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Abstract—An intrusion detection system (IDS) is usually lo-
cated and operated at the host, where it captures local suspicious
events, or at an appliance that listens to the network activity.
Providing an online IDS to the storage controller is essential
for dealing with compromised hosts or coordinated attacks by
multiple hosts. SAN block storage controllers are connected to the
world via block-level protocols, such as iSCSI and Fibre Channel.
Usually, block-level storage systems do not maintain information
specific to the file-system using them. The range of threats that
can be handled at the block level is limited. A file system view
at the controller, together with the knowledge of which arriving
block belongs to which file or inode, will enable the detection of
file-level threats.

In this paper, we present IDStor, an IDS for block-based
storage. IDStor acts as a listener to storage traffic, out of the
controller’s I/O path, and is therefore attractive for integration
into existing SAN-based storage solutions. IDStor maintains a
block-to-file mapping that is updated online. Using this mapping,
IDStor infers the semantics of file-level commands from the
intercepted block-level operations, thereby detecting file-level in-
trusions by merely observing the block read and write commands
passing between the hosts and the controller.

I. INTRODUCTION

An Intrusion detection system (IDS) is an appliance or

application that monitors network and/or system activities for

malicious activities or policy violations. There are two main

types of IDS systems: network-based and host-based IDS.

In a network-based intrusion-detection system, the sensors

are located at points in the network to be monitored. The

sensor captures all network traffic and analyzes the content of

individual packets in order to detect malicious traffic. In a host-

based system, the sensor usually consists of a software agent

that monitors all activity of the host on which it is installed,

including file system, logs and the kernel. In a storage-based

IDS, a sensor captures all the traffic (I/O requests) that arrives

at the storage controller, and analyzes possible storage system

violations or threats.
An online IDS at the SAN controller could handle several

types of threats, as follows: (1) Threats that are typically

handled at the host level by Tripwire-like [1] tools. Such

tools can identify when data or metadata that belongs to files

that administrators expect to remain unchanged is modified.

Examples of such files include system executables and scripts,

configuration files, system header files and libraries. These

tools can also identify suspicious patterns of access (usually

patterns of updates) to certain files or to the file system.

Specific examples to this group of threats are overwriting

data in system log files, or reversing file modification times.

(2) Threats that can cause storage denial-of-service, when

an attacker disables specific services or entire systems by

allocating all or most of the free space or by allocating many

inodes or other metadata structures. (3) Leakage of sensitive

data when written to non-secure machines or disks, which

can be prevented by Data Leakage Prevention (DLP) tools.

An additional possible feature of a storage-based IDS is the

ability to trigger a (typically incremental) antivirus scan upon

access. Such storage-based IDS that can identify and alert

upon the occurrence of these threats usually perform side-by-

side with the host-based IDS. However, only a storage-based

intrusion detection mechanism is effective in case hosts are

compromised or in case multiple hosts share an attack that

can be detected only by the central storage.

Despite the benefits of detecting intrusions at the storage

level, no storage-based IDSs exist for the SAN block con-

troller. The very few storage systems that do maintain an

online IDS are accessed via file-level protocols, such as CIFS

or NFS. The deployment of a block-level storage-based IDS is

more complicated. The SAN block storage controller interacts

with hosts via block-level protocols, such as iSCSI and Fibre

Channel. Usually, block-level storage systems do not maintain

information specific to the file-system using them. Thus, the

range of threats that can be handled directly from block-level

traffic is very limited. A file system view at the controller,

together with the knowledge of which arriving block belongs

to which file or inode, will enable the detection of file-level

threats.

Moreover, obtaining a block-to-file view at a listener ap-

pliance is a challenging research problem. Several works

have already suggested how to add a file system view to

the controller in order to handle file-level threats [2], [3],

[4]. However, the previous works are within the controller’s

I/O path, an approach that suffers from several limitations.

First, adding software to the modules that handle the I/O path

of a controller is a complicated and error-prone task, with

heavy development expenses. Second, the CPU capacity at the

controller is designed to handle the arriving I/O requests and

may not be able to perform additional computation tasks that

are required in order to obtain the file-view. Finally, it is much

more appealing for a client with an existing storage solution

to add security by plugging in a new external appliance, rather

than replacing or patching the existing system.

To solve these shortcomings we designed and developed
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an IDS for block-based storage (IDStor) framework. IDStor

has several significant advantages and contributions over pre-

viously suggested solutions. First, in order to detect file-

level threats, we obtain a full file system view from block-

level traffic. Such detailed analysis and hands-on solution

were not provided in previous works. Second, we provide a

full implementation of such a view at a listener appliance,

rather than at the I/O path. These two contributions open

the way to set an initial framework for an online intrusion

detection system based on the file-system view. This paper

presents preliminary work of online detection given online file

inference, and highlights its feasibility.

For the purpose of obtaining a file-system view, we focus

on the ext3 file system, and on the iSCSI block-level protocol.

We maintain an updated block-to-file map where each data

block points to the file that owns it. The map is updated in

an online manner by capturing the arriving block-level traffic,

i.e, iSCSI commands, and translating them back to the file-

level commands performed at the host. Initially, this mapping

is built by traversing the metadata information kept in the disk

and it is then updated in an online manner. The maintenance

of a reliable inverse mapping only by listening to block-level

commands is a challenging task, since each file-level command

is translated into several block-level commands, and those are

interleaved with commands originating from other file-level

commands. In order to reverse this translation, we maintain

state machines for inodes and data blocks, until their state is

resolved and inserted into the inverse mapping. One challenge

we solved is how to parse the arriving commands in an order

that may be different from the one in which they arrived,

such that the interpretation will be correct. The details of our

solution is presented in Section III.

