domain, or by panicking. The hypervisor cannot tell
which pages are designated by the unmodified guest for
DMA transactions, and so, to avoid such unwarranted be-
havior, it must pin all the guest’s pages to physical mem-
ory. This necessity negates a primary reason for using
virtualization—server consolidation—because it hinders
the ability of the hypervisor to perform memory over-
commitment, whereas memory is the main limiting fac-
tor for server consolidation [16, 41, 47].

The second deficiency of direct device assignment is
that the unmodified guest is unable to utilize the IOMMU
(I/O memory management unit) so as to protect itself
against bugs in the corresponding drivers. It is well-
known that device drivers constitute the dominant source
of OS (operating system) bugs [5, 17, 25, 38, 43]. No-
tably, the devices’ ability to perform DMA to arbitrary
physical memory locations is a main reason why such
bugs are detrimental. IOMMUs were introduced by all
major chip manufacturers to solve exactly this problem.
They allow the OS to restrict DMA transactions to spe-
cific memory locations by having devices work with IO-
VAs (I/O virtual addresses) instead of physical addresses,
such that every IOVA is validated by the IOMMU hard-
ware circuitry upon each DMA transaction and is then
redirected to a physical address according to the IOMMU
mappings. The hypervisor cannot allow guests to pro-
gram the IOMMU directly (otherwise every guest would
be able to access the entire physical memory), and so
all the related work that provided ways for guests to en-
joy the IOMMU functionality [12, 13, 25, 35, 44, 49] in-
volved paravirtualization. Namely, the guest’s OS was
modified to explicitly inform the hypervisor regarding
the DMA mappings it requires. Clearly, such an ap-
proach is inapplicable to unmodified (fully virtualized)
guests.

A third deficiency of direct device assignment is that,
in general, it prevents the unmodified guest from taking
advantage of the IOMMU remapping capabilities, which



are useful in contexts other than just defending against
faulty device drivers. One such context is legacy devices
that do not support memory addresses wider than 32bit,
an issue that can be easily resolved by programming the
IOMMU to map the relevant 32bit-addresses to higher
memory locations [18]. Another such context is “nested
virtualization”, which allows one hypervisor to run other
hypervisors as guests [11] and, hence, mandates granting
a nested hypervisor the ability to program the IOMMU
to protect its guests from one another (when those utilize
directly-assigned devices).

1.2 Contributions and Preview of Results
IOMMU Emulation The root cause of all of the above
limitations is the fact that current hypervisors do not pro-
vide unmodified guests with an emulated IOMMU. Our
initial contribution is therefore to implement and evalu-
ate such an emulation, for the first time. We do so within
KVM on Intel x86, following the proposal made by In-
tel [1]. We denote the emulation layer “vIOMMU”. And
we note in passing that we are aware of a similar effort
that is currently being done for AMD processors [31].

By emulating the IOMMU, our patched hypervi-
sor intercepts, monitors, and acts upon DMA remap-
ping operations. Knowing which of the unmodified
guest’s memory pages serve as DMA targets allows it
to: (1) pin/unpin the corresponding host physical pages,
and only these pages, thereby enabling memory over-
commitment; (2) program the physical IOMMU to en-
able device access to the said physical pages, and only
to these pages, thereby enabling the guest to protect its
memory image against faulty drivers; and (3) redirect
DMA transactions through the physical IOMMU accord-
ing the unmodified guest’s wishes, thereby retrieving the
indirection level needed to support legacy 32bit devices,
certain user-mode DMA usage models, and nested virtu-
alization. (See Section 2 for details.)

Utilizing the IOMMU without relaxing the protection
it offers is costly, even for a bare metal (unvirtualized)
OS. Our experiments using Netperf [19] show that bare
metal Linux 2.6.35 achieves only 43% of the line-rate
of a 10Gbps NIC when the IOMMU is used with strict
protection; the corresponding unmodified guest achieves
less than one fourth of that with the vIOMMU.

Optimistic Teardown The default mode of Linux,
however, relaxes IOMMU protection. It does so by
batching the invalidation of stale IOTLB entries and by
collectively purging them from the IOTLB every 10ms
(IOTLB is the I/O translation look-aside buffer within
the IOMMU). The protection is relaxed, because, dur-
ing this short interval, a faulty device might success-
fully perform a DMA transaction through a stale entry.
Nonetheless, for bare metal, the resulting improvement

is dramatic, transforming the aforesaid 43% throughput
to 91% and arguably justifying the risk. Alas, the corre-
sponding unmodified guest does not experience such an
improvement, as its throughput remains more or less the
same when the protection is relaxed.

To improve the performance of the vIOMMU, our sec-
ond contribution is investigating a set of optimizations
that exercise the protection/performance tradeoff in var-
ious ways (see Section 3 for details). We find that the
“optimistic teardown” optimization is the most effective.

While the default mode of Linux removes stale IOTLB
entries en masse at 10ms intervals, it nevertheless tears
down individual invalidated IOVA translations with no
delay, immediately removing them from the IOMMU
page table. The rationale of optimistic teardown rests
on the following observation. If a stale translation exists
for a short while in the IOTLB anyway, we might as well
keep it alive (for the same period of time) within the OS
mapping data structure, optimistically expecting that it
will get reused (remapped) during that short time inter-
val. As significant temporal reuse of IOVA mappings has
been reported [3, 44], one can be hopeful that the newly
proposed optimization would work. Importantly, for
each reused translation, optimistic teardown would avoid
the overhead of (1) tearing the translation down from the
IOMMU page table, (2) invalidating it in the IOTLB,
(3) immediately reconstructing it, and (4) reinserting it
back to the IOTLB; all of which are costly operations, as
each IOTLB modification involves updating uncacheable
memory and teardown/reconstruction involves nontrivial
logic and several memory accesses.

Optimistic teardown is remarkably successful, push-
ing the throughput of bare metal from 91% to 100%
(and reducing its CPU consumption from 100% to 60%).
The improvement is more pronounced for an unmodified
guest with vIOMMU: from 11% throughput to 82%.

