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Abstract

The I/O interfaces between a host platform and a
guest virtual machine take one of three forms: either
the hypervisor provides the guest with emulation of
hardware devices, or the hypervisor provides virtual
I/O drivers, or the hypervisor assigns a selected sub-
set of the host’s real I/O devices directly to the guest.
Each method has advantages and disadvantages, but
letting VMs access devices directly has a number of
particularly interesting benefits, such as not requir-
ing any guest VM changes and in theory providing
near-native performance.

In an effort to quantify the benefits of direct device
access, we have implemented direct device assign-
ment for untrusted, fully-virtualized virtual machines
in the Linux/KVM environment using Intel’s VT-d
IOMMU. Our implementation required no guest OS
changes and—unlike alternative I/O virtualization
approaches—provided near native I/O performance.
In particular, a quantitative comparison of network
performance on a 1GbE network shows that with
large-enough messages direct device access through-
put is statistically indistinguishable from native, al-
beit with CPU utilization that is slightly higher.

1 Introduction

I/O virtualization can be implemented in one of three
ways: device emulation, para-virtualized (“virtual”)
I/O drivers, and direct assignment.1 Emulation
means that the host emulates a device that the guest
already has a driver for [16].The host traps all device
accesses and converts them to operations on a real,
possibly different, device, as depicted in Figure 1(a).
This approach requires many world switches2 and has

1A virtual machine might use one, two or all three mecha-
nisms at the same time: Xen driver domains [6], for example,
use direct device assignment to provide virtual I/O devices to
other VMs.

2A world switch is a context switch between guest VM and
host hypervisor.

relatively low I/O performance. On the other hand,
no changes are required to the guest OS. Emulation is
the default mode of I/O virtualization in all current
x86-based virtualization offerings.

With para-virtualized I/O devices, special,
hypervisor-aware I/O drivers are installed in the
guest (see Figure 1(b)). By raising the level of
interaction from hardware-level operations (e.g., an
MMIO access) to high-level operations (e.g., “send
a packet”), overhead is reduced and performance
improved. All modern hypervisors implement such
para-virtualized drivers [1, 9, 13], but their perfor-
mance is still far from native [14] and they require
guest changes, which may or may not be feasible.

Direct device assignment (interchangeably referred
to as “direct device access”, “direct access” or “pass-
through access”) means that the guest sees a real
device and interacts with it directly, without a soft-
ware intermediary (see Figure 1(c)). This approach
should improve performance with respect to para-
virtualization since no host involvement is required.
Additionally, no guest modifications are necessary,
and the guest can use any device it has a device driver
for. On the other hand, it is not fully compatible
with live migration [5, 15], although efforts are under-
way to address this limitation [20, 7], and it requires
dedication of a device to a virtual machine. Self-
virtualizing adapters [12, 19, 11], which are starting
to become available, solve the adapter sharing prob-
lem by presenting a single device as multiple devices
to multiple VMs.

We present the implementation of direct assign-
ment in the Linux/KVM environment in Section 2
and a quantitative comparison and analysis of direct
access in Section 3. We survey related work in Sec-
tion 4 and conclude with a short discussion of what
the future holds for direct access in Section 5.
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Figure 1: Different I/O virtualization modes.
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2 Direct access in KVM

Generally speaking, system software performs in-
put/output to a hardware device via one of four
distinct mechanisms: programmed I/O (PIO, also
commonly referred to as port I/O), memory-mapped
I/O (MMIO), interrupts, and direct memory access
(DMA). The key goal of direct access is to allow a
guest OS to access a device directly, i.e., without a
software intermediary, but some accesses can be in-
tercepted without loss of performance.

2.1 MMIO and PIO

Intel’s VT and AMD’s SVM virtualization extensions
provide mechanisms for the host to be notified when-
ever a guest VM tries to execute a PIO instruction
or perform an MMIO access. Alternatively, the host
may let the VM execute PIOs or MMIOs on the de-
vice directly. In our initial implementation, PIO and
MMIO accesses were trapped by the hypervisor and
passed to the userspace component of KVM. This
component then validated the accesses and if neces-
sary executed them on the real device. Initial perfor-
mance results, however, indicated that exits due to
MMIO accesses could have a non-negligible perfor-
mance impact, which led us to implement a “direct-
MMIO” mode. In direct-MMIO mode MMIO ac-
cesses are not intercepted by KVM and are instead
executed directly on the device. We note that some
PIO accesses could be passed through directly in the
same manner, but PIO’s are rarely used on the fast-
path of a high-speed device3. The limited perfor-
mance benefit of direct-PIO was deemed not to be
worth the additional complexity.

