
IOMMU: Strategies for Mitigating the IOTLB Bottleneck

Nadav Amit1 Muli Ben-Yehuda2 Ben-Ami Yassour2

namit@cs.techion.ac.il muli@il.ibm.com benami@il.ibm.com

1Technion – Israel Institute of Technology
2IBM Research – Haifa

Abstract

The input/output memory management unit (IOMMU)
was recently introduced into mainstream computer ar-
chitecture when both Intel and AMD added IOMMUs to
their chip-sets. An IOMMU provides memory protection
from I/O devices by enabling system software to control
which areas of physical memory an I/O device may ac-
cess. However, this protection incurs additional direct
memory access (DMA) overhead due to the required ad-
dress resolution and validation.

IOMMUs include an input/output translation looka-
side buffer (IOTLB) to speed-up address resolution, but
still every IOTLB cache-miss causes a substantial in-
crease in DMA latency and performance degradation of
DMA-intensive workloads. In this paper we first demon-
strate the potential negative impact of IOTLB cache-
misses on workload performance. We then propose
both system software and hardware enhancements to re-
duce IOTLB miss rate and accelerate address resolution.
These enhancements can lead to a reduction of over 60%
in IOTLB miss-rate for common I/O intensive work-
loads.

1 Introduction

The majority of current I/O devices support direct mem-
ory access (DMA), which allows them to access the sys-
tem memory independently of the CPU, thus accelerat-
ing I/O transactions. Yet DMA, as commonly imple-
mented in the x86 architecture, has three major draw-
backs [3]. First, there is no protection from faulty drivers
or devices, which might mistakenly or intentionally ac-
cess memory regions that the device is not allowed to
access. Second, DMA is unsuitable for use in virtual-
ization environments by guest virtual machines, since on
the one hand the guests cannot know the host physical
address of I/O buffers that are utilized by I/O devices,
and on the other hand the device is unaware of virtual-

ization and the guest physical address space. Third, in
the x86-64 architecture, some legacy I/O devices do not
support long addresses and therefore cannot access the
entire physical memory [7].

Even though software-based partial solutions such as
bounce-buffering and DMA descriptors validation [3,19]
address this issue, these solutions introduce additional
work for the CPU, do not offer protection from faulty
devices, and do not enable DMA usage in virtual guests.
Therefore, DMA Remapping (DMAR) was introduced in
hardware. DMAR is one of the main features of the
IOMMU that allows definition of an abstract domain
that serves as an isolated environment in the platform,
to which a subset of the host physical memory is allo-
cated [1,7]. IOMMU hardware intercepts DMA transac-
tions and utilizes I/O page tables to determine whether
the access is permitted and to resolve the actual host
physical address that will be accessed. The setup of these
I/O page tables is the responsibility of privileged system
software (a hypervisor or bare-metal operating system).

According to its usage model, the operating system
sets separate DMAR translation tables for different pro-
tection contexts, maps virtual I/O memory regions on-
demand, and unmaps the region once it is no longer
needed. Several strategies for deciding when to map and
unmap were proposed [4, 19, 20], yet single-use map-
pings is the common strategy that offers maximal pro-
tection. According to this strategy, illustrated in Figure 1,
a separate mapping is created for each DMA descriptor
and this mapping is unmapped once the corresponding
DMA transaction is completed. This scheme is required
to prevent the device from using stale mappings and ac-
cessing disallowed memory regions. Consequently, a
single-use mapping strategy requires recurring mapping
and unmapping operations for streaming buffers, which
can substantially raise the CPU utilization [4].

Hence, the computational cost of the mapping and un-
mapping of memory regions in the DMAR units is there-
fore considered the main bottleneck [3, 19]. One ap-



Device	  
Driver	  

Mapping	  
Layer	   IOMMU	  

I/O	  
Device	   Memory	  

Map	  in	  paging	  hierarchy	  

Resumes	  execu:on	  

Interrupt	  

Opera:ng	  
System	  

Ini:ate	  Transac:on	  

Virtual	  I/O	  
Address	  

Allocate	  vacant	  virtual	  page	  

Map	  streaming	  	  
I/O	  buffers	  

Ini:ate	  transac:on	  to	  Virtual	  I/O	  Address	  
Transac:on	  to	  
virtual	  I/O	  
address	  

Translate	  virtual	  
	  I/O	  address	  

Transac:on	  to	  host	  
physical	  address	  

Unmap	  buffer	   Unmap	  in	  paging	  hierarchy	  

Flush	  paging	  entry	  in	  IOMMU	  

Interrupt	  Handler	  

Mark	  page	  as	  vacant	  

Figure 1: IOMMU Usage-Model

proach for mitigating this bottleneck was improving the
free space management of the IOMMU mapping layer
in order to decrease the overhead related to mapping
and unmapping operations [17]. Another approach is
to shorten the unmappings time by performing asyn-
chronous IOTLB flushes during invalidation through the
usage of invalidation queues [7].