Sidecore Emulation To further improve the per-
formance of the unmodified guest, we implement the
vIOMMU functionality on an auxiliary sidecore. Tradi-
tional “samecore” emulation of hardware devices (where
hypervisor invocations occur on the guest’s core) has
been extensively studied in the literature [6, 10, 21, 37].
Likewise, offloading of computation to a sidecore for
speeding up I/O in a paravirtualized system has been ex-
plored as well [15, 23, 27]. But in this paper, for the
first time, we present “sidecore emulation”, which com-
bines the best of both approaches. Specifically, sidecore
emulation maintains the exact same hardware interface
between the guest and the sidecore as exists in a non-
virtualized setting between a bare metal OS and the real
hardware device. Consequently, sidecore emulation is
able to offload the computation while requiring no guest
modifications. (See details in Section 4.)

By running the vIOMMU on a sidecore, we triple the
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setting strict relaxed optimistic
(default) teardown

samecore 10% 11% 82%
sidecore 30% 49% 100%

bare metal 43% 91% 100%

Table 1: Summary of preview of results (percent of line-rate
throughput on 10GbE).

throughput of the strict unmodified guest, quintuple its
throughput if its protection is relaxed, and achieve 100%
of the line-rate if employing optimistic teardown. The
results mentioned so far are summarized in Table 1.

Roadmap We describe: our “samecore” vIOMMU
design (§2); the set of optimizations we explore and
the associated performance/protection tradeoffs (§3); our
“sidecore” vIOMMU design (§4); how to reason about
risk and protection (§5); evaluation of the performance of
our proposals using micro and macro benchmarks (§6);
the related work (§7); and our conclusions (§8).

2 Samecore IOMMU Emulation

I/O device emulation for virtualized guests is usually im-
plemented by trapping guest accesses to device registers
and emulating the appropriate behavior [2, 10, 37]. Cor-
respondingly, in this section, we present the rudiments
of emulating an IOMMU. We choose to emulate Intel’s
VT-d IOMMU [18], as it is commonly available and as
most x86 OSes/hypervisors have drivers for it. Con-
veniently, Intel’s VT-d specification [18] proposes how
to emulate an IOMMU. We largely follow their sugges-
tions.

The emulated guest BIOS uses its ACPI (Advanced
Configuration and Power Interface) tables to report to
the guest that the (virtual) hardware includes Intel’s
IOMMU. Recognizing that the hardware supports an
IOMMU, the guest will ensure that any DMA buffer in
use will first be mapped in the IOMMU for DMA [12].
The emulated IOMMU registers reside in memory pages
that the hypervisor marks as “not present”, causing any
guest access to them to trap to the hypervisor. The hy-
pervisor monitors the emulated registers and configures
the platform’s physical IOMMU accordingly. The hyper-
visor further monitors changes in related data structures
such as the IOMMU page tables in guest memory.

Figure 1 illustrates the flow of a single DMA trans-
action in an emulated environment: a guest I/O device
calls the IOMMU mapping layer when it wishes to map
an I/O buffer (1); the layer accordingly allocates an
IOVA region and, within the emulated IOMMU, maps
the corresponding page table entries (PTEs) to point to
the GPA (guest physical address) given by the I/O de-
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Figure 1: IOMMU emulation architecture (samecore).

vice driver (2); the layer performs an explicit mapping
invalidation of these PTEs (3), thereby triggering a write
access to a certain IOMMU register, which traps to the
hypervisor; the hypervisor then updates the status of the
emulated IOMMU registers (4), reads the IOVA-to-GPA
mapping from the updated emulated IOMMU PTEs (5),
pins the relevant page to the host physical memory (not
shown), and generates physical IOMMU PTEs to per-
form IOVA-to-HPA (host physical address) mapping (6);
when the physical hardware requires it, the hypervisor
also performs physical IOTLB invalidation (7); the guest
is then resumed, and the I/O device driver initiates the
DMA transaction, delivering the IOVA as the destina-
tion address to the device (8); the device performs mem-
ory access to the IOVA (9), which is appropriately redi-
rected by the physical IOMMU (10-11); the guest OS
can then unmap the IOVA, triggering a flow similar to
the mapping flow except that the hypervisor unmaps the
I/O buffer and unpins its page-frames.

3 Optimizing IOMMU Mapping Strategies

Operating systems can employ multiple mapping strate-
gies when establishing and tearing down IOMMU map-
pings. Different mapping strategies tradeoff performance
vs. memory consumption vs. protection [13, 44, 49].
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Taking Linux as an example, the default mapping strat-
egy of the Intel VT-d IOMMU driver is to defer and
batch IOTLB invalidations, thereby improving perfor-
mance at the expense of reduced protection from er-
rant DMAs. Batching IOTLB invalidations helps perfor-
mance because IOTLB invalidations are expensive. Un-
like an MMU TLB, which resides on a CPU core, an
IOMMU and its IOTLB usually reside away from the
CPU on the PCIe bus.

An alternative mapping strategy is the strict mapping
strategy. In the strict strategy Linux’s IOMMU mapping
layer executes IOTLB invalidations as soon as device
drivers unmap their I/O buffers and waits for the inval-
idations to complete before continuing.

In this section we investigate the different tradeoffs
possible on bare metal and in a virtualized system em-
ploying an emulated IOMMU, where both the guest and
the host may employ different mapping strategies. We
discuss different IOMMU mapping performance opti-
mizations and their effect on system safety, starting with
the least dangerous strategy and ending with the best
performing—but also most dangerous—strategy.

3.1 Approximate Shared Mappings

Establishing a new mapping in the IOMMU translation
table and later tearing it down are inherently costly op-
erations. Shared mappings can alleviate some of the
costs [44]. We can reuse a mapping when another valid
mapping which points to the same physical page frame
already exists. Using the same mapping for two map-
ping requests saves the time required for the setup and
eventual teardown of a new mapping.

