
Rethinking IOMMU Address Translation
Muli Ben-Yehuda, Nadav Amit, Ben-Ami Yassour, Assaf Schuster, Dan Tsafrir

In a Nutshell
• IOMMUs translate and validate device ac-

cesses to main memory
• IOMMUs provide protection from mis-

behaving or malicious devices
• IOMMUs are used extensively on bare metal

and in virtualized systems
• IOMMU translation overhead—caused by

both software and hardware—can have a
large effect on overall system performance
and efficiency

Our main contribution is a combined software and
hardware approach to IOMMU translation based
on IOTLB injection and page table avoidance

What is an IOMMU? Map/Unmap/DMA Read/DMA Write Traces

Map, unmap, and DMA reads and writes generated by an e1000 NIC when running netperf [Amit10]

IOMMU Translation OverheadNetPerfHostChart

Page 2

IO
M

M
U

 O
ff

D
ef

er
re

d

St
ric

t

As
yn

c

AV
S

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Throughput
CPU Load (%)

G
b/

se
c

C
P

U
 L

oa
d 

(%
)

IOMMU translation overhead with different pro-
tection strategies [Amit11]. Strict protection re-
quires 85% CPU vs. 30% for no IOMMU (×2.5)

Methodology
• Use IOMMU emulation for generating

map/unmap/DMA traces
• Rethink translation based on workloads

Related Work
• Translation is expensive [Ben-Yehuda07]
• IOMMU protection strategies [Willman08]
• On-demand mapping [Yassour10]
• Exploring IOTLB design [Amit10]
• Skip, don’t walk (the page table) [Barr10]
• vIOMMU: IOMMU emulation [Amit11]

Observations
Observation #1: streaming DMA translation entries are used once and then discarded, leading to IOTLB
miss on first access and unnecessary page table updates
Observation #2: many translation entries reused after a short (e.g., 10ms) period of time

Approach

• IOTLB injection: software injects streaming DMA entries which are likely to be accessed in the near
future directly into the IOTLB, bypassing the page tables

• Page table avoidance: the d-buffer is positioned between the IOTLB and the page tables

– On map: entries are injected directly to the IOTLB
– When the IOTLB fills up and an entry needs to be evicted, the entry moves to the d-buffer
– When the d-buffer is full, software moves all d-buffer entries to the page tables in a single batch

• On DMA access the hardware scans the IOTLB first, then the d-buffer, then the page tables
• IOTLB injection improves IOTLB hit rates and reduces page table walk memory access overhead
• Page table avoidance reduces page table update memory access overhead

Results (Work in Progress)

IOTLB miss rates for different IOTLB configurations (lower miss rate is better). left shows e1000 with
netperf, right shows SCSI controller with bonnie++. MPRE is mapping prefetch, which behaves
similarly to IOTLB injection. Preliminary results and full experimental setup are available in [Amit10]