In addition to the software-induced overhead in
IOMMU manipulation, there is also an orthogonal ques-
tion of whether the IOMMU hardware address resolution
mechanism introduces significant overhead. To the best
of our knowledge, this work is the first attempt to ad-
dress this question. As noted before, whenever a DMA
access is performed through the IOMMU, the IOMMU
translates the virtual I/O address to the machine (host
physical) address. To efficiently perform this task, an I/O
Translation Lookaside Buffer (IOTLB) is included in the
IOMMU. However, every IOTLB cache-miss presents
high latency as it requires physical address resolution,
which is performed by a page-walk through the DMAR
paging hierarchy in the main memory. Thus, IOTLB
implementation and its usage by operating systems may
have significant impact on I/O throughput.

In this work we analyze the impact of software and
hardware design choices and implementation on the per-
formance of the IOMMU’s DMAR address resolution
mechanism. As demonstrated in Section 2, once the
computational cost of frequent mapping and unmapping
of IOMMU buffers is sufficiently reduced [19, 20], the
address resolution mechanism becomes the main bottle-
neck. We examine the device memory access patterns
of various devices and show, for the first time, strategies
for reducing the miss-rate of the IOTLB—via pure soft-
ware modifications or hardware changes with reasonable
costs.

The main contributions of this work are as follows:

• We identify the significance of the IOTLB as a po-
tential system bottleneck and demonstrate that it
can increase execution time of DMA operations by
47%.

• We present a new methodology for evaluation of
I/O device memory access patterns in the presence
of an IOMMU. Our method uses virtualization and
does not require additional hardware. For achieving
this goal we present the vIOMMU— the first virtual
IOMMU implementation.

• We analyze actual device memory access patterns
and show the resulting bottlenecks. Consequently,
we propose software strategies and hardware modi-
fications for reducing IOTLB miss-rates and evalu-
ate their impact on the miss-rate of common work-
loads, devices, and operating systems.

Section 2 shows that the IOTLB is an actual bottle-
neck and analyzes the cache-miss impact on the overall
throughput; Section 3 analyzes virtual I/O memory ac-
cess patterns, and Section 4 proposes strategies for re-
duction of the IOTLB miss-rate and evaluates their im-
pact; Section 5 describes related work,and our conclu-
sions are presented in Section 6.

2 IOMMU Performance Analysis

Under regular circumstances, the IOTLB has not been
observed to be a bottleneck so far. For several devices,
the virtual I/O memory map and unmap operations con-
sume CPU-time, which is greater than the time of the
corresponding DMA transaction (data not shown).

Accordingly, to observe the IOTLB bottleneck under
normal circumstances, a setup of synthetic configuration
was required.

First, to eliminate the time required by the CPU for
DMA map and unmap operations, we used the pseudo
pass-through mode of the IOMMU. This mode works by
using a fixed identity mapping in the IOMMU page ta-
bles for all of the devices, thus eliminating most of the
mapping and unmapping operations and their associated
overhead. In addition, this mode uses static mappings —
it does not change mappings and does not flush IOTLB
entries as a use-once mapping strategy does.

Second, we constructed a stress-test micro-benchmark
using a high-speed I/O device. For this purpose our
experiments utilized Intel’s I/O Acceleration Technol-
ogy (I/OAT) which enables asynchronous DMA memory
copy in bandwidths of over 16Gbps per channel [18].

This benchmark goal was to experience different
IOTLB miss-rates, according to the IOTLB utilization.



Since no IOTLB flushes occur in the pseudo pass-
through mode, mappings could be reused and therefore
IOTLB cache entries could be used for subsequent ac-
cesses of pages that were previously accessed by the I/O
device. Accordingly, IOTLB cache-misses occur when
a certain page mapping is evicted before its subsequent
use due to cache conflicts.

To directly control the number of IOTLB cache misses
caused by cache evictions, we varied the number of
source pages (1–256) used for the copy operations, while
keeping the total number of copy operations fixed. Hot-
spots in IOTLB cache-sets were eliminated by accessing
the source pages in a round-robin manner. As a result,
IOTLB misses were most likely to occur once the IOTLB
cache was fully utilized by the mappings of the source
pages, the destination page and the I/OAT descriptors.

Each test was conducted twice—once with IOMMU
enabled and once with IOMMU disabled—and the expe-
rienced execution time penalty was calculated. In addi-
tion, we used various block sizes as a copy source, ex-
pecting that the effect of a cache miss will be more pro-
nounced compared to the memory copy overhead when
small blocks are copied. To confirm that we managed to
saturate the IOMMU and measure the actual execution
time penalty imposed by its hardware, in each configura-
tion we asserted that the processor is idle, after all DMA
setup operations were done.

The experiments were conducted using Intel Xeon
X5570 running at 2.93 GHz with the Intel X58 chipset.
All the DMA copies were conducted using a single
I/OAT channel. The experiment results are shown in Fig-
ure 2.

0% 

5% 

10% 

15% 

20% 

25% 

30% 

35% 

40% 

45% 

50% 

1 2 4 8 16 32 64 128 256 

E
xe

cu
tii

on
 T

im
e 

P
en

al
ty

 w
/IO

M
M

U
 (%

) 

No. of Unique Source Page Frames 

4096 Bytes 
2048 Bytes 
1024 Bytes 

Figure 2: Execution time penalty due to IOMMU for
DMA memory copy operations of various sizes

As can be easily seen, the execution time penalty im-
posed by the IOMMU remains very low while the num-

ber of source pages is lower or equal to 16. In contrast, a
copy operation from 32 source pages increased the exe-
cution time by 8% for a whole 4KB page and by 34% for
1KB blocks. Increasing the number of pages from 32 has
a lesser effect afterward, yet keeps increasing the execu-
tion time by up to 15% for a whole 4KB page and 47%
for 1KB blocks when using 256 different pages as the
source. Thus, we conjecture that these observed penal-
ties are a result of IOTLB misses. Apparently, when 32
pages are used as sources, the IOTLB exceeds its capac-
ity, resulting in IOTLB thrashing.