Willmann, Rixner and Cox propose a precise lookup
method for an existing mapping. Their approach relies
on an inverted data structure translating from physical
address to IOVA for all mapped pages [44]. This ap-
proach is problematic with modern IOMMUs that can
map all of physical memory and employ a separate I/O
virtual address space for each protection context (usu-
ally for each I/O device). Maintaining a direct-map data
structure to enable precise lookups is impractical for such
IOMMUs as it would require too much memory. We ex-
pect that using a smaller but more complex data struc-
ture, such as a red-black tree, will incur prohibitively
high overhead [32].

To avoid the overhead associated with complex data-
structures, we propose approximate shared mappings.
Instead of maintaining a precise inverted data struc-
ture, we perform reverse lookups using heuristics which
may fail to find a translation from physical address to
IOVA, even though there exists a mapping of that physi-
cal address. Our implementation of approximate shared
mappings used a software LRU cache, which requires

temporal locality in I/O buffers allocation in order to
perform well, in addition to spatial locality of the I/O
buffers. Many applications experience such temporal lo-
cality [44].

3.2 Asynchronous Invalidations
IOTLB invalidation is a lengthy process that on bare
metal takes over 40% of the overall unmapping process.
Asynchronous invalidation is an invalidation scheme tar-
geted at alleviating the cost of the lengthy IOTLB inval-
idation process by a minor relaxation of protection. The
default IOTLB invalidation scheme is synchronous: the
OS writes an invalidation request to the IOMMU’s inval-
idation register or (when the hardware supports it) to an
invalidation queue [18] and blocks the execution thread
until the IOMMU completes the invalidation. In asyn-
chronous invalidation, the OS does not wait for the in-
validation to complete before continuing. Doing so on
bare metal can save the few hundred cycles it takes the
IOMMU to write the invalidation completion message
back to memory after the invalidation is done.

Asynchronous invalidation enables multiple in-flight
invalidations when the hardware supports an invalidation
queue. However, to maintain correctness, asynchronous
invalidation must not permit an IOVA range which is be-
ing invalidated to be mapped again to a different phys-
ical address until the invalidation process is completed.
Unfortunately there is no practical way to ensure with
Linux that the page allocator will not reuse the physical
memory backing those IOVAs while the invalidation is
outstanding [49].

On bare metal asynchronous invalidation relaxes pro-
tection only slightly, since the IOMMU hardware per-
forms the invalidation process in silicon, taking only
hundreds of cycles to complete. In our experiments with
asynchronous invalidation, the invalidation queue never
held more than two pending invalidations at the same
time.

3.3 Deferred Invalidation
Deferring IOTLB invalidations, as currently imple-
mented by Linux, makes it possible to aggregate IOTLB
invalidations together and possibly coalesce multiple in-
validation requests so that they will be invalidated in a
single request, if the hardware supports it. Instead of the
OS invalidating each translation entry as it is torn down,
the OS collects multiple invalidations in a queue, which
it then flushes periodically. The current Linux implemen-
tation coalesces up to 250 invalidations for periods of no
longer than 10ms.

Holding back the invalidations makes the deferred
method less secure than the asynchronous method, where
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the “window of vulnerability” for an errant DMA is only
hundreds of cycles. But deferred invalidation reduces the
number of software/hardware interactions, since a whole
batch of invalidations is executed at once. This savings
is more pronounced when the hardware is emulated by
software, in which case deferred invalidation can save
multiple, expensive guest/host interactions.

3.4 Optimistic Teardown

Reusing IOVA translations is key to IOMMU perfor-
mance [3, 13, 44, 49]. Reusing a translation avoids
the overhead of (1) tearing a translation down from
the IOMMU page table, (2) invalidating it from the
IOTLB, (3) immediately reconstructing it in the page
table, and (4) reinserting it back to the IOTLB; all of
which are costly operations, as each IOTLB modifica-
tion involves updating uncacheable memory and tear-
down/reconstruction involves nontrivial logic and several
memory accesses.

Even when approximate shared mapping is used, the
opportunities to reuse IOVA translations are limited. The
default Linux deferred invalidation scheme removes stale
IOTLB entries en masse at 10ms intervals, but never-
theless tears down individual unmapped IOVA transla-
tions with no delay, immediately removing them from
the IOMMU page tables.

The rationale of optimistic teardown rests on the fol-
lowing observation. If a stale translation exists for a
short while in the IOTLB anyway, we might as well
keep it alive (for the same period of time) within the
IOMMU page table, optimistically expecting that it will
get reused (remapped) during that short time interval. As
significant temporal reuse of IOVA mappings has been
reported [3, 44, 49], one can be hopeful that the newly
proposed optimization would work.

We thus developed an optimistic teardown mapping
strategy, which keeps mappings around even after an un-
mapping request for them has been received. Unmap-
ping operations of I/O buffers are deferred and executed
at a later, configurable time. If an additional mapping
request of the same physical memory page arrives to the
IOMMU mapping layer while a mapping already exists
for that page, the old mapping is reused. If an old map-
ping is not used within the pre-defined time limit, it is
unmapped completely and the corresponding IOMMU
PTEs are invalidated, limiting the overall window of vul-
nerability for an errant DMA to the pre-defined time
limit. We determined experimentally that on our system
a modest limit of ten milliseconds is enough to achieve a
92% hit rate.

We keep track of all cached mappings in the same soft-
ware LRU cache, regardless of how many times each
mapping is shared. Mappings which are not currently

in use are also kept in a deferred-unmappings first-in
first-out (FIFO) queue with a fixed size limit. The queue
size and the residency constraints are checked whenever
the queue is accessed, and also periodically. Invalida-
tions are performed when mappings are removed from
the queue.

4 Sidecore IOMMU Emulation

Samecore emulation uses the classical approach of trap-
ping device register access and switching to the hypervi-
sor for handling. We now present an alternative, novel
approach for device emulation which uses a second core
to handle device register accesses, thus avoiding expen-
sive VM-exits. We call this sidecore emulation. While
the discussion below focuses on Intel’s VT-d, our ap-
proach is generic and can be applied to most other IOM-
MUs and I/O devices.

