
Utilizing IOMMUs for Virtualization in Linux and Xen

Muli Ben-Yehuda
muli@il.ibm.com

Jon Mason
jdmason@us.ibm.com

Orran Krieger
okrieg@us.ibm.com

Jimi Xenidis
jimix@watson.ibm.com

Leendert Van Doorn
leendert@us.ibm.com

Asit Mallick
asit.k.mallick@intel.com

Jun Nakajima
jun.nakajima@intel.com

Elsie Wahlig
elsie.wahlig@amd.com

Abstract

IOMMUs are hardware devices that trans-
late device DMA addresses to proper ma-
chine physical addresses. IOMMUs have
long been used for RAS (prohibiting de-
vices from DMA’ing into the wrong memory)
and for performance optimization (avoiding
bounce buffers and simplifying scatter/gather).
With the increasing emphasis on virtualization,
IOMMUs from IBM, Intel, and AMD are be-
ing used and re-designed in new ways, e.g.,
to enforce isolation between multiple operating
systems with direct device access. These new
IOMMUs and their usage scenarios have a pro-
found impact on some of the OS and hypervisor
abstractions and implementation.

We describe the issues and design alterna-
tives of kernel and hypervisor support for new
IOMMU designs. We present the design and
implementation of the changes made to Linux
(some of which have already been merged into
the mainline kernel) and Xen, as well as our
proposed roadmap. We discuss how the inter-
faces and implementation can adapt to upcom-

ing IOMMU designs and to tune performance
for different workload/reliability/security sce-
narios. We conclude with a description of some
of the key research and development challenges
new IOMMUs present.

1 Introduction to IOMMUs

An I/O Memory Management Unit (IOMMU)
creates one or more unique address spaces
which can be used to control how a DMA op-
eration from a device accesses memory. This
functionality is not limited to translation, but
can also provide a mechanism by which device
accesses are isolated.

IOMMUs were first created to solve the prob-
lem where the addressing capability of the de-
vice was smaller than the addressing capability
of the host processor, which means the device
could not access all of physical memory. The
introduction of 64bit processors and the Phys-
ical Address Extension (PAE) for x86, which
allowed processors to address well beyond the
32bit limits, merely exacerbated the problem.

1



Legacy PCI32 bridges only had a 32bit inter-
face which limited the DMA address range to
less than 4GB. The PCI SIG [11] came up
with a non-IOMMU fix for the 4GB limita-
tion, Dual Address Cycle (DAC). DAC-enabled
systems/adapters bypass this limitation by hav-
ing two 32bit address phases on the PCI bus
(thus allowing 64bits of total addressable mem-
ory). This modification is backward compati-
ble to allow 32bit, Single Address Cycle (SAC)
adapters to function in DAC-enabled slots.
However, this did not solve the case where the
addressable range of a specific adapter was lim-
ited.

In the absence of an IOMMU, a region of
system memory that each adapter can address
would have to be reserved, and the device
would then be programmed to DMA to this re-
served area. The processor would then copy the
result to the target memory that was beyond the
“reach” of the device. An IOMMU can cre-
ate a unique translated address space, that is in-
dependent of any address space instantiated by
the MMU of the processor, that can map the
addressable range of a device to all of system
memory.

IOMMU isolation solves a very different prob-
lem than IOMMU translation. Isolation re-
stricts the access of an adapter to the specific
area of memory that the IOMMU allows. With-
out isolation, an adapter controlled by an un-
trusted entity (such as a virtual machine when
running with a hypervisor, or a non-root user-
level driver) could corrupt memory in a buggy
or malicious manner, compromising the secu-
rity or availability of the system.

The IOMMU mechanism can be located on the
device, the bus, the processor module or even
in the processor core. Typically it is located on
the bus that bridges the processor/memory ar-
eas and the PCI bus. In this case, the IOMMU
is intercepting all PCI bus traffic over the bridge
and translates the in and out-bound addresses.

Depending on implementation, this translation
window can be as small as a few megabytes to
as large as the entire addressable memory space
by the adapter (4GB for 32bit PCI adapters).
When isolation is not an issue, it may be possi-
ble to have addresses beyond this window pass
through unmodified.

AMD IOMMUs: GART , Device Exclusion
Vector, and I/O Virtualization Technology

AMD’s Graphical Aperture Remapping Table
(GART) is a simple translation-only hardware
IOMMU [4]. GART is the integrated trans-
lation tables designed for use by AGPGART

which are located in the processor’s memory
controller as an IOMMU for PCI.GART works
by specifying a physical memory window and
list of pages to be translated inside that win-
dow. Addresses outside the window are not
translated.GART exists in AMD’s Opteron and
Athlon64 processors.

Newer AMD processors have a Device Exclu-
sion Vector (DEV) table define the bounds of
a set of protection domains providing isolation.
DEV is a bit vectored protection table that as-
signs per-page access rights to devices in that
domain. DEV forces a permission check of
all device DMAs indicating whether devices in
that domain are allowed to access the corre-
sponding physical page.DEV uses 1 bit per
physical 4K page to represent each page in the
machine’s physical memory. A table of size
128K represents up to 4GB.