3 Virtual I/O Memory Access Patterns

The results of the execution time penalty associated with
IOTLB misses show there should be substantial room for
improvement of the IOTLB which would improve the
throughput and latency of DMA operations by reducing
the miss-rate. To propose strategies for such improve-
ments, we investigated the virtual I/O memory access
patterns of common devices. Therefore, we evaluated
several devices configurations that are expected to be-
have differently and expose a representative variety of
memory patterns and problems, thereby resulting in an
educated proposal of IOTLB miss-rate reduction strate-
gies.

3.1 vIOMMU
Currently, the common techniques for analyzing DMA
transactions involve the usage of dedicated hardware
such as PCI Pamette [14]. However, such hardware de-
vices are not always available for researchers. In con-
trast, the evaluation methodology presented here uses
virtualization for capturing a trace of I/O devices’ mem-
ory access patterns, without any additional hardware. We
implemented this methodology for the KVM hypervi-
sor [11].

Primary to our evaluation methodology is the imple-
mentation of a “virtual IOMMU”, vIOMMU. An operat-
ing system is run on a virtual machine, and the hypervi-
sor captures all of the interactions between the operating
system, its hardware devices, and the virtual platform’s
IOMMU. To capture realistic interactions, the vIOMMU
implements the same hardware interfaces as Intel’s VT-d
IOMMU, in the same manner in which an emulated vir-
tual device implements the interfaces as a real hardware
device [2, 16]. Thus the operating system interacts with
vIOMMU in exactly the same way that it interacts with
Intel’s VT-d IOMMU when running on bare-metal.

vIOMMU’s implementation components and data
structures are illustrated in Figure 3. First, vIOMMU em-
ulates the IOMMU registers, enabling write operations of
the guest to the registers, and returns the expected value



Guest

Virtualiza-on  
BIOS	  
Creates	  	  
ACPI	  Tables	  

Guest	  
DMAR	  
Tables	  

OS  
Unmodified	  DMAR	  

ACPI	  
Tables	  

Guest	  
IOMMU	  
Registers	  

IOMMU  Module  
1.	  Registers	  Emula?on	  
2.	  I/O	  Address	  Resolu?on	  

Device  
Driver	  

Device  Emulator  (QEMU)  
Requests	  DMA	  Address	  
Transla?ons	  

Hypervisor    
(KVM)

creates	  
maintains	  creates	   reads	  

Accesses	  the	  IOMMU	  Registers:	  
1.	  Map	  (enabled	  caching	  mode)	  
2.	  Unmap	  (flush	  IOTLB)	  
3.	  Others	  

Emulates	  
Page-‐walk	  

I/O	  opera?on	  
configura?on	  
triggers	  VM-‐exit	  

maintains	  translates	  

Figure 3: vIOMMU implementation modules and data
structures

upon read access. Second, we modified the virtual BIOS
code to set up Advanced Configuration and Power Inter-
face (ACPI) tables for the DMAR and DMA Remapping
Hardware Unit Definition (DRHD) structures. Last, we
adapted the emulation code of the DMA read/write oper-
ations of various devices: E1000 NIC [6], LSI 53C895A
SCSI [12] and IDE. Like the IOMMU hardware, our im-
plementation intercepted DMA operations, and, prior to
these accesses, performed proper machine address reso-
lution according to the IOMMU virtual registers, the vir-
tual device number and function number, and the guest’s
DMAR translation structures. These modifications en-
abled us to run unmodified Linux kernels in virtual ma-
chines, which access an IOMMU and program it accord-
ing to their needs.

To log traces of virtual I/O memory related operations,
in the hypervisor we traced each IOMMU access—every
DMAR operation of mapping and unmapping executed
by the OS, and every read and write DMA access ex-
ecuted by the emulated devices. The time axis in Fig-
ures 4, 5, 6 and 7 is measured in discrete virtual time.
We advance to the next time step whenever an IOMMU
access occurs.

Using vIOMMU we executed various benchmarks in
the guest with virtual (emulated) devices. These traces
were later analyzed through a TLB emulator in which
we implemented the proposed strategies for lowering the
IOTLB miss-rate and compared the various approaches.

Experiments were performed using Linux 2.6.31 as
the guest operating system. For the experiments we used
the mapping layer’s strict mode, which performs imme-
diate page specific invalidations when unmapping is re-
quested. Our hypervisor implementation was based on
KVM-88 [11].

3.2 Analysis of Virtual I/O Memory Access
Patterns

Analysis of the results is aided by knowledge of the im-
plementation of the relevant device drivers. As shown in
Figures 5, 6 and 7, Linux’s IOMMU driver starts map-
ping virtual memory I/O at a certain virtual address and
continues in descending order.

