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ABSTRACT
I/O intensive workloads running in virtual machines can suf-
fer massive performance degradation. Direct assignment of
I/O devices to virtual machines is the best performing I/O
virtualization mechanism, but its performance still remains
far from the bare-metal (non-virtualized) case. The primary
gap between direct assignment I/O performance and bare-
metal I/O performance is the overhead of mapping the VM’s
memory pages for DMA in IOMMU translation tables. One
could avoid this overhead by mapping all of the VM’s pages
for the lifetime of the VM, but this leads to memory con-
sumption which is unacceptable in many scenarios.

The DMA mapping problem can be stated briefly as“when
should a memory page be mapped or unmapped for DMA?”
We begin by presenting a theoretical framework for reason-
ing about the DMA mapping problem. Then, using a quota-
based approach, we propose the on-demand DMA mapping
strategy, which provides the best DMA mapping performance
for a given amount of memory consumed. In particular,
on-demand mapping can achieve the same performance as
state-of-the-art mapping strategies while consuming much
less memory (exact amount depends on the workload’s re-
quirements). We present the design and implementation of
on-demand mapping in the Linux-based KVM hypervisor
and an experimental evaluation of its application to various
workloads.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.4.4
[Operating Systems]: Communications Management—In-
put/output ; D.4.8 [Operating Systems]: Performance—
Operational analysis

Keywords
IOMMU, device assignment, direct access, I/O virtualiza-
tion, SR-IOV, DMA mapping, on-demand mapping, IOMMU
protection strategies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR 2010 May 24-26, Haifa, Israel
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
A constantly increasing number of computer systems in

today’s data-centers are running multiple operating systems
simultaneously, using virtualization technology. Most new
CPUs manufactured for servers, desktops, laptops, and even
some embedded systems, has virtualization capabilities built
into the hardware. Virtualization is clearly here to stay.

Virtualizing a computer system’s CPU and memory is a
challenging but fairly well understood problem. However, a
computer system has three equally important components:
CPU, memory, and I/O. Virtualizing I/O is far more chal-
lenging and not nearly as well understood as virtualizing the
CPU and memory.

There are three prevailing approaches to I/O virtualiza-
tion: emulating a real (hardware) I/O device [29], using
para-virtualized I/O drivers [5, 17, 25], and giving a virtual
machine direct access to an I/O device [21, 23, 32, 34]. Other
approaches, such as virtualizing the entire I/O stack or dedi-
cating a core to I/O processing, are also possible [20, 27, 28].

Emulation means that the host emulates a device that the
guest already has a driver for [29]. The host traps all device
accesses and converts them to operations on a real, possibly
different, device, as depicted in Figure 1.

With para-virtualized I/O devices, special hypervisor-aware
I/O drivers are installed in the guest. All modern hypervi-
sors implement such para-virtualized drivers [5, 17, 25], but
their performance is still far from native [24, 26] and they
require special drivers.
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Figure 1: Emulation flow

Direct device access (interchangeably referred to as“direct
device assignment”, “direct access” or “pass-through access”)
means that the guest sees a real device and interacts with it
directly, without a software intermediary (see Figure 2).



Direct access does away with the software intermediary
which other I/O virtualization approaches require. Direct
access can provide much better performance than the al-
ternative I/O virtualization approaches [19, 21, 23, 32, 34].
This is its primary benefit and its importance cannot be
overstated: the difference in performance for I/O intensive
workloads is such that direct access makes it possible to
virtualize workloads that otherwise would bring the virtual-
ization system to its knees. Another benefit of direct access
is that the guest can use any device it has a driver for.

To fully benefit from direct access, some hardware support
is necessary. An I/O memory management unit (IOMMU) is
needed to protect and translate device memory accesses [3,
7], and a self-virtualizing adapter is needed in order to share
the adapter between different virtual machines [21, 23, 32].
IOMMUs such as Intel’s VT-d [2, 3], IBM’s Calgary [7], and
AMD’s IOMMU [1], and PCI standard SR-IOV devices [13,
19] are now becoming available.

Although direct access can in theory provide bare-metal
performance (i.e., the same performance as running the same
workload in a non-virtualized environment), in practice siz-
able performance gaps remain. This paper deals with one
such performance gap—the so-called “DMA mapping prob-
lem.”
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Figure 2: Direct access flow

1.1 DMA and IOMMUs
In virtualized environments, guests have their own view of

physical memory, which in the Linux-based KVM hypervisor
is referred to as “guest physical”, and which is distinct from
the host’s “host physical” view of memory [17]. Although
there are ways of giving fully-virtualized guests access to
portions of host memory without hardware support [18],
such approaches can only work for trusted guests. Giving
untrusted guests and devices access to system memory re-
quires hardware support in the form of an IOMMU [7, 15].

An I/O Memory Management Unit (IOMMU) validates
and translates all device accesses to host memory. To un-
derstand why an IOMMU is needed, consider what would
happen if we didn’t have one: first, the guest operating sys-
tem would need to know that it is running on a virtualized
system, and be able to translate guest physical addresses
to host physical addresses on its own before handing them
over to the device. This conflicts with one of the key value
propositions of x86 virtualization, running unmodified guest
operating systems. Second, we would need to trust the OS
to program the device with the right addresses, since oth-
erwise the OS could program the device to DMA anywhere

in system memory, including on top of the hypervisor or
other virtual machines. This would defeat another key value
proposition of virtualization, running untrusted operating
systems in isolation.