AMD’s I/O Virtualization Technology defines
an IOMMU which will translate and protect
memory from any DMA transfers by periph-
eral devices [1]. Devices are assigned into a
protection domain with a set of I/O page tables
defining the allowed memory addresses. Be-
fore a DMA transfer begins, the IOMMU inter-
cepts the access and checks both the I/O page

2



tables for that device and its cache (IOTLB).
The translation and isolation functions of the
IOMMU may be used independently of hard-
ware or software virtualization; however, these
facilities are a natural extension to virtualiza-
tion.

The AMD IOMMU is configured as a capabil-
ity of a bridge or device which may be Hyper-
Transport or PCI based. A device downstream
of the AMD IOMMU in the machine topol-
ogy may optionally maintain a cache (IOTLB)
of its own address translations. An IOMMU
may also be incorporated into a bridge down-
stream of another IOMMU capable bridge.
Both topologies form scalable networks of dis-
tributed translations. Hypervisors or privileged
OSes maintain the page structures used by the
IOMMU.

The AMD IOMMU can be used instead of the
GART or DEV. While GART can translate up to
a 2GB window, the AMD IOMMU is not lim-
ited to a window but all physical memory.

Intel’s VT-d

Intel R© Virtualization Technology for Directed
I/O Architecture provides DMA remapping
hardware that adds support for isolation of de-
vice accesses to memory as well as translation
functionality [2]. The DMA remapping hard-
ware intercepts device attempts to access sys-
tem memory. Then, it uses I/O page tables to
determine whether the access is allowed and
its actual location. The translation structure is
unique to an I/O device function (PCI bus, de-
vice, and function) and is based on a multi-
level page table. Each I/O device is given the
DMA virtual address space same as the phys-
ical address space or a purely virtual address
space defined by software. The DMA remap-
ping hardware uses a context-entry table that is
indexed by PCI bus, device and function to find

the root of the address translation table. The
hardware may cache context-entries as well as
the effective translations (IOTLB) to minimize
the overhead incurred for fetching them from
memory. DMA remapping faults detected by
the hardware are processed by logging the fault
information and reporting the faults to software
through a fault event (interrupt).

IBM IOMMUs: Calgary, DART and Cell

IBM’s Calgary PCI-X bridge chips provide
hardware IOMMU functionality to both trans-
late and isolate. Translations are defined by
a set of Translation Control Entries (TCEs)
in a table in system memory. The table can
be considered an array where the index is the
page number in the bus address space and the
TCE at that index describes the physical page
number in system memory. The TCE may
also contain additional information such as per-
direction access rights and specific devices (or
device groupings) that each translation can be
considered valid. Calgary provides a unique
bus address space to all devices behind each
PCI Host Bridge (PHB). The table can be large
enough to cover 4GB. Calgary will fetch trans-
lations as appropriate and cache them locally
in a manner similar to a TLB, or IOTLB. The
IOTLB, much like the TLB on an MMU, pro-
vides a software accessible mechanism that can
invalidate cache entries as the entries in sys-
tem memory are modified. Addresses above the
4GB boundary are presented using DAC com-
mands. If these commands originate from the
device and are permitted, they will bypass the
TCE translation. Calgary ships in IBM pSeries
and xSeries systems.

IBM’s CPC925 (U3) northbridge, which can be
found on JS20/21 Blades and Apple G5 ma-
chines, provides IOMMU mechanisms using a
DMA Address Relocation Table (DART). It is

3



similar to the Calgary IOMMU table, but dif-
fers in that the entries only track validity rather
than access rights. As with the Calgary, the U3
maintains an IOTLB and provides a software
accessible mechanism for invalidating entries.

The Cell Processor has an IOMMU imple-
mented on chip. Its bus address space uses a
segmented translation model that is compati-
ble with the MMU in the PowerPC core (PPE).
This two-level approach not only allows for ef-
ficient user level device drivers, but also allows
applications running on the Synergistic Pro-
cessing Engine (SPE) to interact with devices
directly. The Cell IOMMU maintains two lo-
cal caches – one for caching segment entries
and another for caching page table entries, the
IOSLB and IOTLB, respectively. Each have a
separate software accessible mechanism to in-
validate entries. However, all entries in both
caches are software accessible, so it is possi-
ble to program all translations directly in the
caches, increasing the determinism of the trans-
lation stage.

2 Linux IOMMU support and the
DMA mapping API

Linux runs on many different platforms. Those
platforms may have a hardware IOMMU
and may have software emulation such as
SWIOTLB. In order to write generic, plat-
form independent drivers, Linux abstracts the
IOMMU details inside a common API, known
as the “DMA” or “DMA mapping” API [7] [8].
The software that enables these IOMMUs must
abstract their internal, device specific DMA
mapping functions behind the generic DMA
API. As long as the implementation conforms
to the semantics of the DMA API, a well writ-
ten driver that is using the DMA API properly
should “just work” with any IOMMU.

Prior to this work, Linux’s x86-64 architec-
ture included three DMA API implementa-
tions: NOMMU, SWIOTLB, andGART. NOMMU

is a simple, architecture-independent imple-
mentation of the DMA API. It is used when
the system has neither a hardware IOMMU nor
software emulation. All it does is return the
physical memory address for the memory re-
gion it is handed as the DMA address for the
adapter to use.