An additional distinction can be observed with respect
to the following two kinds of DMA mappings employed
by Linux [13]:

• Consistent DMA mappings (sometimes referred to
as Coherent DMA Mappings) are persistent map-
pings that are usually mapped once at driver ini-
tialization and unmapped when the driver is re-
moved. These mappings are used by network cards
for DMA ring descriptors, SCSI adapter mailbox
command data structures, etc.

• Streaming DMA mappings are ephemeral mappings
that are usually mapped for one DMA transaction
and unmapped as soon as it completes. Such map-
ping are used for networking buffers transmitted or
received by NICs and for file-system buffers written
or read by a SCSI device.

As shown in Figure 5 consistent DMA mappings are
performed by the device drivers before any streaming
DMA mappings. In addition, the consistent DMA map-
ping region is consistently and rapidly accessed, as ev-
ident in Figure 4 and 6. These characteristics are ex-
pected to repeat for most I/O device drivers and operat-
ing systems since they stem from the different functions
performed by the mapped regions (e.g., DMA ring de-
scriptors vs. transient buffers).

As for the streaming DMA mappings, two methods for
mapping its memory are available:

• Scatter-gather list mapping - Scatter-gather (vec-
tored I/O) is used to map a non-physically contigu-
ous memory region. In this case, a list of mem-
ory pages is delivered to the DMA mapping layer,
which enables the usage of multiple buffers. The
LSI SCSI driver uses such mappings. As apparent
in Figure 6, the result of the Linux implementation
is that consecutive pages in the list are allocated to
mappings in ascending order within each scatter list.

• Contiguous physical memory mapping - Devices
that do not support scatter-gather lists require the
usage of contiguous memory mappings. Some de-
vice drivers that use these mappings map each page
separately. As apparent in Figure 4, mappings in
such manner results in descending addresses of the
virtual I/O page frame.



0xFFFFF 

0xFFFC0 

0xFFF80 

0xFFF40 

0xFFF00 

0xFFEC0 
2000 3000 4000 5000 6000 7000 8000 9000 10000 

Pa
ge

 F
ra

m
e 

Time (Number of IOMMU Accesses) 

Read 
Write 
None 

Figure 4: E1000 NIC—netperf send—virtual I/O memory access

In the case of multiple devices that issue simultane-
ous DMA transactions, each device has its own separate
virtual I/O memory space (its own “domain”); thus, its
utilized regions can overlap with other devices’ mapped
virtual I/O memory regions This scheme may result in
multiple devices that access the same virtual I/O page in
a separate virtual I/O address space. This behavior was
demonstrated when two E1000 NIC were simultaneously
used as shown in Figure 7. This issue is further studied
in Section 4.2.

It is apparent in the virtual I/O memory access pattern
of the two E1000 NIC configuration which is demon-
strated in Figure 7 that the two virtual I/O memory re-
gions in use overlap. Indeed, according to the Linux
IOMMU mapping layer implementation it is clear the
same virtual I/O pages are likely to be accessed in gen-
eral by multiple devices. Specifically, the consistent
DMA mappings of all the devices are evidently mapped
in the same few virtual I/O pages. Possible issues of such
mappings are further described in detail and studied in
Section 4.2.

4 IOTLB Miss-Rate Reduction Ap-
proaches

To increase DMA throughput, the number of IOMMU
IOTLB misses should be decreased, as each miss re-
quires a new page-walk for translation that can result in
several consecutive accesses to memory. Until the trans-
lation is done and the physical host address is resolved, a
DMA transaction cannot be completed, thereby increas-
ing latency. Next, on the basis of the device virtual I/O
memory access patterns, we considered several strategies
likely to decrease the miss-rate.

4.1 Streams Entries Eager Eviction
Streaming DMA mappings, such as those used by NICs
and SCSI devices, are likely to be mapped for the du-
ration of a single DMA transaction [13]. Therefore,
caching of these entries is likely to have only a small
positive impact on lowering the IOTLB miss-rate. More-
over, caching of these entries may cause evictions of con-
sistent DMA mappings that are cached in the IOTLB and
even increase the IOTLB miss-rate.

Intel approached this issue by suggesting Eviction
Hints (EH) [7]. Once EH is enabled, pages that are
marked as transient mappings (TM) in the page-table can
be eagerly evicted by the IOMMU hardware as needed.



0xFFFFF 

0xFFFCA 

0xFFFD2 

0xFFFDA 

0xFFFE2 

0xFFFEA 

0xFFFF2 

0xFFFFA 

0xFFFDA 

7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 8600 

Pa
ge

 F
ra

m
e 

Time (Number of IOMMU Accesses) 

Map 
Read 
Write 
Unmap 
None 

Figure 5: E1000 NIC—netperf send—map/unmap operations

Accordingly, a simple approach is to mark all streaming
DMA mappings as TM, assuming they are likely to be
accessed by the I/O device only once. The EH mech-
anism should not contradict the prefetch of streaming
DMA mappings into a prefetch buffer where eviction
hints have no effect. We note that the EH mechanism
complements the prefetching of streaming DMA map-
pings into a prefetch buffer, as described in Section 4.5.
Prefetching helps because the mapping is prefetched be-
fore it is used; EH helps because the mapping is dis-
carded as soon as it is used, making room for other map-
ping

4.2 Non-Overlapping Coherent Frames
Unlike streaming DMA mappings, consistent DMA
mappings that are mapped at the device driver initializa-
tion and unmapped when the driver is removed, are likely
to be accessed frequently. According to the method used
in the IOTLB for determining each frame’s IOTLB set, it
is desirable that those entries be evenly distributed.