IOMMUs work by interposing on DMAs made by devices
and validating and translating the addresses in those DMAs
before letting them read or write main memory. This work
used Intel’s VT-d IOMMU [3], but the details are substan-
tially similar for other IOMMUs. In order to validate and
translate DMAs generated by different devices VT-d main-
tains a separate translation table in memory for each PCI
device (as denoted by its PCI Bus/Device/Function ID).
When the device initiates a DMA operation, the IOMMU
walks through the translation table and checks whether the
access is valid. If the translation entry is not valid (for ex-
ample if the device is trying to write to memory that it only
has read permissions for), the DMA is aborted. If the trans-
lation entry is valid, the address is translated and the DMA
operation reads or writes memory at the translated address.

In order to speed up translation entry lookups, most IOM-
MUs, including VT-d, cache translations in IOTLBs. An
IOTLB serves the same purpose a TLB serves for the MMU.
IOTLBs improve IOMMU performance, but software must
keep them coherent when it modifies a translation table.
VT-d defines three modes of IOTLB invalidations: global,
page level, and directory level. When software invalidates
the IOTLB it can either poll for invalidation completion or
request an interrupt. There are two mechanisms for invali-
dating the entries: register based and queued invalidations.
With the register based approach software needs to wait
for the completion of each address invalidation. When sev-
eral entries need to be modified, queued invalidation is more
efficient. This feature is important, since as we show, an
important optimization is to batch modifications. With the
queuing method the IOTLB invalidation time can be re-
duced. Unfortunately, the VT-d revision on our systems did
not support queued invalidations.

When new mappings are added to the translation table
which cause an entry to go from non-present to present then
no IOTLB invalidation is needed, since VT-d does not cache
non-present entries. On the other hand, VT-d’s internal
write-buffer1 does need to be flushed, and software needs to
wait for completion. We note that when multiple addresses
are to be added, only a single write-buffer flush is needed.
Therefore, batching multiple mappings can significantly re-
duce the mapping cost.

1.2 The DMA Mapping Problem
The key goal of direct access is to allow a guest operating

system to access a device directly, which requires mapping
the guest OS’s memory in an IOMMU so that the device
could DMA to it directly. An obvious question which follows
is “when should a page of memory be mapped or unmapped
in the IOMMU?”. This, in a nutshell, is the DMA mapping
problem.

The DMA mapping problem arises because mapping (and
unmapping) a page of memory in an IOMMU translation ta-
ble is expensive, as shown in previous works by Ben-Yehuda
et al. [8] and by Willman, Rixner, and Cox [31], and con-

1Internal write-buffers may hold updates to memory-
resident data-structure. Flushing them may be required to
make those updates visible to the hardware. For further
details, consult the VT-d specification [2].



firmed in our experiments. A breakdown of the costs is
provided in Section 6.

The early direct access implementations used one of two
extreme approaches for DMA mapping: they either mapped
all of a guest operating system’s memory up-front (thus in-
curring minimal run-time overhead), or they only mapped
memory once immediately before it was DMA’d to or from,
and unmapped it immediately when the DMA operation was
done [7]. Willman, Rixner, and Cox named these strategies
direct mapping and single-use mapping, respectively. In ad-
dition, they presented two other strategies: shared mapping
and persistent mapping [31].

Single-use mapping has a non-negligible performance over-
head [8] but protects the guest’s memory from malicious de-
vices and buggy drivers. Thus it sacrifices performance for
reduced memory consumption and increased protection. Di-
rect mapping, on the other hand, is transparent to the guest
and requires minimal CPU overhead—but requires pinning
all of the guest’s memory, and provides no protection in-
side a guest (intra-guest protection), only between different
guests (inter-guest protection). Thus it sacrifices memory
and protection for increased performance.

Shared mapping and persistent mapping provide different
tradeoffs between performance, memory consumption, and
protection. Shared mapping reuses a single mapping if more
than one device is trying to DMA to the same memory lo-
cation at the same time, and persistent mapping keeps map-
pings around once they have been created in case they will
be reused in the future. A key question is whether there
is an optimal mapping strategy, and if yes, what is it. We
attempt to address this question in the remainder of this
paper.

The DMA mapping problem is not specific to virtual ma-
chine direct access. Variants of it also appear in many other
areas, such as high-speed networks (Infiniband, Quadrics,
Myrinet) with OS-bypass and/or hypervisor-bypass [21, 33],
userspace drivers and micro-kernels. In general, whenever a
trusted entity wishes to grant access to memory to a device
controlled by an untrusted entity, the privileged entity needs
to solve a variant of the DMA mapping problem.

1.3 Our Contributions
We make the following contributions in this paper:

1. A theoretical framework for reasoning about the DMA
mapping problem is presented in Section 2. Using
the framework, we build a quota-based model in Sec-
tion 2.1.

2. The on-demand mapping strategy, which provides the
best performance for a given amount of memory con-
sumed, is presented in Section 2.2.

3. A prefetching algorithm which reduces the DMA map-
ping overhead with small quotas is presented in Section
2.5, and several batching mechanisms are presented in
Section 3.2.

4. The design and implementation of on-demand map-
ping in the KVM is presented in Section 3, with an
evaluation of its performance and memory consump-
tion with various workloads and quotas in Section 4.
Intra-guest protection is discussed in Section 5, and a
cycle breakdown of the cost of creating and destroying
a DMA mapping is presented in Section 6.

2. THEORETICAL FRAMEWORK
We begin by presenting several requirements that any

DMA mapping scheme must satisfy. The first requirement
is for the assigned device to operate correctly, that is, to
operate as it would in a non-virtualized environment. Our
working assumption is that in the majority of cases when a
device initiates a DMA request and the DMA request fails
it will require device reset, since no current hardware sup-
ports I/O page faults [27]. It is therefore a requirement that
the IOMMU must have a valid translation for every address
that the device can validly DMA to. Naturally, if the device
tries to DMA to an invalid address, then the request will be
blocked.

This requirement leads to the following proposition:

Proposition 2.1. Every guest physical address (gpa) that
the guest programmed the device to DMA to must be backed
up by a valid guest-physical-to-host-physical mapping in the
IOMMU translation table for that device.