2.2 Interrupts

In a direct access scenario, it is the guest, not the
host, which should handle an interrupt, but delivering
an interrupt directly to the guest is not feasible in the
general case: the guest might not even be running at
the time a device raised the interrupt. In our imple-
mentation interrupts are always received by the host.
The host acknowledges the interrupt at the IOAPIC,
disables the interrupt line so that the interrupt han-
dler will not be called again and injects the interrupt
to the guest. Once the guest acknowledges the inter-
rupt and a new interrupt can be serviced, the host
re-enables the interrupt line. Note that this mecha-
nism cannot support shared PCI interrupts, since an

3Some guest pio accesses, e.g., to device BARs, could ad-
versely affect the host and always need to be validated.

untrusted guest could potentially delay its acknowl-
edgment forever, thus keeping the (shared) interrupt
line disabled. This is a limitation of our approach
which we are working to address.

2.3 Direct memory access (DMA)

In a virtualized environments, guests have their own
view of physical memory, which KVM refers to as
“guest physical”, and which is distinct from the host’s
“host physical” view of memory [9]. Although there
are ways of giving fully-virtualized guests DMA ac-
cess to portions of host memory without hardware
support [10], such approaches can only work for
trusted guests. Solving the DMA problem for the gen-
eral case of untrusted, non-hypervisor-aware guests,
requires hardware support [2].

An I/O Memory Management Unit (IOMMU) on
the I/O path between a device and memory validates
and translates all device accesses to host memory.
With an IOMMU the host can let the guest program
the device with guest physical addresses while set-
ting the proper translations (mappings) from guest
physical addresses to host physical addresses in the
IOMMU translation table used by that device.

Since the Linux kernel already contained sup-
port for setting-up and programming Intel’s VT-d
IOMMU, all that was required to handle DMA in
our implementation—other than fixing the odd bug
or three—was to “hook up” the kernel’s VT-d code to
the KVM guest memory mapping routines. We did it
in such a way that any host physical address mapped
by the guest at a given guest physical address has
the same guest physical address to host physical ad-
dress mapping in the the IOMMU translation table
for any device the guest has direct access to. There
is nothing inherently specific to VT-d in our imple-
mentation: any isolation-capable IOMMU supported
by Linux could be plumbed into KVM in the same
manner.

Willman, Rixner, and Cox presented four policies
for deciding when to create or remove IOMMU map-
pings [18]: single use, shared mapping, persistent
mapping and direct mapping. The first three poli-
cies require a para-virtualized interface for the guest
to map and unmap its memory, and thus are not
appropriate for fully-virtualized (unmodified) guests.
They also have a non-negligible performance over-
head [3, 18]. Direct mapping, on the other hand, is
transparent to the guest and requires minimal CPU
overhead. Therefore, our implementation implements
direct mapping.

Having said that, we do note that direct mapping
requires pinning the guest’s entire memory (no mem-
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ory over-commit) and provides no protection inside a
guest (intra-guest protection), only between different
guests (inter-guest protection). Overcoming its limi-
tations is part of our on-going work, as discussed in
Section 5.

3 Performance results

3.1 Experimental setup

We compared the performance of direct access ver-
sus native Linux, KVM’s emulated e1000 NIC and
para-virtualized virtio network driver (referred to as
“virtio” below).

Our setup consisted of two Lenovo M57p machines
with the Intel Q35 chipset (which includes VT-d).
Each machine had a 2.66GHz dual-core Intel Core
2 Duo CPU with 4GB of memory. The machines
were connected directly with a 1GbE cable. One
Lenovo machine ran native Linux (Ubuntu 7.10 for
x86 64) and the other ran Linux (Ubuntu 7.10 for
x86 64) with KVM, with a single virtual machine run-
ning Fedora Core 8 (64 bit), with 1GB of memory.
All runs, native and virtualized, used the on-board
e1000e PCI-e NIC.

Both the hosts and the guest ran a Linux kernel
with VT-d support, based on the Linux 2.6.27-rc4
KVM git tree4. On the host running the VM we
used the kvm-userspace git tree5, again with added
VT-d support.

We ran both the iperf [17] and netperf [8] bench-
marks, and measured throughput and CPU utiliza-
tion. For the sake of brevity we only present the
netperf results, but the iperf results were substan-
tially similar. The VM and the native machine al-
ternated sender and receiver roles. The sender (run-
ning netperf) was run with the following parame-
ters: -H <address> -l 60, and the receiver (run-
ning netserver) was run with no command line ar-
guments.

When running native, Linux used both cores.
When running a virtual machine, the virtual machine
was given 1 virtual CPU and was not pinned to a
specific core. We note that the upper bound for CPU
utilization is therefore 200% (100% × 2 cores).