No public data was available for us to see how the
IOTLB set is determined for each mapped frame, yet
the simplest scheme is to determine the set according to
the virtual I/O address, without taking into consideration
the originating device or address space (domain). Since
operating systems such as Linux allocate virtual I/O re-

gions from a certain virtual I/O address for each domain,
and since most of the drivers perform coherent memory
mappings before they perform the streaming DMA map-
pings, it is likely that the coherent page frames will not
be evenly distributed. Under these conditions, when mul-
tiple devices are in use and each has its own coherent
mapping, hot-spots will appear in some of the IOTLB
sets, causing rapid evictions and IOTLB thrashing, and
resulting in a higher miss-rate.

To address this issue, and since the virtual I/O ad-
dresses for both consistent and streaming DMA mapping
are allocated from the same pool, we propose virtual I/O
page-coloring, i.e., offsetting each device’s virtual I/O
address space by a different number of frames. The off-
set can either be determined by the number of frames
for coherent mappings that were previously allocated to
other devices, or by a fixed number of frames. This solu-
tion does not require any hardware modification.

4.3 Large TLB and Higher TLB Associa-
tivity

Obviously, the greater the number of entries in the
IOTLB, the less likely it is that caching a new entry in the
IOTLB will cause an eviction of another entry that will
be used later. Enlarging the IOTLB can be done by either



0xFFF80 

0xFFFA0 

0xFFFC0 

0xFFFE0 

0xFFFFF 

600 1100 1600 2100 2600 

Pa
ge

 F
ra

m
e 

Time (Number of IOMMU Accesses) 

Read 
Write 
None 

Figure 6: SCSI controller - bonnie++ write—virtual I/O memory access

increasing the number of sets or increasing the IOTLB
associativity. However, since streaming DMA mappings
are only cached for a short while and show spatial local-
ity IOTLB thrashing is less likely to occur. Increasing
the number of IOTLB entries increases the complexity
and cost of implementation in hardware.

4.4 Super-Pages
For a long time, the MMU super-pages strategy has been
argued to improve TLB coverage and relieve TLB pres-
sure [5,15]. In the super-page strategy, the operating sys-
tem can use multiple page-sizes according to its needs.
Accordingly, fewer TLB entries are utilized when the
bigger page-size is in use, and evictions are less likely
to occur.

Both Intel’s VT-d and AMD’s Pacifica IOMMU ar-
chitecture support multiple IOMMU page sizes other
than 4KB, 2MB, 1GB, 512GB, and 256TB [1, 7], and
AMD’s architecture also supports additional page sizes.
However, AMD specifically notes that implementations
are free to cache translations of super-pages by split-
ting them into multiple 4KB cache entries. Obviously,
the IOTLB miss-rate is not likely to improve, unless the
super-page is cached as a whole in one entry.

The main drawback of super-pages usage in the
IOMMU is the coarse protection granularity the IOMMU

can offer. The bigger the mapped page, the bigger the
area of contiguous memory inside its protection domain.
Any entity (device) that has access to any memory buffer
inside that area, by definition then has access to all of
the other memory inside that area. Therefore, the bigger
the mapped page, the more likely it is that one device
I/O buffer might reside with another device I/O buffer or
operating system code within the same super-page.

Due to the coarse granularity of the protection offered
by super-pages, and since the number of TLB entries
dedicated for super-pages is usually low, the use-once
usage model of the IOMMU does not seem to use super-
pages efficiently as many opportunities to share IOTLB
entries are lost. One usage model that seems to fit super-
pages is the shared usage-model [19] in which map-
pings are shared among DMA descriptors that point to
the same physical memory.

This shared usage-model was used for our evaluation.
Figure 8 and Figure 9 demonstrate the desired cache
set size, which is the number of IOTLB entries in use
in E1000/netperf and SCSI/bonnie++ benchmarks,
respectively. As it appears, in both configurations, the
use of super-pages does in fact drastically decrease the
number of entries required in the IOTLB, indicating that
IOTLB miss-rates substantially decrease when super-
pages are in use.



0xFFFF8 

0xFFFF0 

0xFFFE8 

0xFFFE0 

0xFFFD8 

0xFFFFF 

6500 6600 6700 6800 6900 7000 7100 7200 

Pa
ge

 F
ra

m
e 

Time (Number of IOMMU Accesses) 

A - Map 

A - Read 

A - Write 

A - Unmap 

B - Map 

B - Read 

B - Write 

B - Unmap 

none 

Figure 7: Two E1000 NICs—netperf send—map/unmap operations

0

5

10

250

255

260

265

270

275

280

5000 7000 9000 11000 13000 15000 17000 19000

Time

N
o

. 
o

f 
P

a
g

e
 E

n
tr

ie
s

4KB Pages
2MB Super-Pages
1GB Super-Pages
Series4

Figure 8: Number of IOTLB entries in use—
E1000/netperf

4.5 Prefetching Techniques

As cache structure improvements have only a limited op-
portunity to reduce the miss-rate, it is important to re-
duce the latency incurred on a miss by reducing or hid-
ing some or all of its cost. Prefetch is one of the popular
approaches for this issue, widely used in TLBs [8].