For correct operation, every guest-physical-to-host-physical
mapping in the IOMMU translation table for a given de-
vice must also be backed up by an equivalent mapping in
the guest-physical to host-physical translation table used for
MMU address translations for the guest VM driving that
device (i.e., the software or hardware (EPT/NPT) shadow
page table) [4, 9]. Note that if a host physical address (hpa)
that has a valid translation leading to it in the IOMMU
translation table does not have a valid translation in the
shadow page table, then it might be in use by another guest
or the host. Since the guest-physical-to-host-physical map-
ping exists in the IOMMU translation table, the device could
read or write to it, thereby reading or writing a host frame
that is owned by another guest or by the host and violating
the protection (isolation) guarantees of the IOMMU.

Proposition 2.2. Every guest-physical-to-host-physical map-
ping in the IOMMU translation table of a given device must
have a corresponding mapping in the guest-physical-to-host-
physical translation table for CPU MMU translations for the
guest VM driving that device.

From Propositions 2.1 and 2.2 we have:

Proposition 2.3. Every valid gpa that the guest programmed
the device to DMA to or from must have a mapping to hpa,
which must be pinned (cannot be changed) as long as the
device may legitimately use that gpa.

The host can apply various policies for programming the
IOMMU translation table. Since changing the IOMMU map-
ping requires a world switch and an IOMMU IOTLB flush,
both of which are expensive, the main optimization target
is to minimize the number of IOMMU remappings. Map-
ping the entire guest physical address space requires a single
IOMMU mapping operation that is not changed throughout
the period that the device is assigned to that guest. On
the down side, based on Proposition 2.3, mapping the en-
tire guest physical address space means that that the entire
guest address space would then be pinned!

Mapping and pinning the entire guest physical memory
might be a valid solution in some scenarios, but is not ac-
ceptable in the general case, since memory is a precious re-
source and significant effort is expended in trying to con-
serve, share, and otherwise make full use of it in virtualized



environments [16, 22, 30]. Indeed, memory is considered the
most important resource and the main barrier to scalability
in virtualized environments. All commonly used hypervisors
over-commit memory and try to balance the memory needs
of VMs dynamically by continually adjusting the amount of
memory assigned to each VM. We need a better solution for
DMA mapping, one that does not require pinning a large
amount of host physical memory, for an unbounded length
of time under the control of an untrusted guest.

The simplest solution to avoid mapping the entire guest
memory is for the guest to notify the host of the guest
pages which are the targets of each DMA request. This way
the host can update the IOMMU translation tables only
for the addresses that the guest is using for DMA. How-
ever, our experiments with KVM in Section 6 confirm ear-
lier experimental results: remapping IOMMU translation
entries is expensive[8, 31]. If the guest initiates a hyper-
call for each DMA transaction, performance is degraded sig-
nificantly. Therefore it is crucial for the system to mini-
mize the number of IOMMU remappings. In an attempt to
reduce the number of IOMMU remappings, the persistent
mapping strategy keeps guest physical addresses mapped in
the IOMMU translation tables once they have been mapped.
Then, if and when the guest tries to reuse that address, the
overhead of remapping is avoided since the address is al-
ready mapped. Clearly, with such a strategy, after a while
all of the guest’s memory pages will be pinned as in the
case of the direct mapping strategy, leading to unacceptable
memory consumption.

We propose a model in which one first defines a quota of
guest memory pages that the guest can pin at any given time
for DMA. Without such restrictions a selfish or malicious
guest with direct device access can pretend to DMA to the
entire guest memory, thus making sure that all of its physical
memory is pinned.

Note that with such an approach, the correct minimal
quota needs to be determined. If the quota is insufficient for
correct operation of the guest, it is equivalent to running a
guest with insufficient host physical memory.

The quota can either be defined manually in a static fash-
ion just like the amount of memory that is assigned to the
guest, or be changed dynamically by the host. A combina-
tion of the two where a range of quotas is provide statically,
and the exact quota within that range is determined dynam-
ically is also possible. We now ask two questions:

• Guest perspective Given a quota of DMA mappings,
what is the optimal eviction strategy? In other words,
how should the guest use its given quota of DMA map-
pings so that the total number of remappings (evic-
tions) is minimized?

• Host perspective What is the optimal allocation of
memory for DMA purposes (i.e., quotas) between one
or more guests, so that the shared resource (memory)
is shared fairly between the guests and each guest’s
I/O performance is maximized?

We addressed both questions when designing the on-demand
mapping implementation, as detailed in Section 3. We also
note that while keeping pages mapped in the IOMMU trans-
lation tables improves performance and preserves inter-guest
protection, it does not guarantee intra-guest protection. We
discuss intra-guest protection in Section 5.

2.1 A Model for DMA Mapping
Next we define a formal model for the DMA mapping

problem. Given a quota Q and a series of requests by a
guest driver to map and unmap guest pages < gi >, where
the guest can make a hypercall to the host and ask the host
to create or destroy one or more mappings in the IOMMU
translation table mapping those pages, what is the optimal
guest mapping strategy such that at every point in time all
of the following properties hold:

1. The guest has a set S of guest pages which are mapped
in the IOMMU translation table. The set S, which we
term the map cache, is composed of the set of guest
pages which are candidates for eviction (E) and the
set of guest pages which are pinned (P ). S = E ∪ P .

2. Each guest page gi is either a candidate for eviction
because the driver has already asked the map cache to
unmap it: gi ∈ E, or is pinned because the driver is
still using it: gi ∈ P .

3. The quota is never exceeded, i.e., the total size of the
map cache is smaller than or equal to the quota: |S| ≤
Q.

4. When a driver tries to map a new guest page gnew, if
gnew /∈ S than gnew is added to S: S = S ∪ {gnew}. If
adding gnew to S would cause the size of S to exceed
the quota, than a guest page ge which is a candidate
for eviction (ge ∈ E) is evicted from S: E = E/{ge}.
If there are no candidates for eviction, the mapping
request is denied.

