What is an IOMMU?

Main memory

Physical addresses

In a Nutshell

e IOMMUs translate and validate device ac-
cesses to main memory

e [IOMMUs provide protection from mis-
behaving or malicious devices

e [OMMUs are used extensively on bare metal
and in virtualized systems

e JOMMU translation overhead—caused by
both software and hardware—can have a

large effect on overall system performance
and efficiency

Device abddresses Virtual agddresses

Our main contribution is a combined software and
hardware approach to IOMMU translation based
on IOTLB injection and page table avoidance

Observations

Observation #1: streaming DMA translation entries are used once and then discarded, leading to IOTLB
miss on first access and unnecessary page table updates

Observation #2: many translation entries reused after a short (e.g., 10ms) period of time

Approach

SYSTEM SYSTEM
SOFTWARE SOFTWARE
OS: F 3 OS:
PAGE R INJECTION (O
TABLE IOTLE HWV:
UPDATE O EVICTION
~_ D

HW\V:
IOTLB
UPDATE

QgigaupFéé;;}
OS: BATCH
TRANSFER

PAGE
TABLES

e JOTLB injection: software injects streaming DMA entries which are likely to be accessed in the near
future directly into the IOTLB, bypassing the page tables

e Page table avoidance: the d-buftfer is positioned between the IOTLB and the page tables

— On map: entries are injected directly to the IOTLB

— When the IOTLB fills up and an entry needs to be evicted, the entry moves to the d-buffer
— When the d-buffer is full, software moves all d-buffer entries to the page tables in a single batch

e On DMA access the hardware scans the IOTLB first, then the d-butfer, then the page tables
e JOTLB injection improves IOTLB hit rates and reduces page table walk memory access overhead
e Page table avoidance reduces page table update memory access overhead

PAGE
TABLES

Rethinking IOMMU Address Translation

Muli Ben-Yehuda, Nadav Amit, Ben-Ami Yassour, Assaf Schuster, Dan Tsafrir

Map/Unmap/DMA Read/DMA Write Traces

OxFFFFF

OxF FF FA - -

Read
VWrite
Unmap

OxFFFF2

L}
} i
L4
I
&
L4
"

O FFE &

OxFFFEZ2

Page Frame

Do F- D

OxFFFLC 2

O FF F 88

FE O e FaEO T S0 81 00 8200 8300]

Time (Number of IOMMU Accesses)

8500 5000

Map, unmap, and DMA reads and writes generated by an e1000 NIC when running netperf [Amit10]

|IOMMU Translation Overhead

10000 100%

9000 90%
8000 80%
7000 70%
6000 60%
5000 50%
4000 40%
3000 30%
2000 20%
1000 10%
0

Methodology

o Use IOMMU emulation for generating
map /unmap/DMA traces

e Rethink translation based on workloads

CPU Load (%)

Related Work

Translation is expensive [Ben-Yehuda07]
IOMMU protection strategies [WillmanO8]
On-demand mapping [Yassour10
Exploring IOTLB design [Amit10
Skip, don’t walk (the page table) [Barr10]
vIOMMU: IOMMU emulation [Amit11]

0%
- >
Z

Deferred

B Throughput
B CPU Load (%)

IOMMU translation overhead with different pro-
tection strategies [Amitll]. Strict protection re-
quires 85% CPU vs. 30% for no IOMMU (x2.5)

Results (Work in Progress)

0 % 10% 15% 20% 25% 30% 0% 1% 2% a3 4% % B% T B 9% 10%

Naive |

Naive |

OPT | OPT |
ALH | ALH |
ALH, EH | ALH, EH |
ALH, EH, OF | I ALH, EH, OF |

SD-ALH, EH, OF | SD-ALH, EH, OF |

SD-ALH, EH, MPRE, OF | SD-ALH, EH, MPRE, OF |

SD-ALH, EH, MPRE, OF, 8-Pre | SD-ALH, EH, MPRE, OF, 8-Pre |

IOTLB miss rates for different IOTLB configurations (lower miss rate is better). left shows el000 with

netperf, right shows SCSI controller with bonnie++. MPRE is mapping prefetch, which behaves
similarly to IOTLB injection. Preliminary results and tull experimental setup are available in [Amit10]