Samecore hardware emulation suffers from an inher-
ent limitation. Each read or write access to the hard-
ware registers requires a VM-transition to the hypervi-
sor, which then emulates the hardware behavior. VM-
transitions are known to be expensive, partly due to cache
pollution [2, 11].

Offloading computation to a sidecore for speeding up
I/O for modified (paravirtualized) guests has been ex-
plored by Kumar et al. [23], Gavrilovska et al. [15], and
Liu and Abali [27]. Sidecore emulation offloads de-
vice emulation to a sidecore. In contrast with previous
paravirtualized sidecore approaches, which require guest
modifications, sidecore emulation maintains the same
hardware interface between the guest and the sidecore as
between a bare-metal OS and the real hardware device,
and thus requires no guest modifications. As we show
in Section 6, sidecore emulation on its own can achieve
69% of bare metal performance—for unmodified guests
and without any protection relaxation.

In general, hardware emulation by a sidecore follows
the same principles as samecore emulation. The guest
programs the device, the hypervisor detects that the guest
has accessed the device, decodes the semantics of the ac-
cess, and emulates the hardware behavior. But sidecore
emulation differs from samecore emulation in two funda-
mental aspects. First, there are no expensive traps from
the guest to the hypervisor when the guest accesses de-
vice registers. Instead, the device register memory areas
are shared between the guest and the hypervisor, and the
hypervisor polls the emulated control registers for up-
dates. Second, the guest code and the hypervisor code
run on different cores, leading to reduced cache pollution
and improved utilization of each core’s exclusive caches.

Efficient hardware emulation by a sidecore is depen-
dent on the interface between the I/O device and the guest
OS, since the sidecore polls memory regions instead of
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receiving notifications on discrete register access events.
In general, efficient sidecore emulation requires that the
physical hardware have the following (commonly found)
properties.

Synchronous Register Write Protocol Sidecore
emulation relies on a synchronous protocol between the
device driver and the device for a single register’s up-
dates, in the sense that the device driver expects some
indication from the hardware before writing to a register
a second time. Such a protocol ensures that the sidecore
has time to process the first write before a second write
to the same register overwrites the first write’s contents.

A Single Register Holds Only Read-Only or Write
Fields Registers which hold both read-only and write
fields are challenging for a sidecore to handle, since the
sidecore has no efficient way of ensuring the guest device
driver would not change read-only fields.

Loose Response Time Requirements Sidecore em-
ulation is likely to be slower than physical hardware.
If the device has strict specifications of the “wall time”
device operations take (e.g., “this operation completes
within 3ns”) or the device driver makes other strong tim-
ing assumptions which hold for real hardware but not for
emulated hardware, then the device driver might assume
that the hardware is malfunctioning when operations take
longer than expected. This property must hold for device
emulation in general.

Explicit Update of Memory-Resident Data Struc-
tures Since the sidecore cannot poll large memory
regions efficiently, update to its memory-resident data
structures should be explicit, by requiring the device-
driver to perform a write-access to the device control reg-
isters indicating exactly which data structure it updated.

An additional, optional property that can boost
sidecore emulation performance is a limited number of
control registers. Since the sidecore needs to sample the
control registers of the emulated hardware, a large num-
ber of registers would result in long latency between the
time the guest sets the control register and the time the
sidecore detects the change. In addition, polling a large
number of registers may result in cache thrashing.

Intel’s IOMMU has all of the properties required
for efficient sidecore emulation. This is in contrast to
AMD’s IOMMU, which cannot require the OS’s map-
ping layer to explicitly update the IOMMU registers
upon every change to the memory-resident page tables.
We note, however, that the emulated IOMMU and the
platform’s physical IOMMU are orthogonal, and Intel’s
IOMMU can be emulated when only AMD’s IOMMU is
physically present or even when no physical IOMMU is
present and bounce buffers are used instead [12].

5 Reasoning About Risk and Protection

5.1 Risk and Protection Types

The IOMMU was designed to protect those pages which
do not hold I/O buffers from errant DMA transactions.
To achieve complete protection, the IOMMU mapping
layer must ensure a page is accessible for DMA transac-
tions only if it holds an I/O buffer that may be used for
DMA transaction and only while a valid DMA transac-
tion may target this page [49].

However, IOMMU mapping layer optimizations may
relax protection by completing the synchronous unmap
function call by the I/O device driver (logical unmap-
ping) before tearing down the mapping in the physi-
cal IOMMU page-tables and completing the physical
IOTLB invalidation (physical unmapping).

Deferring physical unmapping this way, as done by the
deferred invalidation scheme, the asynchronous invalida-
tion scheme, and the optimistic teardown scheme, could
potentially compromise protection for any page which
has been logically unmapped but not yet physically un-
mapped. We differentiate, however, between inter-guest
protection, protection between different guest OS in-
stances, and intra-guest protection, protection within a
particular guest OS [44].

vIOMMU maintains full inter-guest protection—full
isolation between VMs—in all configurations. It main-
tains inter-guest protection by keeping pages pinned in
physical memory until they have been physically un-
mapped. vIOMMU pins a page in physical memory be-
fore mapping it in the IOMMU page table, and only un-
pins it once the IOMMU mapping of that page is torn
down and the IOTLB invalidation is complete. Conse-
quently, any page that is used for a DMA transaction by
a guest OS will not be re-allocated to any other guest OS
as long as it may be the target of a valid DMA transaction
by the first guest OS.