5. Adding or removing one or more guest pages from the
map cache S requires a remapping hypercall.

6. The number of remapping hypercalls is minimized.

Note that our target is to minimize the number of hy-
percalls rather than minimizing the number of map or un-
map operations, since a single hypercall can map or un-
map several guest pages, and we assume that the cost of
remapping a single page or several pages is similar. This
is a reasonable assumption since the cost of the remap-
ping (other than the hypercall) is the cost of the IOMMU
write buffer and/or IOTLB flush, and a single IOMMU write
buffer and/or IOTLB flush can be used for changing several
mappings at the same time.

The DMA mapping problem, as formalized above, has
two variants: offline—requests are known in advance, and
online—-requests are not known in advance.

Once formalized this way, the DMA mapping problem
is remarkably similar to the well known page replacement
problem [10]. However, there is a key difference. In the
page replacement problem a single page is accessed at a given
time, and any other page can be evicted to make place for it.
In the DMA mapping problem, there is a set of pages which
cannot be evicted (the pages which a driver mapped but not
yet unmapped, i.e., the pages which a device may be actively
using at the moment). These pages cannot be evicted from
the set of existing mappings; only pages which were previ-
ously unmapped are candidates for eviction. This difference
stems from Proposition 2.1, which itself stems from the fact
that there is no mechanism for I/O page faults in current
IOMMUs, I/O devices, and protocols [27].



It therefore follows that in the DMA mapping problem
there are some access patterns which cannot be satisfied.
If the guest driver tries to map more pages than the quota
allows and there are no evictable pages than the mapping
operation will fail.

2.2 The On-Demand Mapping Strategy
Using the quota model presented in the previous section,

we devise a mapping strategy which maximizes performance
(i.e., minimizes remapping hypercalls) for a given amount of
memory consumed (i.e., a given quota). We restrict the
discussion here to strategies which provide inter-guest pro-
tection only; intra-guest protection is discussed in Section 5.

In the direct mapping strategy, we pin and map the en-
tire guest memory in advance. This maximizes performance
since it does not require any remapping hypercalls, but it
also requires pinning all of the guest’s memory (i.e., has the
worst possible memory consumption). Thus direct mapping
is optimal when the quota is equal to the guest’s entire phys-
ical memory, but cannot be used when the quota is smaller
than the guest’s physical memory.

The single-use mapping strategy is to map and unmap a
guest page in the IOMMU translation table whenever the
driver maps or unmaps a page for DMA. This strategy in-
curs the highest number of hypercalls and IOMMU remap-
pings, but it can be used with very small quotas since it also
minimizes memory consumption.

The persistent mapping strategy maps guest pages in the
IOMMU translation table when the drivers map them for the
first time. It is not specified when the pages are unmapped.
We introduce a refinement of persistent mapping which we
term on-demand mapping, based on the quota-based model.
In the on-demand mapping strategy, mappings are created in
the IOMMU translation table when the guest driver maps
them for the first time, assuming the number of existing
mappings is less than the quota. When the guest tries to
create a new mapping which would cause the quota to be
exceeded, one or more old mappings are evicted from the
map cache and the new mapping created in their place.

On-demand mapping avoids the need to map the entire
guest memory up front, and maps it only as needed, until the
quota is reached. If the quota is set to some minimal value,
on-demand behaves like single mapping. If the quota is set
to the size of guest physical memory, on-demand behaves like
direct and persistent mapping. If the quota is set to some
value in-between then the behavior of on-demand depends
on the workload. See Section 4.1 for a discussion of the
“right” quota to set.

We have observed that a quota which is significantly smaller
than guest physical memory is often sufficient for a work-
load’s needs (see Section 4.1). In this case on-demand has
the same performance as persistent or direct mapping, while
consuming much less memory, and unlike persistent, it will
not grow to consume all of memory. Other times, when the
host is under memory pressure, on-demand enables the host
to decide how much memory to allow a given guest to pin,
while also enabling the guest to achieve the best performance
given the amount of memory allotted to it.

2.3 Optimal Solution to the Offline DMA Map-
ping Problem

Let us ignore batching of requests for a moment, and as-
sume that we can only map or unmap a single page per hy-

percall. Let us further assume that the set of pinned pages
P is always strictly smaller than the quota (|P | < Q). Under
these assumptions, the offline version of the DMA mapping
problem is for all intents and purposes equivalent to the
page replacement problem, for which the optimal offline so-
lution is Belady’s theoretical memory caching algorithm [6].
Briefly stated, this algorithm always evicts the page that is
going to be accessed later then any other page in the cache.

The optimal offline batching algorithm is to simply map
the next N different pages in the access pattern in a single
batch. The upper bound on the miss rate is 1

N+1
, which is

the theoretical bound, and is much lower than the miss rate
without batching, which is 1 when there is no reuse.

2.4 Online Algorithms
Since the DMA mapping problem is related to the page

replacement problem, what can we learn from the known
online algorithms for the page replacement problem?

The most familiar online algorithm is the Least Recently
Used (LRU) algorithm that is used as a base in many sys-
tems with additional optimizations. However, LRU also has
well-known deficiencies with certain access patterns.

The best known algorithms for the page replacement prob-
lem make use of the access graph model [10, 11]. In this
model, there is a graph which models the input sequence.
In the graph there is an edge between two vertexes (v, u) if
an access to v is followed by an access to u (or vice versa,
since the graph is usually not directed). Obviously a single
graph can model many different input sequences, provided
they share the same access patterns. The best known algo-
rithms for deciding which page to evict next in the access
graph model ares FAR [12] and FARL [14]. Intuitively, both
perform an online approximation of what the optimal offline
algorithm does, evicting the graph node whose next access
is the farthest in the future.