Linux includes a software implementation
of an IOMMU’s translation function, called
SWIOTLB. SWIOTLB was first introduced in
arch/ia64 [3] and is used today by both IA64
and x86-64. It provides translation through
a technique called “bounce buffering.” At
boot time, SWIOTLB sets aside a large phys-
ically contiguous memory region (the “aper-
ture”), which is off limits to the OS. The size
of the aperture is configurable and ranges from
several to hundreds of megabytes.SWIOTLB

uses this aperture as a location for DMAs that
need to be remapped to system memory higher
than the 4GB boundary. When a driver wishes
to DMA to a memory region, theSWIOTLB

code checks the system memory address of
that region. If it is directly addressable by
the adapter, the DMA address of the region is
returned to the driver and the adapter DMAs
there directly. If it is not,SWIOTLB allocates a
“bounce buffer” inside the aperture, and returns
the bounce buffer’s DMA address to the driver.
If the requested DMA operation is a DMA read
(read from memory), the data is copied from
the original buffer to the bounce buffer, and the
adapter reads it from the bounce buffer’s mem-
ory location. If the requested DMA operation is
a write, the data is written by the adapter to the
bounce buffer, and then copied to the original
buffer.

SWIOTLB treats the aperture as an array, and
during a DMA allocation it traverses the array
searching for enough contiguous empty slots in

4



the array to satisfy the request using a next-
fit allocation strategy. If it finds enough space
to satisfy the request, it passes the location
within the aperture for the driver to perform
DMA operations. On a DMA write,SWIOTLB

does not perform the copy (“bounce”) until it
is unmapped. On a DMA read or bidirec-
tional DMA, the copy occurs during the map-
ping of the memory region. Synchronization
of the bounce buffer and the memory region
can be forced at any time through the various
dma_sync_xxx function calls.

SWIOTLB is wasteful in CPU operations and
memory, but is the only way some adapters
can access all memory on systems without an
IOMMU. Linux always usesSWIOTLB on IA64
machines, which have no hardware IOMMU.
On x86-64, Linux will only useSWIOTLB when
the machine has greater than 4GB memory and
no hardware IOMMU (or when forced through
the iommu=force boot command line argu-
ment).

The only IOMMU that is specific to x86-64
hardware is AMD’sGART. GART’s implemen-
tation works in the following way: the BIOS
(or kernel) sets aside a chunk of contiguous
memory (the “aperture”), which is off limits
to the OS.GART uses addresses in this aper-
ture as the IO addresses of DMAs that need
to be remapped to system memory higher than
the 4GB boundary. An unfortunate side ef-
fect of this remapping is that the physical pages
covered by the aperture are consumed since
they can no longer be addressed by devices.
The GART Linux code keeps a list of the used
buffers in the aperture via a bitmap. When a
driver wishes to DMA to a buffer, the code
verifies that the system memory address of the
buffer’s memory falls within the device’s DMA
mask. If it does not, then theGART code will
search the aperture bitmap for an opening large
enough to satisfy the number of pages spanned
by the DMA mapping request. If it finds

the required number of contiguous pages, it
programs the appropriate remapping (from the
aperture to the original buffer) in the IOMMU
and returns the DMA address within the aper-
ture to the driver.

3 Xen IOMMU support

Xen [6] [5] is a virtual machine monitor for
x86, x86-64, IA64 and PowerPC that sup-
ports execution of multiple guest operating sys-
tems on the same physical machine with high
performance and resource isolation. Oper-
ating systems running under Xen are either
para-virtualized (their source code is modified
in order to run under a hypervisor) or fully-
virtualized (the same kernel binary that runs on
bare metal also runs under the hypervisor). Xen
makes a distinction between “physical” (inter-
changeably referred to as “pseudo-physical”)
frames and machine frames. An operating
system running under Xen runs in a contigu-
ous “physical” address space, spanning from
physical address zero to end of guest “phys-
ical” memory. Each guest “physical” frame
is mapped to a host “machine” frame. Natu-
rally, the physical frame number and the ma-
chine frame number will be different most of
the time.

Xen has different uses for IOMMU than tradi-
tional Linux. Xen virtual machines may strad-
dle or completely reside in system memory
over the 4GB boundary. Additionally, Xen
virtual machines run with a physical address
space that is not identity mapped to the ma-
chine address space. Therefore, Xen would like
to utilize the IOMMU so that a virtual machine
with direct device access need not be aware of
the physical to machine translation, by present-
ing an IO address space that is equivalent to
the physical address space. Additionally, Xen

5



would like virtual machines with hardware ac-
cess to be isolated from other virtual machines.

In theory, any IOMMU driver used by Linux on
bare metal could also be used by Linux under
Xen after being suitably adapted. The changes
required depend on the specific IOMMU, but
in general the modified IOMMU driver would
need to map from PFNs to MFNs and allo-
cate a machine contiguous aperture rather than
a pseudo-physically contiguous aperture. In
practice, as of Xen’s 3.0.0 release, only a mod-
ified version ofSWIOTLB is supported.