Full intra-guest protection—protecting a guest OS
from itself—is arguably less important than inter-guest
protection in a virtualized setting. Intra-guest protection
may be relaxed by both the host’s and the guest’s map-
ping layer optimizations. Maintaining complete intra-
guest protection with optimal performance in an oper-
ating system such as Linux without modifying all drivers
remains an open challenge [49], since Linux drivers as-
sume that any page that has been logically unmapped is
also physically unmapped. Consequently, such pages are
often re-used by the driver or the I/O stack for other pur-
poses as soon as they have been logically unmapped.
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5.2 Quantifying Risk

We do not assess the risk posed by arbitrary malicious
adversaries, since such adversaries might sometimes be
able exploit even very short vulnerability windows [40].
In our discussion of protection and risk we focus instead
on the “window of vulnerability”, when an errant DMA
may sneak in and read or write an exposed I/O buffer
through a stale mapping. A stale mapping is a mapping
which exists after a page has been logically unmapped
but before it has been physically unmapped. A stale
mapping occurs when the device driver asks to unmap
an IOVA translation and receives an affirmative response,
despite the actual teardown of the physical IOMMU PTE
or physical IOTLB invalidation having been deferred.

We quantify risk along two axes: the duration of vul-
nerability during which an I/O buffer is open for reading
or writing through a stale mapping, and the stale map-
ping bound, which indicates the maximum number of
stale mappings at any given point in time.

We classify the mapping strategies mentioned above
into four classes according to their duration: no risk,
nanosecond risk, microsecond risk, and millisecond risk.

No Risk The only times when there is no risk are
when an OS on bare metal uses the strict mapping strat-
egy, or when both guest and host use the strict mapping
strategy. Since buffers are unmapped and their mappings
invalidated without any delay, there can be no stale map-
pings regardless of whether we run on bare metal, use
samecore emulation, or sidecore emulation. The use of
approximate shared mappings does not affect the risk.

Nanosecond Risk The time that elapses between the
moment when the host posts an invalidation request to
the invalidation queue and the invalid translation is ac-
tually flushed from the physical IOTLB can be mea-
sured in nanoseconds. Since the flush happens in sili-
con, this duration is a physical property of the platform
IOMMU, and the risk only applies to bare metal with
asynchronous invalidation. With samecore or sidecore
emulation, guest/host communication costs overshadow
this duration. We determined experimentally that on our
system the stale mapping bound for nanosecond risk is at
most two mappings, and the duration of vulnerability is
128 cycles per entry on average.

Microsecond Risk Microsecond risk only applies to
sidecore emulation and comes into play when the guest
does not wait for the host to process an invalidation (i.e.,
when the guest uses asynchronous invalidation). Here,
inter-core communication costs determine the window of
vulnerability, since the host must realize that the guest
posted an invalidation before it can handle it. In general,
the stale mapping bound for microsecond risk is the num-
ber of outstanding invalidation requests in the emulated

invalidation queue. In our experimental setup the queue
was sized to hold at most 128 outstanding entries.

Millisecond Risk Millisecond risk applies when ei-
ther the guest or the host uses the deferred invalidation
or optimistic teardown strategies. Regardless of whether
the guest or the host defers invalidations or keeps around
cached mappings, the window of vulnerability is likely to
be in the order of milliseconds. Software configures the
stale mappings bounds by setting a quota on the number
of cached mappings and a residency time limit on each
mapping.

Overall Risk When a guest OS uses an emulated
IOMMU, the combination of the guest’s and host’s map-
ping strategies determines the overall protection level.
The hypervisor cannot override the guest mapping strat-
egy to provide greater protection, since the hypervisor is
unaware of any cached mappings or deferred invalida-
tions in the guest until the guest unmaps them and exe-
cutes the invalidations. Therefore, the hypervisor can ei-
ther keep the guest’s level of protection by using a strict
invalidation scheme, or relax it for better performance.

6 Performance Evaluation

6.1 Methodology

Experimental Setup We implement the samecore and
sidecore emulation of Intel IOMMU, as well as the map-
ping layer optimizations presented above. We use the
KVM hypervisor [21] and Ubuntu 9.10 running Linux
2.6.35 for both host and guest. Our experimental setup is
comprised of an IBM System x3550 M2, which is a dual-
socket, four-cores per socket server equipped with Intel
Xeon X5570 CPUs running at 2.93GHz. The Chipset is
Intel 5520, which supports VT-d. The system includes
16GB of memory and an Emulex OneConnect 10Gbps
NIC. We use another identical remote server (connected
directly by 10Gbps optical fiber) as a workload genera-
tor and a target for I/O transactions. In order to obtain
consistent results and to avoid reporting artifacts caused
by nondeterministic events, all power optimizations are
turned off, namely, sleep states (C-states) and DVFS (dy-
namic voltage and frequency scaling).

To have comparable setups, guest-mode configura-
tions execute with a single VCPU (virtual CPU), and
native-mode configurations likewise execute with a sin-
gle core enabled. In guest-mode setups, the VCPU and
the sidecore are pinned to two different cores on the same
die, and 2GB of memory is allocated to the guest.

Microbenchmarks We use two well-known Net-
perf [19] instances in order to assess the overheads in-
duced by vIOMMU in terms of throughput, CPU cycles,
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guest/native guest/native guest/native host native guest duration
config. invalidation reuse Linux invalidation max stale# max stale# magnitude
strict strict none unpatched strict none none 0
shared strict shared patched strict none none 0
async async shared patched async 32 128+32 µsec
deferred deferred none unpatched deferred 32 250+32 ms
opt256 async shared+tear patched deferred 256+32 256+128+32 ms
opt4096 async shared+tear patched deferred 4096+32 4096+128+32 ms
off n/a n/a unpatched deferred all all ∞

Table 2: Evaluated configurations. The host column is meaningless when running the native configuration. The maximal number
of stale mappings for async and deferred host is the size of the IOTLB, namely, 32.

and latency. The first instance—Netperf TCP stream—
attempts to maximize the amount of data sent over a sin-
gle TCP connection, simulating an I/O-intensive work-
load. The second instance–Netperf UDP RR (request-
response)—models a latency-sensitive workload by re-
peatedly sending a single byte and waiting for a matching
single byte response. Latency is calculated as the inverse
of the number of transactions per second.