0

10

20

30

40

50

60

70

500 1000 1500 2000 2500 3000 3500

Time

N
o

. 
o

f 
P

a
g

e
 E

n
tr

ie
s

4KB Pages
2MB Super-Pages
1GB Super-Pages

Figure 9: Number of IOTLB entries in use—
SCSI/bonnie++

Prefetching techniques can be divided into two distinct
categories: techniques that are designed for strided ref-
erence patterns, and techniques that base their decisions
on history [10]. Methods intended for strided reference
patterns are likely to benefit from the spatial locality of
DMA accesses, shown in the examples in Figures 4 and
6.



In contrast, we argue that methods that base their de-
cision on history, whose hardware implementation is in-
herently more complicated and thus have a higher cost,
are not likely to show a real benefit. This, we argue, is
due to the fact that mappings are usually used only once
before they are unmapped and their next use is not likely
to be related to the current use.

4.6 Adjacent Mappings Prefetch

Under certain conditions, streaming DMA mappings of
devices are likely to be accessed with some level of spa-
tial address locality. The first condition is that the vir-
tual I/O addresses allocated by the mapping layer show
spatial locality. In Linux, we can induce from the map-
ping layer implementation that this is indeed the case for
pages of blocks within a scatter-gather list and for map-
pings of a contiguous block that spans multiple pages.
From our experience, the red-black tree allocation mech-
anism also demonstrates spatial locality in the general
case when the virtual I/O memory is lightly fragmented,
as shown for the E1000 NIC netperf benchmark in
Figure 5.

The second condition is that the hardware device ac-
cesses the streaming memory mappings in an orderly
fashion. This is the case for high-throughput devices
with small payload requests such as NICs [7]. It can be
argued that hardware offloading mechanisms make de-
vices more likely to access memory mappings in an or-
derly fashion.

For the cases where those two conditions are ful-
filled, Intel suggests the usage of Address Locality Hints
(ALH) [7]. When supported, each I/O device can be
marked to note whether it is likely to demonstrate spatial
locality, which may be used by the IOMMU hardware to
prefetch adjacent mappings. This mechanism resembles
other streaming buffers prefetches mechanisms [8].

However, it is questionable whether both higher and
lower adjacent mappings should be prefetched, as the di-
rection is likely to be predetermined. As mentioned in
Section 3.2, in Linux pages of a certain mapping get as-
cending addresses, whereas the subsequent mapping get
a lower address. Therefore, during the mapping of an
I/O virtual page, the mapping layer already knows the
location of the subsequent I/O page. Therefore, we pro-
pose a variant of the ALH mechanism—Single-Direction
Address Locality Hints (SD-ALH): An ALH mechanism
with domain context level or page table leaves hints
that mark whether the ALH mechanism should prefetch
higher adjacent pages or lower adjacent pages.

Multiple pages mapping through a single call raises
another issue with the existing ALH implementation.
The result of multiple pages mappings, as can be seen
in the LSI SCSI bonnie++ benchmark in Figure 6, is

that even if there are no gaps within the virtual I/O ad-
dress space due to alignment, the last virtual I/O page
frame in a certain scatter-gather list and the first frame in
the subsequent list will not be adjacent. Thus, the first
virtual I/O page frame in the subsequent list cannot be
prefetched under this scheme. Therefore, it is prefer-
able to modify the mapping layer implementations so
that multiple pages mappings are performed in descend-
ing order as well.

4.7 Explicit Caching of Mapped Entries
Streaming DMA mappings are usually mapped for a sin-
gle DMA transaction. Therefore, it is likely that the first
access to a streaming mapping will cause a miss unless
it is prefetched. The adjacent mappings prefetch mecha-
nism can usually perform a prefetch of these pages, yet it
is likely not to prefetch the translation of the next frame
in use in certain common situations:

• The next adjacent frame is still not mapped when
the last mapped frame is accessed.

• Several groups of pages are mapped, when no spa-
tial locality is demonstrated between the groups.
Such group of pages is mapped when one maps a
scatter-gather list or a contiguous physical mem-
ory which consists several pages. This scenario can
be observed in the case of SCSI LSI bonnie++
benchmark in Figure 6.

Therefore, we propose the Mapping Prefetch (MPRE)
approach. With this approach, the operating system ex-
plicitly hints the IOMMU hardware to prefetch the first
mapping of each group of streaming DMA mappings,
where a group is defined as a scatter-gather list or several
contiguous pages that are mapped consecutively. The
number of additional unnecessary prefetches is likely to
be negligible as only the first mapping of each group is
explicitly prefetched under this approach.

4.8 Evaluation of Strategies
We performed a trace-driven simulation of the IOTLB
to evaluate our proposed approaches for reducing the
IOTLB miss-rate. It should be noted that except for the
architecture specifications, no data was published regard-
ing the structure of Intel’s and AMD’s IOMMU. There-
fore, we could not use their existing IOTLB designs as
base-lines for the evaluation. Instead, our base-line con-
figuration was of a reasonable default IOTLB design: 32
entries, a two-way cache, a least recently used (LRU)
eviction policy, and four entries in a fully-associative
prefetch-buffer. We evaluated the effect of the proposed
methods on the miss-rate of an E1000 NIC device run-
ning netperf, a SCSI device running the bonnie++



0% 5% 10% 15% 20% 25% 30% 

Naïve 

OPT 

ALH 

ALH, EH 

ALH, EH, OF 

SD-ALH, EH, OF 

SD-ALH, EH, MPRE, OF 

SD-ALH, EH, MPRE, OF, 8-Pre 

ALH, EH, 4-Ways 

ALH, EH, 64-Entries 

IOTLB Miss Rate 

Figure 10: Miss-rate of different configurations -
E1000/netperf

write test, and two E1000 devices running netperf
concurrently.