Xen’s controlling domain (dom0) always uses a
modified version ofSWIOTLB. Xen’sSWIOTLB

serves two purposes. First, since Xen domains
may reside in system memory completely
above the 4GB mark,SWIOTLB provides a
machine-contiguous aperture below 4GB. Sec-
ond, since a domain’s pseudo-physical memory
may not be machine contiguous, the aperture
provides a large machine contiguous area for
bounce buffers. When a stock Linux driver run-
ning under Xen makes a DMA API call, the call
always goes through dom0’sSWIOTLB, which
makes sure that the returned DMA address is
below 4GB if necessary and is machine con-
tiguous. Naturally, going throughSWIOTLB on
every DMA API call is wasteful in CPU cycles
and memory and has a non-negligible perfor-
mance cost. GART or Calgary (or any other
suitably capable hardware IOMMU) could be
used to do in hardware whatSWIOTLB does in
software, once the necessary support is put in
place.

One of the main selling points of virtualization
is machine consolidation. However, some sys-
tems would like to access hardware directly in
order to achieve maximal performance. For ex-
ample, one might want to put a database virtual
machine and a web server virtual machine on
the same physical machine. The database needs
fast disk access and the web server needs fast

network access. If a device error or system se-
curity compromise occurs in one of the virtual
machines, the other is immediately vulnerable.
Because of this need for security, there is a need
for software or hardware device isolation.

Xen supports the ability to allocate different
physical devices to different virtual machines
(multiple “driver domains” [10]). However,
due to the architectural limitations of most PC
hardware, notably the lack of an IOMMU, this
cannot be done securely. In effect, any domain
that has direct hardware access is considered
“trusted”. For some scenarios, this can be tol-
erated. For others (e.g., a hosting service that
wishes to run multiple customers virtual ma-
chines on the same physical machine), this is
completely unacceptable.

Xen’s grant tables are a software solution to the
lack of suitable hardware for isolation. Grant
tables provide a method to share and transfer
pages of data between domains. They give (or
“grant”) other domains access to pages in the
system memory allocated to the local domain.
These pages can be read, written, or exchanged
(with the proper permission) for the purpose of
providing a fast and secure method for domains
to receive indirect access to hardware.

How does data get from the hardware to the lo-
cal domain that wishes to make use it, when
only the driver domain can access the hard-
ware directly? One alternative would be for
the driver domain to always DMA into its own
memory, and then pass the data to the local
domain. Grant tables provide a more efficient
alternative by letting driver domains DMA di-
rectly into pages in the local domain’s memory.
However, it is only possible to DMA into pages
specified within the grant table. Of course, this
is only significant for non-privileged domains
(as privileged domains could always access the
memory of non-privileged domains). Grant ta-
bles have two methods for allowing access to

6



remote pages in system memory: shared pages
and page flipping.

For shared pages, a driver in the local do-
main’s kernel will advertise a page to be shared
via a hypervisor function call (“hypercall” or
“hcall”). The hcall notifies the hypervisor that
other domains are allowed to access this page.
The local domain then passes a grant table ref-
erence ID to the remote domain it is “granting”
access to. Once the remote domain is finished,
the local domain removes the grant. Shared
pages are used by block devices and any other
device that receives data synchronously.

Network devices, as well as any other device
that receives data asynchronously, use a method
known as “page flipping”. When page flipping,
a driver in the local domain’s kernel will adver-
tise a page to be transferred. This call notifies
the hypervisor that other domains can receive
this page. The local domain then transfers the
page to the remote domain and takes a free page
(via producer/consumer ring).

Incoming network packets need to be inspected
before they can be transferred, so that the in-
tended destination can be deduced. Since block
devices already know which domain requested
data to be read, there is no need to inspect
the data prior to sending it to its intended do-
main. Newer networking technologies (such
as RDMA NICs and Infiniband) know when a
packet is received from the wire for which do-
main is it destined and will be able to DMA it
there directly.

Grant tables, likeSWIOTLB, are a software im-
plementation of certain IOMMU functionality.
Much like howSWIOTLB provides the transla-
tion functionality of an IOMMU, grant tables
provide the isolation and protection functional-
ity. Together they provide (in software) a fully
functional IOMMU (i.e., one that provides both
translation and isolation). Hardware accelera-
tion of grant tables andSWIOTLB is possible,

provided a suitable hardware IOMMU exists on
the platform, and is likely to be implemented in
the future.

4 Virtualization: IOMMU design
requirements and open issues

Adding IOMMU support for virtualization
raises interesting design requirements and is-
sues. Regardless of the actual functionality of
an IOMMU, there are a few basic design re-
quirements that it must support to be useful in a
virtualized environment. Those basic design re-
quirements are: memory isolation, fault isola-
tion, and virtualized operating system support.

To achieve memory isolation, an operating sys-
tem or hypervisor should not allow one vir-
tual machine with direct hardware access to
cause a device to DMA into an area of physi-
cal memory that the virtual machine does not
own. Without this capability, it would be possi-
ble for any virtual machine to have access to the
memory of another virtual machine, thus pre-
cluding running an untrusted OS on any virtual
machine and thwarting basic virtualization se-
curity requirements.

To achieve fault isolation, an operating system
or hypervisor should not allow a virtual ma-
chine that causes a bad DMA (which leads to a
translation error in the IOMMU) to affect other
virtual machines. It is acceptable to kill the er-
rant virtual machine or take its devices off-line,
but it is not acceptable to kill other virtual ma-
chines (or the entire physical machine) or take
devices that the errant virtual machines does
not own offline.