FAR and FARL show us that as long as an access pattern
has some repetition (some reuse) and is not completely ran-
dom, then inspecting the history and deciding which pages
to evict and which to keep, based on history, is likely to be
useful. We present a prefetching algorithm for on-demand
mapping which exploits this insight in the next section.

2.5 Prefetching Algorithm
The frequency-based prefetching algorithm takes advan-

tage of the low cost of batching. Many I/O workloads ex-
hibit recurring patterns in their access sequences, often be-
cause pages are used as buffers which are reused over and
over again. We exploit the fact that if a guest driver maps a
page, there is a high probability that it will next try to map
additional pages which were mapped in the past following
this page.

The prefetching algorithm is as follows: for each page gi

keep track of which pages were mapped most frequently in
the past right after gi. We say that a page gi has a follower
if there is a page gj that was mapped right after gi at least
twice. If there is more than one such page gj , the follower
is the page which was mapped most often after gi.

When a page gi is mapped by the driver which is not in
the map cache, we make a hypercall to map it, and if it has
a follower page, we also add the follower page to the batch.
If the follower page has a follower page we add that page
to the batch as well, repeating the process until there is no
follower page or a maximal batch size is reached.



Assuming that the quota has been reached and that the
remapping hypercall is trying to map n new pages, n old
pages need to be evicted to make room for them. The pages
to be evicted are chosen by a standard LRU algorithm.

3. ON-DEMAND MAPPING
We designed and implemented on-demand mapping in

the Linux-based KVM hypervisor [17]. This implementa-
tion built upon our earlier implementation of direct access
for KVM [34]. The original implementation of direct ac-
cess for KVM used the direct mapping strategy, enabling
it to run unmodified guests and avoiding guest changes.
The on-demand mapping strategy, however, requires a para-
virtualized guest DMA mapping interface, which we imple-
mented using hypercalls for guest-to-host communication.

3.1 Map Cache
The key guest-side component of on-demand mapping is

the map cache, which caches DMA mappings inside the guest
in order to avoid the overhead of going to the hypervisor to
create or destroy a new mapping in the IOMMU translation
table. We implemented the map cache as a Linux DMA-API
implementation, which all DMA-using drivers call into [7].
The map cache is limited in size: it has a set quota of map-
pings it caches. The quota can be changed at run-time, and
is dictated by the hypervisor, as discussed in Section 2.1.

Pages (mappings) in the map cache are either pinned or
candidates for eviction. When a driver asks the map cache
to create a mapping for some guest page, the map cache
checks if a mapping for the page already exists in the map
cache. If it is, a reference count is incremented. If the page
isn’t mapped, the map cache makes a hypercall and asks
the hypervisor to map the page in the IOMMU translation
table. If the call succeeds, the map cache increments the
reference count on the page. Unmap requests by the driver
are handled similarly: the reference count on mappings of
that page is decremented, and if it drops to zero, the page
is moved to the candidates for eviction set. Note however
that the page remains mapped in the IOMMU and used for
DMA from the host’s perspective.

When the map cache makes a map or unmap hypercall,
the hypervisor makes any necessary checks (e.g., that the
guest is not trying to unmap a page that it hasn’t mapped, or
that the guest is not about to go over quota) and then makes
the necessary changes to the IOMMU translation table.

The main data structure used by the map cache is a red-
black tree, using the standard Linux red-black tree imple-
mentation. The tree holds all of the pages that are mapped
and their reference counts. All pages with a reference count
of zero are stored in a free list and are candidates for un-
mapping from the IOMMU translation table and eviction
from the map cache.

While the map cache greatly improves performance by
caching mappings—thereby reducing the number of DMA
remappings—further optimizations are possible. The next
two sections describe two classes of optimizations which re-
duce the amount of interaction between the guest and the
hypervisor further.

3.2 Batching Driver Mapping Requests
Many commonly used drivers such as the e1000e NIC

driver use the Linux kernel functions dma map single and
dma unmap single to map or unmap memory for DMA.

When a large buffer with multiple pages is mapped for DMA,
the driver calls dma map single several times to map the
entire buffer. Each such call into the map cache could cause
a map cache miss and a subsequent hypercall to map the
page. Since the driver will not use the mappings until it
has completed the entire sequence of mapping requests, we
can minimize the number of hypercalls by batching these
requests into a single hypercall at the end of the sequence.
Batching the sequence reduces the number of hypercalls and
enables us to use a single IOMMU write buffer flush for mul-
tiple changes.

We identified and implemented the following batching op-
portunities:

• Batch map requests: When a large buffer is mapped
by the NIC driver in the guest we map it using a single
hypercall. We note that this optimization does not
violate the intra-guest protection property.

• Batch unmap requests: The equivalent of “batch
map requests” for unmap requests.

• Unmap piggyback: Perform a single hypercall in-
cluding both map and unmap requests. In general
when the on-demand strategy is used, then there is no
reason to unmap a page before the quota is exceeded.
Since we only unmap as a result of a new map request,
the most efficient way to execute the unmap request is
to piggyback the unmap request on the map request
replacing it.

Adding the batching code involves minimal changes to the
driver. For exapmle in the case of the e1000 driver we added
only six new lines of code.

3.3 Prefetching Mappings
In addition to the batching optimizations mentioned above,

we also implemented the prefetching algorithm as described
in Section 2.5. The key practical difference between batching
and prefetching is that batching requires driver changes, and
prefetching doesn’t. Put differently, batching would need to
be implemented in every Linux driver, while prefetching can
be implemented once in the DMA-API layer.

In order to minimize the algorithm’s memory consump-
tion, we keep for each page no more than 3 pages which
followed it, and the number of occurrences for each of these
3 pages. For each mapped page we prefetch the follower
with the highest number of occurrences—if the number of
occurrences is higher than 2.