We ran the following setups:

• The baseline for comparison was native
Linux (no virtualization) with VT-d disabled
(intel iommu=off specified in the kernel’s
command line).

4changeset ce094fc0d25cb364bce6f854dffc6849876ab89a.
5changeset e82e58b1e889010b531dac616d0b94f76de66b09.

• Virtual machine using the emulated e1000 de-
vice.

• Virtual machine using KVM’s para-virtualized,
virtio-based network driver virtnet (“virtio”).

• Virtual machine with direct access to the on-
board e1000e adapter.

We repeated each setup 5 times, measuring in each
case throughput and CPU utilization. The values
presented in graphs are the averages.

3.2 Performance results and analysis

As can be seen in Figure 2, the overall throughput
in the case of direct-access was 99.7% of native, and
is 260% better then emulation. The throughput of
virtio is 93% compared to direct access, and the CPU
utilization of virtio is 314%(!) of direct access.

Santos et al. recently also showed that a sizable gap
remains between virtual I/O drivers and native [14],
using Xen’s state-of-the-art virtual I/O drivers. Al-
though it is less pronounced in 1GbE environments,
this performance gap is inherent in the architectural
differences between virtual I/O drivers and direct ac-
cess. We expect that in a 10GbE environment, where
the CPU is likely to be the bottleneck, direct access
will perform significantly better than virtio, since it
requires several times less cycles to push (or receive)
a packet.

The results for network receive (Figure 3) are
roughly the same as for send, except the differences
between virtio and direct access are less pronounced.
We note however that in a multiple VM scenario,
where received packets need to be dispatched to the
right VM, direct access—which does the dispatching
in hardware—has an advantage over virtio which has
to do the dispatching in software.

It is well-known that network CPU overhead is
relative to application buffer sizes. We looked at
the effect different application buffer sizes had on
the throughput and CPU utilization of direct access.
As can be seen in Figure 4, throughput increases as
message sizes increase, and the CPU utilization de-
creases. We note however that with virtio the differ-
ence is more pronounced: virtio works a lot harder
for small messages and a bit harder for larger mes-
sages. This leads us to conclude that the smaller the
application buffer size, the more compelling it is to
use direct access.

Last but not least, we analyzed the performance
gap between native and direct access. The key ob-
servation is that direct access gets rid of the virtu-
alization overhead for the I/O path, but there re-
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Figure 2: Performance comparison: network send.

Figure 3: Performance comparison: network receive.

mains residual overhead for the CPU and MMU vir-
tualization. The increased CPU utilization of direct
access as compared to native comes from guest exits.
MMIOs and DMAs do not cause exits in our imple-
mentation, and PIOs do not occur on the fast path.
Therefore, all of the guest exits are either due to in-
terrupts or due to “generic” virtualization exits such
as page faults. Interrupt coalescing and switching to
polling the adapter can reduce or even eliminate the
interrupt exits overhead, and the advances in CPU
and MMU virtualization (e.g,. the introduction of
nested paging [4]) will continue reducing the generic
virtualization overhead, to the point where we expect
direct access to be virtually indistinguishable from
native.

4 Related work

In an earlier work we discussed the design consid-
erations of IOMMU support in hypervisor environ-
ments [2], focusing on para-virtualized virtual ma-
chines in the Xen hypervisor environment using the
IBM Calgary IOMMU. In this work we focus on fully-
virtualized virtual machines in the KVM environment
with Intel’s VT-d IOMMU.

In a follow-on work we presented the performance
penalties associated with direct access and IOM-
MUs [3], again focusing on a para-virtualized Xen en-
vironment, para-virtualized mapping strategies and
the Calgary/CalIOC2 family of IOMMUs. Willman,
Rixner and Cox [18] extended that work and pre-

5



Figure 4: Effect of buffer size on throughput and CPU utilization.

sented the four different mapping strategies men-
tioned in Section 2.3. Their evaluation however was
done in a simulated environment using AMD’s GART
rather than an isolation-capable IOMMU. Our results
are from a full implementation of direct access using
Intel’s VT-d isolation-capable IOMMU. Additionally,
we compare and contrast these results with the emu-
lation and para-virtualized modes of I/O virtualiza-
tion.

To the best of our knowledge, direct access using
Intel’s VT-d IOMMU was first implemented by the
Xen developers. There are numerous implementa-
tion differences between the Xen and KVM imple-
mentations which stem from the different hypervisor
architectures. For example, unlike our implementa-
tion which made use of Linux’s VT-d support, the
Xen implementation required re-implementing VT-d
in the Xen hypervisor itself. Additionally, as far as
we know no detailed technical evaluation of the Xen
direct access support has been published, but we ex-
pect that a full analysis of the different I/O virtual-
ization modes Xen supports would roughly parallel
our results, except that Xen’s para-virtualized I/O
drivers are somewhat more mature than the KVM
alternatives [14].