In addition, we evaluated the optimal eviction policy
(OPT-EV) algorithm as a reference. This algorithm has
complete knowledge of the future access sequence and
evicts the IOTLB entry that will be used furthest in the
future. It can be proved that no other eviction policy can
perform better than this reference algorithm.

The strategies notation is as follows:

• OPT-EV—Optimal evictions policy (without
prefetches)

• EH—Evictions hint—see Section 4.1

• ALH—Address locality hints—see Section 4.6

• SD-ALH—Single-direction address locality
hints—see Section 4.6

• OF—Offsetting coherent mappings—see Sec-
tion 4.2

• 8-Prefetch—Eight entries are set in the prefetch
buffer instead of four

• MPRE—Mapping prefetch—See Section 4.7

4.9 Discussion
As seen in the simulation results of the various config-
urations in Figures 10, 11, and 12, the current miss-rate
in these scenarios can easily be reduced by 30% by en-
abling features in the chipset that are already defined
as well as performing some reasonable software modi-
fications. An additional reduction of 20% is also possi-
ble by making relatively simple hardware modifications.

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 

Naïve 

OPT 

ALH 

ALH, EH 

ALH, EH, OF 

SD-ALH, EH, OF 

SD-ALH, EH, MPRE, OF 

SD-ALH, EH, MPRE, OF, 8-Pre 

ALH, EH, 4-Ways 

ALH, EH, 64-Entries 

IOTLB Miss Rate 

Figure 11: Miss-rate of different configurations -
SCSI/bonnie++

In contrast, increasing the number of IOTLB entries or
ways number showed relatively little improvement.

Apparently, the two strategies that reduced the miss-
rate the most are address locality hints (ALH) and intel-
ligent prefetch of mappings right after they are mapped
(MPRE). Offsetting coherent mappings also had a signif-
icant positive impact in the case of multiple NIC devices,
and as expected had neither a positive nor negative im-
pact in the cases of single SCSI or NIC devices.

As is apparent in the simulation results, application of
the optimal eviction policy (OPT-EV) without an addi-
tional prefetch technique does not reduce the miss-rate
significantly. This is a clear indication that no eviction
policy can substitute for prefetch techniques in substan-
tially reducing the miss-rate. This result is in accordance
with the use-once usage-model in which stream-buffer
mappings are very unlikely to reside in the IOTLB un-
less they were prefetched. The main goal of an intelligent
eviction policy should be to keep coherent mappings in
the cache, and evict other mappings instead, yet the evic-
tion policy enabled by Eviction Hints, which is intended
for this matter, had little positive impact on the hit-rate, if
any. In fact, in the case of multiple NICs, it even resulted
in a lower hit-rate.

The eviction policies are not affected by prefetches,
as prefetched entries are traditionally kept in a separate
buffer until they are actually used. Accordingly, in con-
trast with the minor potential that even the optimal evic-
tion policy offers, increasing the number of entries in the
mapping prefetch buffer increased the hit-rate for NIC
devices. As the SCSI device access pattern was fairly
fixed, only a small number of prefetch entries were ac-
tually utilized and increasing the number of prefetch en-
tries had no impact in this case.



0% 5% 10% 15% 20% 25% 30% 35% 

Naïve 

OPT 

ALH 

ALH, EH 

ALH, EH, OF 

SD-ALH, EH, OF 

SD-ALH, EH, MPRE, OF 

SD-ALH, EH, MPRE, OF, 8-Pre 

ALH, EH, 4-Ways 

ALH, EH, 64-Entries 

IOTLB Miss Rate 

Figure 12: Miss-rate of different configurations - 2 x
E1000/netperf

5 Related Work

Most IOMMU research to date has concentrated on the
CPU-load caused by the mappings and unmappings of
I/O buffers, IOMMU flushes, and related interrupts han-
dling. Ben-Yehuda et al. [4] evaluated the performance
of the Calgary and DART IOMMUs in native mode,
and acknowledged and reviewed the possible effect of
IOMMU hardware design on the performance of IOM-
MUs. In their work they concluded that most of the over-
head is due to the software implementation, yet do not
quantify the hardware-induced overhead.

Unlike IOMMU’s IOTLBs, MMU’s TLBs were
widely researched. Kandiraju and Sivasubramaniam
researched the miss-rate of applications in the Spec
CPU2000 benchmarks suite by executing them on an ar-
chitectural simulator [9]. One interesting result in light
of our research is that a comparable d-TLB configura-
tion resulted in miss-rate of less than 5% for all but two
of the applications in the benchmark suite. This miss-
rate is considerably lower than the 32% we observed for
the IOTLB.