3.4 Quota Control Policy
From the point of view of the guest, the host communi-

cates a quota and the guest needs to keep its map cache
within the confines of the quota. From the point of view of
the host, what quota should it set to the guest?

3.4.1 Cooperative Guests
For cooperative guests, we note that with all modern hy-

pervisors, virtual machines already have a certain amount of
memory assigned to them (regardless of direct access) and
that amount can be changed dynamically by the hypervi-
sor, either by paging virtual machine pages out to disk, or
by using a para-virtualized balloon approach [30].

The balloon driver is a hypervisor-controlled guest driver
which the hypervisor uses to “steal” or “withdraw” memory



pages from the guest, by asking the balloon driver to allocate
them inside the guest. Once the balloon driver has allocated
them, the hypervisor can safely remove the guest-physical-
to-host-physical mappings of these pages in both CPU MMU
page tables and IOMMU translation tables (if the page was
previously mapped for DMA) and give the host frames to
some other virtual machine.

Therefore, one possible approach for the dynamic quota
policy for cooperative guests is to define the quota as what-
ever amount of memory is allocated to the guest at the mo-
ment anyhow. We already gave the guest all of that memory,
so we might as well allow it to use it for DMA too, relying
on its cooperation (via the balloon driver) when we want to
reclaim some of those pages.

Let us assume that the host would like to share memory
between multiple virtual machines, and that the load on each
virtual machine might change. The host decides how much
memory to assign to each guest at each point in time accord-
ing to a predefined policy. We denote the guest total memory
size Mmax, and the amount of memory that is allocated to
the guest at any given time as M(t), M(t) ≤ Mmax. We de-
note the current DMA mapping quota as Q(t), Q(t) ≤ M(t).
The host will use the balloon driver in the guest to “with-
draw”memory from the guest as need for other purposes: we
denote the amount of memory withdrawn (i.e,. the balloon’s
current size) as B(t).

It follows that when the balloon is used in the guest, the
host does not need to explicitly define a DMA mapping
quota, since the quota is implicitly defined by the current
size of the balloon: Q(t) ≤ M(t) = Mmax −B(t). Assuming
the host has given the guest enough memory for its regular
operation, the guest can also use as much of that memory
as it wishes for DMA.

In other words, the quota will be indirectly applied since
the pages that are used by the balloon will never be added
to the map cache, and pages which were previously in the
map cache and the balloon allocated will be removed from
the map cache. If the hypervisor wishes to give the guest
more pages (whether for DMA purposes or for other pur-
poses) it will shrink the balloon; if the hypervisor wishes
to withdraw some pages from the guest, it will inflate the
balloon and cause the the guest to release some of its pages.
Since the map cache is only limited by the amount of cur-
rently available memory M(t) it will eventually fill and in
the steady state there are going to be no hypercalls for DMA
remappings, maximizing performance.

3.4.2 Selfish Guests
With an implicit DMA mapping quota, the host does not

limit the amount of pages the guest can pin. A selfish guest
could map its entire physical memory in the map cache, and
ignore or disable the balloon. In such cases, setting a quota
Q(t) that is strictly smaller than available memory M(t) is
critical for fair sharing of memory between multiple guests.
The specific quota which should be set could depend on
multiple factors (e.g., workload, quality of service the host
wishes to provide to different guests, or I/O adapters in use)
and determining it is left as future work.

It is interesting to note that there are circumstances where
the host will want to limit the amount of DMAs done by
the guest even when the guest is cooperative, for example
in order to conserve memory bandwidth or because there is
only a limited number of IOMMU mappings available. In

such cases the host can also set Q(t) to be strictly smaller
than M(t).

4. EXPERIMENTAL EVALUATION
As noted previously, if the host sets the quota to be larger

than the workload’s requirement, then on-demand mapping
achieves a steady state where the workload’s pages are mapped
and no DMA remapping is needed, i.e., we achieve maxi-
mal performance from the point of view of DMA mapping.
However, if the workload size is equal to the entire guest
memory size, then we might as well use persistent mapping.
We therefore evaluated the quota requirements of two com-
mon networking protocols, and show that the needed quota
is related to the workload size rather than the guest’s mem-
ory size, thereby demonstrating the benefits of on-demand
mapping over persistent mapping.

Our setup consisted of two Lenovo M57p machines with
the Intel Q35 chipset which includes VT-d. Each machine
had a 2.66GHz dual-core Intel Core 2 Duo CPU with 4GB
of memory. The machines were connected directly with a
1GbE cable. One Lenovo machine ran native Linux (Ubuntu
7.10 for x86 64) and the other ran Linux (Ubuntu 7.10 for
x86 64) with KVM, with a single virtual machine running
Fedora Core 8 (64 bit), with 1GB of memory. All runs,
native and virtualized, used the on-board e1000e PCI-e NIC.

4.1 Quota Requirements of Common Work-
loads

We began by looking at applications which use the stan-
dard TCP/IP stack via the socket API. Due to its semantics,
the send socket API must copy the data from the applica-
tion buffer to a kernel buffer associated with that socket.
The kernel buffer is then mapped for DMA and accessed by
the NIC. Since the Linux memory allocator recycles pages,
there is high likelihood that the same guest pages will be
reused for socket buffers. Each socket has an upper bound
on the socket buffer size, so the total number of mappings
needed to cover all of the send and receive sockets at a given
point is given by:

Total =SendBufferSize × NumSendSockets +

ReceiveBufferSize × NumReceiveSockets

If the quota is larger than this total and there is a high
probability of reuse then after the initial mapping, no further
remappings will be required. On the other hand if the quota
is smaller than this total and there is little reuse then the
IOMMU translation table will constantly need to change.
This means that the“right”quota is a function of the number
of sockets in the system and the level of reuse. Both are
likely to be fairly steady for a workload which is in a steady
state.