To achieve virtualized operating system sup-
port, an operating system or hypervisor needs
to support para-virtualized operating systems,
fully-virtualized operating systems that are not

7



IOMMU aware, and fully-virtualized IOMMU
aware operating systems. For para-virtualized
OS’s, the IOMMU support should mesh in
seamlessly and take advantage of the existing
OS IOMMU support (e.g., Linux’s DMA API).
For fully-virtualized but not IOMMU aware
OS’s, it should be possible for control tools to
construct IOMMU translation tables that mir-
ror the OS’s pseudo-physical to machine map-
pings. For fully-virtualized IOMMU aware op-
erating systems, it should be possible to trap,
validate and establish IOMMU mappings such
that the semantics the operating system expects
with regards to the IOMMU are maintained.

There are several outstanding issues and open
questions that need to be answered for IOMMU
support. The first and most critical question is:
“who owns the IOMMU”. Satisfying the isola-
tion requirement requires that the IOMMU be
owned by a trusted entity that will validate ev-
ery map and unmap operation. In Xen, the only
trusted entities are the hypervisor and privi-
leged domains (i.e., the hypervisor and dom0 in
standard configurations), so the IOMMU must
be owned by either the hypervisor or a trusted
domain. Mapping and unmapping entries into
the IOMMU is a frequent, fast-path operation.
In order to impose as little overhead as possi-
ble, it will need to be done in the hypervisor.
At the same time, there are compelling rea-
sons to move all hardware related operations
outside of the hypervisor. The main reason is
to keep the hypervisor itself small and igno-
rant of any hardware details except those ab-
solutely essential, to keep it maintainable and
verifiable. Since dom0 already has all of the re-
quired IOMMU code for running on bare metal,
there is little point in duplicating that code in
the hypervisor.

Even if mapping and unmapping of IOMMU
entries is done in the hypervisor, should dom0
or the hypervisor initialize the IOMMU and
perform other control operations? There are

arguments both ways. The argument in favor
of the hypervisor is that the hypervisor already
does some IOMMU operations, and it might as
well do the rest of them, especially if no clear-
cut separation is possible. The arguments in fa-
vor of dom0 are that it can utilize all of the bare
metal code that it already contains.

Let us examine the simple case where a physi-
cal machine has two devices and two domains
with direct hardware access. Each device will
be dedicated to a separate domain. From the
point of view of the IOMMU, each device has
a different IO address space, referred to sim-
ply as an “IO space”. An IO space is a vir-
tual address space that has a distinct translation
table. When dedicating a device to a domain,
we either establish the IO space a-priori or let
the domain establish mappings in the IO space
that will point to its machine pages as it needs
them. IO spaces are created when a device is
granted to a domain, and are destroyed when
the device is brought offline (or when the do-
main is destroyed). A trusted entity grants ac-
cess to devices, and therefore necessarily cre-
ates and grants access to their IO spaces. The
same trusted entity can revoke access to de-
vices, and therefore revoke access and destroy
their IO spaces.

There are multiple considerations that need
to be taken into account when designing an
IOMMU interface. First, we should differen-
tiate between the administrative interfaces that
will be used by control and management tools,
and “data path” interfaces which will be used
by unprivileged domains. Creating and de-
stroying an IO space is an administrative inter-
face; mapping a machine page is a data path
operation.

Different hardware IOMMUs have different
characteristics, such as different degrees of de-
vice isolation. They might support no isola-
tion (single global IO address space for all de-
vices in the system), isolation between different

8



busses (IO address space per PCI bus), or iso-
lation on the PCI Bus/Device/Function (BDF)
level (i.e., a separate IO address space for each
logical PCI device function). The IO space cre-
ation interface should expose the level of iso-
lation that the underlying hardware is capable
of, and should support any of the above isola-
tion schemes. Exposing a finer grained isola-
tion than the hardware is capable of could lead
software to a false sense of security, and ex-
posing a coarser grained isolation would not be
able to fully utilize the capabilities of the hard-
ware.

Another related question is whether several de-
vices should be able to share the same IO ad-
dress space, even if the hardware is capable
of isolating between them. Let us consider a
fully virtualized operating system that is not
IOMMU aware and has several devices dedi-
cated to it. Since the OS is not capable of uti-
lizing isolation between these devices and each
IO space consumes a small, yet non-negligible
amount of memory for its translation tables,
there is no point in giving each device a sep-
arate IO address space. For cases like this, it
would be beneficial to share the same IO ad-
dress space among all devices dedicated to a
given operating system.

We have established that it may be beneficial
for multiple devices to share the same IO ad-
dress space. Is it likewise beneficial for multi-
ple consumers (domains) to share the same IO
address space? To answer this question, let us
consider a smart IO adapter such as an Infini-
band NIC. An IB NIC handles its own trans-
lation needs and supports many more concur-
rent consumers than PCI allows. PCI dedicates
3 bits for different "functions" on the same
device (8 functions in total) whereas IB sup-
ports 24 bits of different consumers (millions
of consumers). To support such "virtualization
friendly" adapters, one could run with transla-
tion disabled in the IOMMU, or create a single

IO space and let multiple consumers (domains)
access it.