Macrobenchmarks We use two macrobenchmarks
to asses the performance of vIOMMU on real ap-
plications. The first is MySQL SysBench OLTP
(version 0.4.12; executed with MySQL database ver-
sion 5.1.37), which was created for benchmarking the
MySQL database server by generating OLTP inspired
workloads. To simulate high-performance storage, the
database is placed on a remote machine’s RAM-drive,
which is accessed through NFS and mounted in syn-
chronous mode. The database contains two million
records, which collectively require about 1GB. We dis-
able data caching on the server by using the InnoDB en-
gine and the O DIRECT flush method.

The second macrobenchmark we use is Apache
Bench, evaluating the performance of the Apache web
server. Apache Bench is a workload generator that is dis-
tributed with Apache to help assess the number of con-
current requests per second that the server is capable of
handling. The benchmark is executed with 25 concurrent
requests. The logging is disabled to avoid the overhead
of writing to disk.

Configurations There are many possible combina-
tions of emulation approaches, which are comprised of
the guest and host mapping layers and their reuse and
invalidation strategies. Each such combination is as-
sociated with different protection and performance lev-
els. We cannot evaluate all combinations. We instead
choose to present several meaningful ones in the hope
that they provide reasonable coverage. The configura-
tions are listed in Table 2. Each line in the table per-
tains to two scenarios: a virtualized setting, with a guest

serviced by a host, and a “native” setting with only the
bare metal OS running. The latter scenario provides a
baseline. It is addressed because our optimizations apply
to virtualized settings and bare metal settings alike. We
next describe the configurations one by one, from safest
to riskiest.

The strict configuration involves no optimizations in
guest, host, or native modes, and hence it involves no
risk; it is the least performant configuration. While strict
is not the default mode of Linux, it requires no OS mod-
ification, but rather setting an already-existing config-
urable parameter. Hence it is marked as “unpatched”.

The shared configuration is nearly identical to strict
except that it adds the approximate shared mapping op-
timization (Section 3.1); it is still risk-free, merely at-
tempting to avoid allocating more than one IOVA for a
given physical location and preferring instead to reuse.
Notice that for the virtualized setting this optimization is
meaningless for the host, as the hypervisor cannot over-
ride the IOVA chosen by the guest. The OS is patched be-
cause Linux does not natively support shared mappings.

The async configuration is similar to the shared con-
figuration, yet in addition it utilizes the asynchronous
IOTLB invalidation optimization (Section 3.2). The lat-
ter immediately invalidates unmapped translations, but
does not wait for the IOTLB invalidation to complete, re-
ducing invalidation cost by the time it takes the IOMMU
to write its invalidation completion message back to
memory. Realistically, the risk exists only for the
sidecore setting, which is dominated by inter-core com-
munication cost that is approximated by not more than
a handful of µsecs. The theoretical maximal number of
stale entries is the size of the IOTLB (32) in the host and
native settings; in this guest’s case, this is supplemented
by the default size of the invalidation queue (128).

The deferred configuration is the default configura-
tion of Linux, whereby IOTLB invalidations are aggre-
gated and processed together every 10ms (Section 3.3).
In the guest’s case, stale entries might reside in the
IOTLB (32) or in the deferred entries queue (up to 250 by
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Figure 2: Average breakdown of (un)mapping a single page
using the strict invalidation scheme.

default). While the entries are in the guest’s queue, the
host does not know about them and hence cannot inval-
idate them. As both guest and host use a 10ms interval,
the per-entry maximal vulnerability window is 20ms for
the guest and half that much for the host and bare metal.

The opt configuration (short for “optimistic”) deploys
all optimizations save deferred invalidation, which is
substituted by optimistic teardown (Section 3.4). The
maximal number of stale entries we keep alive (for up
to 10ms) is 256, similarly to the 250 of deferred; in a
more aggressive configuration we increase that number
to 4096.

Finally, the off configuration does not employ an
IOMMU in the native setting, and does not employ a
vIOMMU in the virtualized setting. (In the latter case the
physical IOMMU is nevertheless utilized by the host, be-
cause the device is still assigned to the guest.) In this con-
figuration, neither the guest nor the native bare metal en-
joy any form of protection, which is why we marked “all”
the mappings as unsafe for their entire lifetime (“∞”).

6.2 Overhead of (Un)mapping

The IOMMU layer provides exactly two primitives: map
and unmap. Before we delve into the benchmark results,
we first profile the overhead induced by the vIOMMU
with respect to these two operations. Figure 2 presents
the cycles breakdown of each operation to IOTLB “inval-
idation”, which is the direct interactions of the OS with
the IOMMU, and to “logic”, which encapsulates the rest
of the code that builds and destroys the mappings within
the I/O page tables.

Notice that guest invalidation overhead is induced
even when performing the map operation; this happens
because the hypervisor turns on the “caching mode bit”,
which, by the IOMMU specification, means that the OS

is mandated to first invalidate every new mapping it cre-
ates (which allows the hypervisor to track this activity).
Most evident in the figure is the fact that the sidecore
dramatically cuts down the price of invalidation when
compared to samecore, which is a direct result of elim-
inating the associated VM exits and associated world
switches. The other interesting observation is that the
rest of the (un)map logic can be accomplished faster by
the vIOMMU. This better-than-native performance is a
product of the vIOMMU registers being cacheable, as
opposed to those of the physical IOMMU.

6.3 Benchmark Results

Figure 3(a) depicts the throughput of Netperf/TCP for
each configuration, from safest to riskiest, along the X
axis. The values displayed are normalized by the max-
imal throughput achieved by bare metal and off, which
in this case is 100% of the attainable bandwidth of the
10Gbps NIC. Figure 3(b) presents the very same data,
but the normalization is done against native on a per-
configuration basis; accordingly, the native curve coin-
cides with the “1” grid line. Figure 3(c) presents the CPU
consumed by Netperf/TCP while doing the correspond-
ing work; observe that the sidecore is associated with two
curves in this figure, the lower one corresponds to the
useful work done by the sidecore (aside from polling)
and the upper one pertains to the main core.