To avoid copying of the data from userspace to kernel
space most systems and specifically Linux offer a zero-copy
API, namely sendpage and sendfile. In this case the data
is passed to the device without being copied from userspace
to kernel space.
sendpage can be used to map any number of pages, and

the usage is completely dependent on the application. How-
ever in the case of sendfile the number of pages is bounded
by the file size. We tested the Apache webserver and found
that the optimal quota is equal to the sum of the sizes of



the files being served by Apache at a given point in time.
Again, for a workload that is in the steady state, the needed
quota is likely to be fairly steady.

4.2 Eviction Strategies
Except when the quota is equal to the entire guest’s memory—

which is wasteful—there will always be cases where the quota
is not sufficient for a workload’s needs. We therefore evalu-
ated the eviction strategies described in Section 2.

In order to evaluate each strategy’s performance sepa-
rately from a specific implementation, we began by consider-
ing the map cache hit rate that is achieved by each strategy
on different workloads. We recorded I/O access patterns of
real workloads and applied each of the strategies to them.
As described in Section 2.1, we assume that batching has
no additional cost. This assumption is not completely accu-
rate in the real world, since it is dependent on the IOMMU
implementation details.

We compare the following eviction strategies for selecting
the page to evict from the cache:

• FIFO Evict pages in a first in first out order.

• LRU Evict the least recently used page.

• OPT Evict the page that is going to be used later then
any other page in the cache. This is the optimal offline
algorithm without batching, i.e., only a single page is
replaced at a time.

• Optimal batching The optimal offline algorithm,
but with batching as defined in Section 2.3. Multiple
pages can be replaced at the same time.

• Prefetching The prefetching algorithm as described
in Sections 2.5 and 3.3.

We recorded access patterns of two workloads, netperf

send with a 65KB socket buffer, and an Apache webserver
serving an httperf client that is requesting static wiki pages.
For each workload we calculated the total working set size
which is the total number of pages that are accessed during
the run. We executed each of the eviction strategies for
different quota values varying from 0 to 100% of the working
set size. For each execution we calculated the cache hit rate.
We note that with both workloads the total workload size
depended on the workload rather than the guest memory
size.

Figure 3 shows the hit rate for a netperf send access pat-
tern for each of the eviction strategies and for different quota
values. The basic strategies, non-batching LRU and FIFO,
might be useful for large quota due to their simplicity, but
are highly inefficient for low quotas. The optimal batching
strategy performs significantly better and achieves close to
100% hit rate even for quota that is 10% of the working set!
This indicates the great potential of batching to reduce the
DMA mapping CPU utilization overhead. The prefetching
strategy takes advantage of extra knowledge to batch multi-
ple page replacements together rather than replacing pages
one by one. With this extra knowledge it achieves better re-
sults than the non-batching strategies including the optimal
non-batching strategy.

Figure 4 shows the hit rate for an Apache access pattern
for each of the eviction strategies. Again prefetching does
very well, getting a 90% hit rate even with a quota that is
only 10% of the working set.

Figure 3: Netperf send: Hit rate vs. %Quota

4.3 CPU utilization
Next we evaluated the effect of the different batching op-

tions and prefetching on the performance of two workloads,
as measured by the CPU utilization (all tests saturated the
1GbE link used). We used the same netperf workload with
a 65KB socket size, and an Apache workload where the client
is downloading various large files. Again we looked at the
different quota values ranging from minimal quota (i.e., no
caching allowed) to 100%, where the the quota is equal to
the total total amount of pages that are required by the
workload.

We evaluated the following optimizations:

• LRU Default LRU algorithm where no batching or
caching is used.

• Piggyback Piggybacking unmaps on top of maps.

• Prefetching As previously described.

• Batching LRU with the map and unmap batching
optimizations.

The first thing to note in Figures 5 and 6 is the high
CPU utilization regardless of optimization when no caching
is used (minimal quota), highlighting again the importance
of improving the DMA handling for direct access. As ex-
pected the CPU utilization for IOMMU remapping is re-
duced as the quota is enlarged.

The piggyback optimization reduces CPU utilization by
approximately 10% when compared with LRU and its im-
pact is reduced as the quota increases. Prefetching reduces
CPU utilization further, but its impact is reduced fast as
the quota increases.

Piggybacking and prefetching require no driver changes.
Observing the batching optimization we see that making
changes to drivers can reduce the CPU utilization signifi-
cantly. In the case of minimal quota the batching optimiza-
tion halves the CPU utilization! Moreover, batching is the
only optimization available when we wish to provide intra-
guest protection. The benefit of batching is clear and leads
us to the conclusion that significant improvement can be
gained by changing drivers to batch mappings.



Figure 4: Apache: Hit rate vs. %Quota

5. INTRA-GUEST PROTECTION
Every mapping strategy discussed in this paper, and in

particular the on-demand mapping strategy, provides inter-
guest protection, i.e., protection of one virtual machine from
another. In some circumstances it is also desirable to pro-
vide intra-guest protection: protection inside a single virtual
machine from malicious or buggy devices.

The only mapping strategies which provide intra-guest
protection are single-use mapping and shared mapping. Un-
surprisingly, they also have the lowest performance of the
other mapping strategies. The on-demand mapping strat-
egy, as formulated in Section 2.2, keeps around unmapped
mappings, which opens a hole through which a buggy or ma-
licious device could DMA to a page that is no longer being
used for DMA. Therefore the on-demand mapping does not
support intra-guest protection.