Since some hardware is only capable of hav-
ing a shared IO space between multiple non-
cooperating devices, it is beneficial to be able to
create several logical IO spaces, each of which
is a window into a single large "physical IO
space". Each device gets its own window into
the shared address space. This model only pro-
vides “statistical isolation”. A driver program-
ming a device may guess another device’s win-
dow and where it has entries mapped, and if it
guesses correctly, it could DMA there. How-
ever, the probability of its guessing correctly
can be made fairly small. This mode of oper-
ation is not recommended, but if it’s the only
mode the hardware supports...

Compared to creation of an IO space, mapping
and unmapping entries in it is straightforward.
Establishing a mapping requires the following
parameters:

• A consumer needs to specify which IO
space it wants to establish a mapping
in. Alternatives for for identifying IO
spaces are either an opaque, per-domain
“IO space handle”" or the BDF that this
IO space translates for.

• The IO address in the IO address space
to establish a mapping at. The main ad-
vantage of letting the domain pick the IO
address it that it has control over how
IOMMU mappings are allocated, enabling
it to optimize their allocation based on its
specific usage scenarios. However, in the
case of shared IO spaces, the IO address
the device requests may not be available
or may need to be modified. A reasonable
compromise is to make the IO address a
“hint” which the hypervisor is free to ac-
cept or reject.

9



• The access permissions for the given map-
ping in the IO address space. At a mini-
mum, any of “none”, “read only”, “write
only” or “read write” should be supported.

• The size of the mapping. It may be
specified in bytes for convenience and to
easily support different page sizes in the
IOMMU, but ultimately the exact size of
the mapping will depend on the specific
page sizes the IOMMU supports.

To reduce the number of required hypercalls,
the interface should support multiple mappings
in a single hypervisor call (i.e., a “scatter gather
list” of mappings).

Tearing down a mapping requires the following
parameters:

• The IO space this mapping is in.

• The mapping, as specified by an IO ad-
dress in the IO space.

• The size of the mapping.

Naturally, the hypervisor needs to validate that
the passed parameters are correct. For example,
it needs to validate that the mapping actually
belongs to the domain requesting to unmap it,
if the IO space is shared.

Last but not least, there are a number of miscel-
laneous issues that should be taken into account
when designing and implementing IOMMU
support. Since our implementation is targeting
the open source Xen hypervisor, some consid-
erations may be specific to a Xen or Linux im-
plementation.

First and foremost, Linux and Xen already in-
clude a number of mechanisms that either em-
ulate or complement hardware IOMMU func-
tionality. These includeSWIOTLB, grant tables,

and the PCI frontend / backend drivers. Any
IOMMU implementation should “play nicely”
and integrate with these existing mechanisms,
both on the design level (i.e., provide hardware
acceleration for grant tables) and on the imple-
mentation level (i.e., do not duplicate common
code).

One specific issue that must be addressed stems
from Xen’s use of page flipping. Pages that
have been mapped into the IOMMU must be
pinned as long as they are resident in the
IOMMU’s table. Additionally, any pages that
are involved in IO may not be relinquished by
a domain (e.g., by use of the balloon driver).

Devices and domains may be added or removed
at arbitrary points in time. The IOMMU sup-
port should handle “garbage collection” of IO
spaces and pages mapped in IO when the do-
main or domains that own them die or the
device they map is removed. Likewise, hot-
plugging of new devices should also be han-
dled.

5 Calgary IOMMU Design and Im-
plementation

We have designed and implemented IOMMU
support for the Calgary IOMMU found in high-
end IBM xSeries servers. We developed it first
on bare metal Linux, and then used the bare
metal implementation as a stepping-stone to a
“virtualization enabled” proof of concept im-
plementation in Xen. This section describes
both implementations. It should be noted that
Calgary is an isolation capable IOMMU, and
thus provides isolation between devices resid-
ing on different PCI Host Bridges. This capa-
bility is directly beneficial in Linux even with-
out a hypervisor. It could be used for example
to isolate a device in its own IO space while de-
veloping a driver for it, thus preventing DMA

10



related errors from randomly corrupting mem-
ory or taking down the machine.

5.1 x86-64 Linux Calgary support

The Linux implementation is included at the
time of this writing in 2.6.16-mm1. It is com-
posed of several parts: initialization and detec-
tion code, IOMMU specific code to map and
unmap entries, and a DMA API implementa-
tion.

The bring-up code is done in two stages, detec-
tion and initialization. This is due to the some-
what convoluted way the x86-64 arch-specific
code detects and initializes IOMMUs. In the
first stage, we detect whether the machine has
the Calgary chipset. If it does, we mark that
we found a Calgary IOMMU. We also allocate
large contiguous areas of memory for each PCI
Host Bridge’s translation table. Each transla-
tion table consists of a number of entries that
total the addressable range given to the device
(in page size increments). This stage uses the
bootmem allocator and happens before the PCI
subsystem is initialized. In the second stage,
we map Calgary’s internal control registers and
enable translation on each PHB.

The IOMMU requires hardware specific code
to map and unmap DMA entries. This part of
the code implements a simple TCE allocator
to “carve up” each translation table to differ-
ent callers, and includes code to create TCEs
(Translation Control Entries) in the format that
the IOMMU understands and writes them into
the translation table.