5 Conclusions and Future work

It is evident from the results presented in Section 3
that direct access with an IOMMU provides excel-
lent I/O performance for untrusted fully-virtualized
virtual machines. However, performance is not ev-
erything. Direct access is fundamentally about by-
passing the virtualization abstraction layer, and by
bypassing this layer we lose some of the benefits of vir-
tualization, such as support for live migration [5, 15].
Several approaches have been proposed for combin-
ing direct access with live migration (e.g., Zhai, Cum-
mings and Dong proposed bonding [20] and Huang et
al. proposed adapter hardware changes [7]) but each
of the proposed approaches has different limitations.

Another limitation of direct access using direct
mapping is that it requires pinning all of the guest’s
memory. A para-virtualized interface for selective
IOMMU mapping (“pvdma” in KVM parlance) will
allow us to avoid pinning unneeded memory, but is
also likely to incur a significant performance cost [3,
18]. It is our belief that improving “pvdma” to the
point where it is as performant as direct mapping is
possible, and we are actively pursuing it.

To conclude, direct access is a valuable alternative
approach for I/O virtualization today, which provides
near-native performance, as demonstrated by our im-
plementation of direct access for KVM. Hardware
advances such as self-virtualizing adapters, interrupt
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re-mapping, and more efficient CPU and MMU uti-
lization are likely to continue making direct access
an attractive I/O virtualization choice. Ultimately,
we believe that the future of I/O virtualization is a
combination of direct access on the software side cou-
pled with self-virtualizing, intelligent adapters on the
hardware side. With the right combination of soft-
ware and hardware, direct access can provide native
performance while also providing all of the benefits
of software-based methods for I/O virtualization.
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Unmodified device driver reuse and improved
system dependability via virtual machines. In
OSDI’04: Proceedings of the 6th conference on
Symposium on Opearting Systems Design & Im-
plementation, page 2, Berkeley, CA, USA, 2004.
USENIX Association.

[11] J. Liu, W. Huang, B. Abali, and D. K. Panda.
High performance vmm-bypass i/o in virtual
machines. In USENIX ’06: Proceedings of
the 2006 USENIX Annual Technical Conference,
page 3, Berkeley, CA, USA, 2006. USENIX As-
sociation.

[12] H. Raj and K. Schwan. High performance and
scalable I/O virtualization via self-virtualized
devices. In HPDC ’07: Proceedings of the 16th
international symposium on high performance
distributed computing, pages 179–188, New York,
NY, USA, 2007. ACM Press.

[13] R. Russell. virtio: towards a de-facto standard
for virtual I/O devices. SIGOPS Oper. Syst.
Rev., 42(5):95–103, 2008.

[14] J. R. Santos, Y. Turner, J. G. Janakiraman, and
I. Pratt. Bridging the gap between software and
hardware techniques for i/o virtualization. In

7



USENIX ’08: USENIX Annual Technical Con-
ference, pages 29–42, June 2008.

[15] C. P. Sapuntzakis, R. Chandra, B. Pfaff,
J. Chow, M. S. Lam, and M. Rosenblum. Op-
timizing the migration of virtual computers. In
Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 377–
390, 2002.

[16] J. Sugerman, G. Venkitachalam, and B.-H.
Lim. Virtualizing I/O devices on vmware work-
station’s hosted virtual machine monitor. In
USENIX ’01: USENIX Annual Technical Con-
ference, pages 1–14, Berkeley, CA, USA, 2001.
USENIX Association.

[17] A. Tirumala and J. Ferguson. Iperf 1.2 -
the TCP/UDP bandwidth measurement tool.
http://dast.nlanr.net/Projects/Iperf, 2001.

[18] P. Willmann, S. Rixner, and A. L. Cox. Pro-
tection strategies for direct access to virtualized
I/O devices. In USENIX ’08: USENIX Annual
Technical Conference, pages 15–28, 2008.

[19] P. Willmann, J. Shafer, D. Carr, A. Menon,
S. Rixner, A. L. Cox, and W. Zwaenepoel. Con-
current direct network access for virtual machine
monitors. In High Performance Computer Archi-
tecture, 2007. HPCA 2007. IEEE 13th Interna-
tional Symposium on, pages 306–317, 2007.

[20] E. Zhai, G. D. Cummings, and Y. Dong. Live mi-
gration with pass-through device for Linux VM.
In OLS ’08: The 2008 Ottawa Linux Sympo-
sium, pages 261–268, July 2008.

8