In order to adapt on-demand to intra-guest protection in
Linux and close that hole, we need to add two pieces of
information to every guest page which do not currently exist:
what is the page used for, and who owns that page. If every
page in the system was marked as either“allocated for DMA”
or not, we could cache only pages which have been marked
for DMA, thereby providing a limited amount of intra-guest
protection. If in addition we knew which component owns
a given page, we could keep a page mapped only as long as
it was owned by that component.

The prevalent mode of DMA mapping for Linux device
drivers is to map arbitrary pages for DMA and unmap them
when done. Adding an “allocated for DMA” marker to ev-
ery page can be done, by changing device drivers to allocate
“DMA” pages through special interfaces (which already ex-
ist) rather than map them on the fly. However, changing
every Linux device driver is a tall order. Even more prob-
lematic is the fact that a driver may be handed a page from
some other entity (e.g., the TCP/IP stack) and asked to
DMA to or from that page. Changing the way the different
components in Linux interact is an even taller order and is
left for future work.

Linux is a monolithic operating system, with no easily

Figure 5: Netperf send: CPU utilization vs. quota

Figure 6: Apache: CPU utilization vs. quota

defined boundaries between different components (e.g., the
page cache, TCP/IP stack, and device drivers). The dif-
ferent components freely pass around pages, which makes
tracking page ownership difficult. Implementing the sec-
ond form of intra-guest protection, where a page is only
mapped as long as it is owned by the mapping compo-
nent, requires both clear boundaries between components
and tracking ownership. We believe that either would re-
quire extensive changes to Linux, but could be done fairly
easily in micro-kernel based operating systems where differ-
ent components run with different MMU address spaces.

We note that there is another potential relaxation of intra-
guest protection, where the map cache is only used for caching
read-only mappings of pages. This provides protection against
a device writing to a page of memory it shouldn’t (the most
common form of device misbehavior that we would like to
prevent), while providing a nice boost to workloads which
mainly use DMA to read from memory rather than write to



it.

6. ANALYZING THE COST OF A SINGLE
MAPPING

As noted in Section 1.2, in order to reduce the total cost
of DMA mapping operations, one could either reduce the
frequency of operations, or one could reduce the cost of a
single mapping request. Just how expensive is it to create
or destroy a single mapping?

Using the experimental setup detailed in Section 4, we
measured the time needed to create and destroy DMA map-
pings, breaking the cycle cost down into different steps. In
order to create a mapping, the following steps need to take
place:

1. The guest needs to communicate to the host a request
to create a mapping. This is most often done using
a hypercall, although other techniques are also possi-
ble. A single empty hypercall took approximately 6000
cycles on our systems, just for the world switch.

2. The host needs to perform some internal implemen-
tation details such as retrieving the arguments to the
hypercall from the guest’s memory space, and translat-
ing the guest physical address to host physical address,
which might also require faulting in a page in case it is
non-present. This step took approximately 4400 cycles
in our setup.

3. The host needs to update the IOMMU translation ta-
ble (IOMMU translation table walk and creation of
the new I/O PTE): this step took approximately 1400
cycles.

4. The host needs to flush the IOMMU write buffer: an
additional 1200 cycles, on average. We note that with
the Intel VT-d IOMMU in our systems, there is no
need to flush the IOTLB when an I/O PTE goes from
not present to present. In the general case an IOTLB
flush may be required here as well.

In order to destroy a mapping, the following steps need to
take place:

1. Again, the guest needs to communicate to the host
a request to destroy a mapping: 6000 cycles for the
hypercall.

2. The host needs to translate the guest page into a host
physical address and perform other related bookkeep-
ing. This step took approximately 2600 cycles in our
setup.

3. The host needs to update the IOMMU translation ta-
ble (page table walk and clearing of the I/O PTE): this
step took approximately 1100 cycles.

4. When destroying a mapping, the host must flush the
entry out of the IOMMU’s IOTLB, which took approx-
imately 2000 cycles on average.

Clearly optimizations can be made in both hardware and
software which will reduce the single boundary crossing cost,
such as optimizing the transfer of hypercall arguments and
making world switches more efficient. It is also possible to

switch from a hypercall based communication mechanism
to a polling mechanism wherein guest and host use shared
memory areas to communicate map and unmap requests.
But as long as the cost of a request is not negligible, we
should also strive to make less requests.

7. CONCLUSIONS AND FUTURE WORK
Efficient DMA mapping is a challenge for virtual machine

direct access to I/O devices. Using a theoretical framework
for the DMA mapping problem and a quota-based model,
we developed the on-demand DMA mapping strategy. On-
demand DMA mapping provides the best DMA mapping
performance for a given amount of memory pinned for DMA.

There are two complementary aspects to on-demand map-
ping. From the host’s perspective, the question is what is the
right quota for a given guest. From the guest’s perspective,
the question is how to achieve the best performance with
a given quota. When given a quota that is sufficient for
the workload, on-demand provides maximal performance.
When the quota is smaller than the workload’s needs, a
heuristic prefetching algorithm that takes advantage of re-
peating access patterns in I/O workloads can improve per-
formance, without requiring driver modifications. If driver
modifications are feasible, batching of map and unmap re-
quests can provide even better performance. In both cases
more extensive changes or more computationally-intensive
algorithms might reduce the number of re-mappings even
further.

With this work we minimized the DMA mapping over-
head and made direct access performance closer to bare-
metal, but closing the gap completely requires dealing with
other sources of overhead such as interrupts. In addition,
providing intra-guest protection, with minimal performance
hit, and without requiring extensive changes to the guest
operating system, still remains an open challenge.

Last, but certainly not least, we believe this work demon-
strates that fundamentally, an I/O device should be consid-
ered just another core that reads and writes system mem-
ory. IOMMUs will end up resembling MMUs even more than
they do today, and DMA memory management algorithms
will keep inching closer to CPU memory management al-
gorithms. The key missing ingredient for such unification,
which we are also pursuing, is an efficient I/O page fault
mechanism [27].
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