Linux has a DMA API interface to abstract the
details of exactly how a driver gets a DMA’able
address. We implemented the DMA API for
Calgary, which allows generic DMA mapping
calls to be translated to Calgary specific DMA
calls. This existing infrastructure enabled the

Calgary Linux code to be more easily hooked
into Linux without many non-Calgary specific
changes.

The Calgary code keeps a list of the used pages
in the translation table via a bitmap. When
a driver make a DMA API call to allocate a
DMA address, the code searches the bitmap for
an opening large enough to satisfy the DMA
allocation request. If it finds enough space
to satisfy the request, it updates the TCEs in
the translation table in main memory to let the
DMA through. The offset of those TCEs within
the translation table is then returned to the de-
vice driver as the DMA address to use.

5.2 Xen Calgary support

Prior to this work, Xen did not have any support
for isolation capable IOMMUs. As explained
in previous sections, Xen does have software
mechanisms (such asSWIOTLB and grant ta-
bles) that emulate IOMMU related functional-
ity, but does not have any hardware IOMMU
support, and specifically does not have any iso-
lation capable hardware IOMMU support.

We added proof of concept IOMMU support
to Xen. The IOMMU support is composed
of a thin “general IOMMU” layer, and hard-
ware IOMMU specific implementations. At
the moment, the only implementation is for
the Calgary chipset, based on the bare metal
Linux Calgary support. As upcoming IOM-
MUs become available, we expect more hard-
ware IOMMU implementations to show up.

It should be noted that the current implemen-
tation is proof of concept and is subject to
change as IOMMU support evolves. In the-
ory it targets numerous IOMMUs, each with
distinct capabilities, but in practice it has only
been implemented for the single isolation capa-
ble IOMMU that is currently available. We an-

11



ticipate that by the time you read this, the inter-
face will have changed to better accommodate
other IOMMUs.

The IOMMU layer receives the IOMMU re-
lated hypercalls (both the “management” hcalls
from dom0 and the IOMMU map/unmap hcalls
from other domains) and forwards them to the
IOMMU specific layer. The following hcalls
are defined:

• iommu_create_io_space - this call
is used by the management domain
(dom0) to create a new IO space that is at-
tached to specific PCI BDF values. If the
IOMMU supports only bus level isolation,
the device and function values are ignored.

• iommu_destroy_io_space - this
call is used to destroy an IO space, as
identified by a BDF value.

Once an IO space exists, a domain can ask
to map and unmap translation entries in its
IOMMU using the following calls:

• u64 do_iommu_map(u64 ioaddr,
u64 mfn, u32 access, u32
bdf, u32 size);

• int do_iommu_unmap(u64
ioaddr, u32 bdf, u32 size);

When mapping an entry, the domain passes the
following parameters:

• ioaddr - The address in the IO space that
the domain would like to establish a map-
ping at. This is a hint; the hypervisor is
free to use it or ignore it and return a dif-
ferent IO address.

• mfn - The machine frame number that this
entry should map. In the current Xen code
base, a domain running on x86-64 and do-
ing DMA is aware of the physical/machine
translation, and thus there is no problem
with passing the MFN. In future imple-
mentations this API will probably change
to pass the domain’s PFN instead.

• access - This specifies the Read/Write per-
mission of the entry ("read" here refers to
what the device can do - whether it can
only read from memory or write to it as
well).

• bdf - The PCI Bus/Device/Function of the
IO space that we want to map this in. This
parameter might be changed in later revi-
sions to an opaque IO space identifier.

• size - How large is this entry? The cur-
rent implementation only supports a sin-
gle IOMMU page size of 4KB, but we an-
ticipate that future IOMMUs will support
large page sizes.

The return value of this function is the IO ad-
dress where the entry has been mapped.

When unmapping an entry, the domain passes
the BDF, the IO address that was returned and
the size of the entry to be unmapped. The hy-
pervisor validates the parameters, and if they
validate correctly, unmaps the entry.

An isolation capable IOMMU is likely to ei-
ther have a separate translation table for differ-
ent devices, or have a single, shared translation
table where each entry in the table is valid for
specific BDF values. Our scheme supports both
usage models. The generic IOMMU layer finds
the right translation table to use based on the
BDF, and then calls the hardware IOMMU spe-
cific layer to map or unmap an entry in it. In
the case of one domain owning an IO space,
the domain can use its own allocator and the

12



hypervisor will always use the IO addresses the
domain wishes to use. In the case of a shared
IO space, the hypervisor will be the one con-
trolling IO address allocation. In this case IO
address allocation could be done in cooperation
with the domains, for example by adding a per
domain offset to the IO addresses the domains
ask for — in effect giving each domain its own
window into the IO space.

6 Roadmap and Future Work

Our current implementation utilizes the
IOMMU to run dom0 with isolation enabled.
Since dom0 is privileged and may access all
of memory anyway, this is useful mainly as a
proof of concept for running a domain with
IOMMU isolation enabled. Our next immedi-
ate step is to run a different, non privileged and
non trusted “direct hardware access domain”
with direct access to a device and with isolation
enabled in the IOMMU.

Once we’ve done that, we plan to continue
in several directions simultaneously. We in-
tend to integrate the Calgary IOMMU support
with the existing software mechanisms such as
SWIOTLB and grant tables, both on the inter-
face level and the implementation (e.g., sharing
for code related to pinning of pages involved
in ongoing DMAs). For configuration, we are
looking to integrate with the PCI frontend and
backend drivers, and their configuration mech-
anisms.

