What is an IOMMU?

Main memory

Physical addresses

In a Nutshell

e IOMMUs translate and validate device ac-
cesses to main memory

e [IOMMUs provide protection from mis-
behaving or malicious devices

e [OMMUs are used extensively on bare metal
and in virtualized systems

e JOMMU translation overhead—caused by
both software and hardware—can have a

large effect on overall system performance
and efficiency
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Our main contribution is a combined software and
hardware approach to IOMMU translation based
on IOTLB injection and page table avoidance

Observations

Observation #1: streaming DMA translation entries are used once and then discarded, leading to IOTLB
miss on first access and unnecessary page table updates

Observation #2: many translation entries reused after a short (e.g., 10ms) period of time

Approach
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e JOTLB injection: software injects streaming DMA entries which are likely to be accessed in the near
future directly into the IOTLB, bypassing the page tables

e Page table avoidance: the d-buftfer is positioned between the IOTLB and the page tables

— On map: entries are injected directly to the IOTLB

— When the IOTLB fills up and an entry needs to be evicted, the entry moves to the d-buffer
— When the d-buffer is full, software moves all d-buffer entries to the page tables in a single batch

e On DMA access the hardware scans the IOTLB first, then the d-butfer, then the page tables
e JOTLB injection improves IOTLB hit rates and reduces page table walk memory access overhead
e Page table avoidance reduces page table update memory access overhead
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Map, unmap, and DMA reads and writes generated by an e1000 NIC when running netperf [Amit10]

|IOMMU Translation Overhead
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Methodology

o Use IOMMU emulation for generating
map /unmap/DMA traces

e Rethink translation based on workloads
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Related Work

Translation is expensive [Ben-Yehuda07]
IOMMU protection strategies [WillmanO8]
On-demand mapping [ Yassour10
Exploring IOTLB design [Amit10
Skip, don’t walk (the page table) [Barr10]
vIOMMU: IOMMU emulation [Amit11]
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IOMMU translation overhead with different pro-
tection strategies [Amitll]. Strict protection re-
quires 85% CPU vs. 30% for no IOMMU (x2.5)

Results (Work in Progress)
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IOTLB miss rates for different IOTLB configurations (lower miss rate is better). left shows el000 with

netperf, right shows SCSI controller with bonnie++. MPRE is mapping prefetch, which behaves
similarly to IOTLB injection. Preliminary results and tull experimental setup are available in [Amit10]