The safe (shared) or nearly safe (async) configura-
tions provide no benefit for the samecore setting, but
they can slightly improve the performance of sidecore
and native by 2–5 percentage points each. Deferred de-
livers a much more pronounced improvement, especially
in the native case, which manages to attain 91% of the
line-rate. By consulting Figure 3(c), we can see that na-
tive/deferred is not attaining 100%, because the CPU is
a bottleneck. Utilizing opt solves this problem, not only
for the native setting, but also for the sidecore; opt allows
both to fully exploit the NIC. The sidecore/CPU curve
(bottom of Figure 3(c)) implies that the work required
form the IOMMU software layer is little when optimal
teardown is employed, allowing the sidecore to catch up
with native performance and the samecore to reduce to
gap to 0.82x the optimum.

Similarly to the above, Figure 4 depicts the latency
as measured with Netperf/UDP-RR and the associated
CPU consumption. The results largely agree with what
we have seen for Netperf/TCP. Deferring the IOTLB in-
validation allows the native setting to achieve optimal
latency, but only slightly improves the virtualized set-
tings. However, when optimistic teardown is employed,
the latency of both sidecore and samecore drops signif-
icantly (by about 60 percentage point in the latter case),
and they manage attain the optimum. Importantly, the
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Figure 3: Measuring throughput with Netperf TCP; the baseline for normalization is the optimal throughput attainable by our
10Gbps NIC.
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Figure 4: Measuring latency with the Netperf UDP request-response benchmark; the baseline for normalization (latency of bare
metal with no IOMMU) is 41 µsecs.

optimum for the samecore and sidecore settings is not
the “1” that is shown in Figure 4(a); rather, it is the value
that is associated with the off configuration of the virtual-
ized settings (guest with no IOMMU protection), which
is roughly 1.2 in this case.

Examining Figure 4(c), we unsurprisingly see that the
CPU is not a bottleneck for this benchmark. We further
see that optimistic teardown is the most significant opti-
mization for this metric, allowing the virtualized settings
to nearly reach the bare metal optimum.

Figures 5–6 present the results of the macrobench-
marks, showing trends that are rather similar. Optimistic
teardown is most meaningful to the samecore setting,
boosting its throughput by about 1.5x. For sidecore,
however, the optimization has a lesser effect. Specifi-
cally, opt4096 improves upon deferred by 1.07x in the
case of MySQL, and by 1.04x in the case of Apache.
Before the optimistic teardown is applied, the sidecore
setting delivers 1.52x and 1.63x better throughput than

samecore for MySQL and Apache, respectively. But
once it is applied, then these figures respectively drop to
1.12x and 1.10x. In other words, for the real applications
that we have chosen, sidecore is better than samecore
by 50%–60% for safe configurations (as well as for de-
ferred), but when optimistic teardown is applied, this gap
is reduced to around 10%. This should come as no sur-
prise as we have already established above that optimistic
teardown dramatically reduces the IOMMU overhead.

It is important to note, once again, that the optimum
for sidecore and samecore is the off configuration in the
virtualized setting, namely 0.86 and 0.68 for MySQL and
Apache in Figures 5(a) and 6(a), respectively. Thus, it is
not that the optimistic teardown all of a sudden became
less effective for the macrobenchmarks; rather, it is that
in comparison to the microbenchmarks the applications
attain much higher throughput to begin with, and so the
optimization has less room to shine.

The bottom line is that combining sidecore and op-
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Figure 5: Measuring MySQL throughput; the baseline for normalization is 243 transactions per second.
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Figure 6: Measuring Apache throughput; the baseline for normalization is 6828 requests per second.

Throughput(Mbps) VCPUs load Sidecore load
samecore 1345 (+49%) 76%
sidecore 4312 (+54%) 83% 49% (+50%)

Table 3: Measuring the Netperf TCP throughput of 2-VCPUs
with strict configuration compared to a single VCPU.

timistic teardown brings both MySQL and Apache
throughputs to be only 3% less than their respective op-
tima.

6.4 Sidecore Scalability and Power-
Efficiency

Performance gain from the sidecore approach requires
the emulating sidecore to be co-scheduled with the VC-
PUs to achieve low-latency IOMMU emulation. There-
fore, it is highly important that the sidecore performs its
tasks efficiently with high utilization.

One method for better utilizing the sidecore is to set
one emulating sidecore to serve multiple VCPUs or mul-

tiple guest CPUs. Table 3 presents the performance of
a 2 VCPUs setup, using the strict configuration, relative
to a single VCPU setup. As shown, sidecore emulation
scales up similarly to samecore emulation, and the per-
formance of both improves by approximately 50% in 2
VCPUs setup.

This method, however, may encounter additional la-
tency in a system that consists multiple sockets (dies),
as the affinity of the sidecore thread has special impor-
tance in such systems. If both the virtual guest and the
sidecore are located on the same die, fast cache-to-cache
micro-architectural mechanisms can be used to propa-
gate modifications of the IOMMU data structures, and
the interconnect imposes no additional latency. In con-
trast, when the sidecore is located on a different die, the
latency of accessing the emulated IOMMU data struc-
tures is increased by interconnect imposed latency. The
Intel QuickPath Interconnect (QPI) protocol used on our
system requires write-backs of modified cache lines to
main memory, which results in latency that can exceed
100ns—over four times the latency of accessing a modi-
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fied cache line on the same die [30].
Another method for better utilizing the sidecore is to

use its spare cycles productively. Even though the nature
of the sidecore is that it is constantly working, a sidecore
can have spare cycles—those cycles in which it polled
memory and realized it has no pending emulation tasks.
One way of improving the system’s overall efficiency is
to use such cycles for polling paravirtual devices in ad-
dition to emulated devices. Another way is to allow the
sidecore to enter a low-power sleep state when it is oth-
erwise idle. We can make sidecore IOMMU emulation
more power-efficient by using the CPU’s monitor/mwait
capability, which enables the core to enter a low-power
state until a monitored cache range is modified [4].