We are planning to add support for more IOM-
MUs as hardware becomes available. In partic-
ular, we look forward to supporting Intel and
AMD’s upcoming isolation capable IOMMUs.

Longer term, we see many exciting possibili-
ties. For example, we would like to investigate
support for other types of translation schemes

used by some devices (e.g. those used by In-
finiband adapters).

We have started looking at tuning the IOMMU
for different performance/reliability/security
scenarios, but do not have any results yet.
Most current-day machines and operating sys-
tems run without any isolation, which in theory
should give the best performance (least over-
head on the DMA path). However, IOMMUs
make it possible to perform scatter-gather co-
alescing and bounce buffer avoidance, which
could lead to increased overall throughput.

When enabling isolation in the IOMMU, one
could enable it selectively for “untrusted” de-
vices, or for all devices in the system. There
are many trade-offs that can be made when en-
abling isolation: one example is static versus
dynamic mappings, that is, mapping the entire
OS’s memory into the IOMMU up front when it
is created (no need to make map and unmap hy-
percalls) versus only mapping those pages that
are involved in DMA activity. When using dy-
namic mappings, what is the right mapping al-
location strategy? Since every IOMMU imple-
ments a cache of IO mappings (an IOTLB), we
anticipate that the IO mapping allocation strat-
egy will have a direct impact on overall system
performance.

7 Conclusion: Key Research and
Development Challenges

We implemented IOMMU support on x86-64
for Linux and have proof of concept IOMMU
support running under Xen. We have shown
that it is possible to run virtualized and non-
virtualized operating systems on x86-64 with
IOMMU isolation. Other than the usual woes
associated with bringing up a piece of hard-
ware for the first time, there are also interest-
ing research and development challenges for
IOMMU support.

13



One question is simply how can we build bet-
ter, more efficient, IOMMUs that are easier to
use in a virtualized environment? The upcom-
ing IOMMUs from IBM, Intel and AMD have
unique capabilities that have not been explored
so far. How can we best utilize them and what
additional capabilities should future IOMMUs
have?

Another open question is whether we can use
the indirection IOMMUs provide for DMA ac-
tivity to migrate devices that are being accessed
directly by a domain, without going through
an indirect software layer such as the backend
driver. Live virtual machine migration (“live”
refers to migrating a domain while it continues
to run) is one of Xen’s strong points [9], but at
the moment it is mutually incompatible with di-
rect device access. Can IOMMUs mitigate this
limitation?

Another set of open question relate to the
on-going convergence between IOMMUs and
CPU MMUs. What is the right allocation strat-
egy for IO mappings? How to efficiently sup-
port large pages in the IOMMU? Does the fact
that some IOMMUs share the CPU’s page ta-
ble format (e.g., AMD’s upcoming IOMMU)
change any fundamental assumptions?

What is the right way to support fully virtu-
alized operating systems, both those that are
IOMMU aware, and those that are not?

We continue to develop Linux and Xen’s
IOMMU support and investigate these ques-
tions. Hopefully, the answers will be forthcom-
ing by the time you read this.

References

[1] AMD I/O Virtualization Technology
(IOMMU) Specification, 2006,http:
//www.amd.com/us-en/assets/

content_type/white_papers_
and_tech_docs/34434.pdf .

[2] Intel Virtualization Technology for
Directed I/O Architecture Specification,
2006,ftp://download.intel.
com/technology/computing/
vptech/Intel(r)_VT_for_
Direct_IO.pdf .

[3] IA-64 Linux Kernel: Design and
Implementation, by David Mosberger
and Stephane Eranian, Prentice Hall
PTR, 2002, ISBN 0130610143.

[4] Software Optimization Guide for the
AMD64 Processors, 2005,http:
//www.amd.com/us-en/assets/
content_type/white_papers_
and_tech_docs/25112.PDF .

[5] Xen and the Art of Virtualization, by
B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, I. Pratt, A. Warfield,
P. Barham, and R. Neugebauer, in
Proceedings of the 19th ASM
Symposium on Operating Systems
Principles (SOSP), 2003.

[6] Xen 3.0 and the Art of Virtualization, by
I. Pratt, K. Fraser, S. Hand, C. Limpach,
A. Warfield, D. Magenheimer,
J. Nakajima, and A. Mallick, in
Proceedings of the 2005 Ottawa Linux
Symposium (OLS), 2005.

[7] Documentation/DMA-API.txt.

[8] Documentation/DMA-mapping.txt.

[9] Live Migration of Virtual Machines, by
C. Clark, K. Fraser, S. Hand,
J. G. Hanseny, E. July, C. Limpach,
I. Pratt, A. Warfield, in Proceedings of
the 2nd Symposium on Networked
Systems Design and Implementation,
2005.

14



[10] Safe Hardware Access with the Xen
Virtual Machine Monitor, by K. Fraser,
S. Hand, R. Neugebauer, I. Pratt,
A. Warfield, M. Williamson, in
Proceedings of the OASIS ASPLOS
2004 workshop, 2004.

[11] PCI Special Interest Group
http://www.pcisig.com/home .

15