6 Conclusions

We presented for the first time an investigation of
IOMMU IOTLBs and the bottleneck imposed by their
address resolution mechanism. Our evaluation of mem-
ory access patterns resulted in several strategies that re-
duce the miss-rate by 50% and can be relatively easily
implemented in software without any expected negative
side-effects. First, enabling the ALH feature in IOMMU
drivers; Second, mapping multiple pages of a single
buffer in descending order; and third, offsetting virtual

I/O memory to avoid hot-spots of IOTLB sets used by
different devices for consistent memory mappings. We
also propose additional methods that we believe are easy
to implement in hardware: explicit prefetch of mapped
entries and refinements of the ALH mechanism for con-
figuring the prefetch direction of adjacent pages by the
IOMMU device driver.

References
[1] AMD. IOMMU architectural specification. http:

//www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/34434.pdf.

[2] BELLARD, F. QEMU, a fast and portable dynamic translator.
ATEC ’05: Proceedings of the Annual Conference on USENIX,
41–41 (2005).

[3] BEN-YEHUDA, M., MASON, J., XENIDIS, J., KRIEGER, O.,
VAN DOORN, L., NAKAJIMA, J., MALLICK, A., AND WAHLIG,
E. Utilizing IOMMUs for virtualization in Linux and Xen.
In OLS ’06: The 2006 Ottawa Linux Symposium (July 2006),
pp. 71–86.

[4] BEN-YEHUDA, M., XENIDIS, J., OSTROWSKI, M., RISTER,
K., BRUEMMER, A., AND VAN DOORN, L. The price of safety:
Evaluating IOMMU performance. In OLS ’07: The 2007 Ottawa
Linux Symposium (July 2007), pp. 9–20.

[5] HILL, M. D., KONG, S. I., PATTERSON, D. A., AND TALLURI,
M. Tradeoffs in supporting two page sizes. Tech. rep., Mountain
View, CA, USA, 1993.

[6] Linux 2.6.31:drivers/Documentation/networking/e1000.txt.

[7] INTEL. Intel virtualization technology for directed I/O, archi-
tecture specification. http://download.intel.com/
technology/computing/vptech/Intel(r)_VT_
for_Direct_IO.pdf.

[8] JOUPPI, N. P. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch
buffers. SIGARCH Comput. Archit. News 18, 3a (1990), 364–
373.

[9] KANDIRAJU, G. B., AND SIVASUBRAMANIAM, A. Character-
izing the d-TLB behavior of SPEC CPU2000 benchmarks. SIG-
METRICS Perform. Eval. Rev. 30, 1 (2002), 129–139.

[10] KANDIRAJU, G. B., AND SIVASUBRAMANIAM, A. Going the
distance for TLB prefetching: An application-driven study. Com-
puter Architecture, International Symposium on 0 (2002), 0195.

[11] KIVITY, A., KAMAY, Y., LAOR, D., LUBLIN, U., AND
LIGUORI, A. KVM : the Linux Virtual Machine Monitor. Pro-
ceedings of the Linux Symposium, Ottawa, Ontario, 2007 (2007).

[12] LSI53C895A PCI to ultra2 SCSI controller technical man-
ual. http://www.lsi.com/DistributionSystem/
AssetDocument/files/docs/techdocs/storage_
stand_prod/SCSIControllers/lsi53c895a_tech_
manual.pdf.

[13] MILLER, D. S., HENDERSON, R., AND JELINEK, J. Linux
2.6.31:Documentation/DMA-mapping.txt.

[14] MOLL, L., AND SHAND, M. Systems performance measurement
on PCI pamette. In FPGAs for Custom Computing Machines,
1997. Proceedings., The 5th Annual IEEE Symposium on (Apr
1997), pp. 125–133.

[15] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A. Prac-
tical, transparent operating system support for superpages. In
OSDI ’02: Proceedings of the 5th symposium on operating sys-
tems design and implementation (New York, NY, USA, 2002),
ACM, pp. 89–104.



[16] SUGERMAN, J., VENKITACHALAM, G., AND LIM, B.-H. Virtu-
alizing I/O devices on VMware workstation’s hosted virtual ma-
chine monitor. In USENIX Annual Technical Conference (Berke-
ley, CA, USA, 2001), USENIX Association.

[17] TOMONORI, F. DMA representations sg table vs.
sg ring IOMMUs and LLDś restrictions. LSF 08
http://iou.parisc-linux.org/lsf2008/IO-DMA_
Representations-fujita_tomonori.pdf.

[18] VAIDYANATHAN, K., HUANG, W., CHAI, L., AND PANDA,
D. K. Designing efficient asynchronous memory operations us-
ing hardware copy engine: A case study with I/OAT. In 21th
International Parallel and Distributed Processing Symposium

(IPDPS 2007), Proceedings, 26-30 March 2007, Long Beach,
California, USA (2007), IEEE, pp. 1–8.

[19] WILLMANN, P., RIXNER, S., AND COX, A. L. Protection strate-
gies for direct access to virtualized I/O devices. In ATC’08:
USENIX 2008 Annual Technical Conference on Annual Techni-
cal Conference (Berkeley, CA, USA, 2008), USENIX Associa-
tion, pp. 15–28.

[20] YASSOUR, B.-A., BEN-YEHUDA, M., AND WASSERMAN, O.
On the DMA mapping problem in direct device assignment. In
SYSTOR ’10: The 3rd Annual Haifa Experimental Systems Con-
ference (2010).