However, current x86 architecture only enables mon-
itoring of a single cache line, and the Linux scheduler
already uses the monitoring hardware for its internal pur-
poses. Moreover, the sidecore must monitor and respond
to writes to multiple emulated registers which do not re-
side in the same cache line.

We overcame these challenges by using the mapping
hardware to monitor the invalidation queue tail (IQT)
register of the IOMMU invalidation queue while we peri-
odically monitored the remaining emulated IOMMU reg-
isters. (This is possible because the IOMMU mapping
layer performs most of its writes to a certain IQT regis-
ter.) We also relocated the memory range monitored by
the scheduler (the need resched variable) to a mem-
ory area which is reserved according to the IOMMU
specifications and resides in the same cache line as the
IQT register.

Nonetheless, entering a low-power sleep state is suit-
able only in an extended quiescence period, in which
no accesses to the IOMMU take place. This is because
entering and exiting low power state takes considerable
time [39]. Thus, sidecore emulation is ideally suited for
an asymmetric system [22]. Such systems, which include
both high power high performance cores and low power
low performance cores, can schedule the hardware emu-
lation code to a core which will provide the desired per-
formance/power consumption tradeoff.

The impact of these two scaling related methods, us-
ing sidecore to serve a guest whose VCPU is located on
another package, and entering low power state instead
of polling, appear in Figure 7. According to our experi-
ments, when the sidecore was set on another package, the
mapping and unmapping cost increased by 23%, result-
ing in 25% less TCP throughput than when the sidecore
was located on the same package. Entering low-power
state increased the cycle cost of mapping and unmapping
by 13%, and optimally would decrease performance very
little using good heuristics for detecting idle periods. Re-
gardless, in both cases, the cost of sidecore emulation is
still considerably lower than that of samecore emulation.
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Figure 7: The effect of power-saving and CPU affinity on the
mapping/unmapping cost of a single page.

7 Related Work

We survey related work along the following dimensions:
I/O device emulation for virtual machines, IOMMU
mapping strategies for paravirtualized and unmodified
guests, and offloading computation to a sidecore.

All common hypervisors in use today on x86 sys-
tems emulate I/O devices. Sugerman, Venkitachalam,
and Lim discuss device emulation in the context of
VMware’s hypervisor [37], Barham et al. discuss it in
the context of the Xen hypervisor [6], Kivity et al. dis-
cuss it in the context of the KVM hypervisor [21], and
Bellard discusses it in the context of QEMU [10]. In all
cases, device emulation suffered from prohibitive per-
formance [11], which led to the development of par-
avirtualized I/O [6, 34] and direct device assignment
I/O [25, 26]. To our knowledge, we are the first to
demonstrate the feasibility of high-speed I/O device em-
ulation with performance approaching that of bare metal.

Maximizing OS protection from errant DMAs by min-
imizing the DMA vulnerability duration is important, be-
cause devices might be buggy or exploited [9, 14, 25, 46].
Several IOMMU mapping strategies have been sug-
gested for trading off protection and performance [44,
49]. For unmodified guests, the only usable mapping
strategy prior to this work was the direct mapping strat-
egy [44], which provides no protection to the guest OS.
Once we expose an emulated IOMMU to the guest OS,
the guest OS may choose to use any mapping strategy it
wishes to protect itself from buggy or malicious devices.

Additional mapping strategies were possible for par-
avirtualized guests. The single-use mapping and the
shared mapping strategies provide full protection at siz-
able cost to performance [44]. The persistent mappings
strategy provides better performance at the expense of
reduced protection. In the persistent mapping strategy
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mappings persist forever. The on-demand mapping strat-
egy [49] refines persistent mapping by tearing down
mappings once a set quota on the number of mappings
was reached. On-demand mapping, however, does not
limit the duration of vulnerability. Optimistic teardown
provides performance that is equivalent to that of persis-
tent and on-demand mapping, but does so while limiting
the duration of vulnerability to mere milliseconds.

Offloading computation to a dedicated core is a well-
known approach for speeding up computation [7, 8, 36].
Offloading computation to a sidecore in order to speed
up I/O for paravirtualized guests was explored by Kumar
et al. [23], Gavrilovska et al. [15], and in the virtualiza-
tion polling engine (VPE) [27]. In order to achieve near
native performance for 10GbE, VPE required modifica-
tions of the guest OS and a set of paravirtualized drivers
for each emulated device. In contrast, our sidecore emu-
lation approach requires no changes to the guest OS.

Building in part upon vIOMMU, the SplitX
project [24] takes the sidecore approach one step
further. SplitX aims to run each unmodified guest and
the hypervisor on a disjoint set of cores, dedicating a
set of cores to each guest and offloading all hypervisor
functionality to a disjoint set of sidecores.

8 Conclusions

We presented vIOMMU, the first x86 IOMMU emula-
tion for unmodified guests. By exposing an IOMMU to
the guest we enable the guest to protect itself from buggy
device drivers, while simultaneously making it possible
for the hypervisor to overcommit memory. vIOMMU
employs two novel optimizations to perform well. The
first, “optimistic teardown”, entails simply waiting a few
milliseconds before tearing down an IOMMU mapping
and demonstrates that a minuscule relaxation of protec-
tion can lead to large performance benefits. The second,
running IOMMU emulation on a sidecore, demonstrates
that given the right software/hardware interface and de-
vice emulation, unmodified guests can perform just as
well as paravirtualized guests.

The benefits of IOMMU emulation rely on the guest
using the IOMMU. Introducing software and hardware
support for I/O page faults could relax this requirement
and enable seamless memory overcommitment even for
non-cooperative guests. Likewise, introducing software
and hardware support for multiple levels of IOMMU
page tables [11] could in theory provide perfect protec-
tion without any decrease in performance. In practice,
multiple MMU levels cause more page-faults and higher
TLB miss-rates, resulting in lower performance for many
workloads [42]. Similarly, a single level of IOMMU
emulation may perform better than multiple levels of
IOMMU page tables, depending on workload.
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