IDStor acts as a passive listener and can be located at a

listener appliance or a listener module, rather than an active

part that is inserted into the controller and can interfere with

the ongoing I/O requests. This combination of obtaining a

block-to-file mapping together with the listener architecture is

a viable path to the customer. This solution is not controller-

specific and will not affect the controller’s operation.

IDStor can also act as a regular network-based IDS that

handles block-level threats, such as detecting overly-long

strings that might cause buffer overflows. Essentially, we add

an iSCSI interpreter to the list of protocols that are parsed and

checked by an IDS. Section V presents only the preliminary

work that was done towards the handling of file-level threats

while further details are left for future work.

II. IDS FOR BLOCK-BASED STORAGE (IDSTOR) - SYSTEM

DESCRIPTION

This section presents a general description of IDStor, a

storage-based intrusion detection system that acts as a listener,

and can be embedded in an appliance. We distinguish between

two types of storage-based IDS architectures. In the first

architecture, the IDS system is located on the I/O path of the

controller, between any traffic that arrives at the controller and

the storage. It may delay the arriving command and compare

it with previous content before allowing the command to
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pass. The second architecture detects intrusions by passively

listening to the stream between the host and the target. The

IDS system is located at a listener appliance, where the

arriving traffic can be captured.

The first architecture suffers from several limitations.

Adding software to the modules that handle the I/O path of

a controller is a complicated and error-prone task, with heavy

development expenses. In addition, the CPU capacity at the

controller is designed to handle the arriving I/O requests and

may not be able to perform additional computation tasks that

are required in order to obtain the file-view. Finally, it is much

more appealing for a client with an existing storage solution

to add security by plugging in a new external appliance as in

the second architecture, rather than replacing or patching the

existing system.

Thus in this work, we select the second architecture, where

IDStor acts as a listener appliance, as depicted in Figure 1. In

case of a write command, this architecture can not compare

the arriving packet data against the current content on the disk,

since the new data is written in parallel by the target. It also

cannot affect the I/O path by delaying the command or the

violation.

For the purpose of obtaining a file-system view, we focus

on the ext3 file system, highlighting the parts that are general,

and applicable to any file system, and the ones that are ext3-

specific. We use the iSCSI block-level protocol, and assume

that the logical unit (LUN) at the iSCSI target is a raw

disk structure without logical volume management (LVM) or
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RAID. We also require that during the initialization of IDStor,

there is no other I/O traffic to the monitored LUNs, thus letting

IDStor build an initial mapping of the file system.

IDStor looks for file-level violations using a file-aware view.

The different components and layers of IDStor are depicted in

Figure 2. The iSCSI layer is part of the monitoring layer that

captures all the arriving traffic and parses the iSCSI packets.

It first looks for block-level violations, and then the block

command is transferred to the Block-to-File Layer. This layer

infers the file-level commands and maintains the block-to-file

mapping (see Section III). Each inferred file-level command

is passed to the security layer that detects an intrusion to a

file. The security layer (see Section V) matches the file-level

command (delivered by the block-to-file layer) to the file-level

rules in its database, and announces an intrusion in case of a

violation.

III. HOW TO OBTAIN FILE-AWARENESS AT A

BLOCK-LEVEL STORAGE?

The block-to-file layer in IDStor is composed of several

parts:

• Building and maintaining a block-to-file mapping.

This mapping enables us to answer questions like: “given

a block number, which inode owns it?” and “what is the

file name of this inode?”.

• Inferring file-level commands from the arriving block-

level commands, thus supplying access-related informa-

tion. This feature enables us to answer questions such

as “what was the order, the rate, or the pattern of

access inside a specific file?” and “which commands were

operated on this file?”.

Figure 3, adapted from the book “Understanding the Linux

Kernel” by Bovet and Casati, provides the ext3 file system

layout [5]. The disk is partitioned into block groups. Each

block group starts with metadata blocks followed by data

blocks. Among other information on the structure of the

files and their hierarchy, the metadata blocks hold an inode

table for each inode in this block group. An inode is an

internal structure representing a “physical” file entity. The

inode structure in the inode table keeps 128 Bytes containing

various inode attributes and the list of the blocks belonging

to this inode (using the i block field). An inode of a regular

file points to the list of its data blocks. An inode representing

a directory points to blocks that contain the inode numbers

that are under this directory, along with their filenames. When

using hard links, each inode can be referred to by several

names, where the filenames are kept in the data blocks of the

respective parent directories.

The data blocks portion of the layout consists of data blocks

that keep the contents of regular files, to which we refer as pure

data blocks, and ones that actually keep metadata information,

to which we refer as fake data blocks. One example for the

latter is the data blocks of a directory inode, as described

above. Another example is indirect addressing blocks. To

save memory, the inode structure maintains up to 3 levels of

addressing indirection. Indirected address blocks are allocated

only when a file grows and more data blocks are required.

The file system allocates pure blocks and fake blocks from

the data blocks pool indiscriminately, and thus a data block

can be a pure data block when associated with one inode, and

later (after being freed) reallocated as a fake one for a different

inode (or vice versa).

The file-system metadata information is organized in a way

that enables answering host-level requests such as “list the

blocks that belong to a certain inode” or “list the files that

belong to a certain directory”. On the other hand, in order

to handle file-level threats, IDStor has to be able to answer

questions such as: “given a block number, which inode owns

it?” and “what is the file name and parent directory of this

inode?”. The layout of ext3, like most file systems, was not

designed to resolve this easily. In order to find an inode owning

a block, using only the standard file system data structures,

one must traverse the entire inode table until an inode that

contains the required block is found. Moreover, when the

filename is also required, and since the directory hierarchy

is kept separately from the inode information, an additional

mapping has to be resolved and the directory structure must

also be found and traversed.

This problem is even more crucial when considering the

online model, as we are doing, where we infer the file view

from captured block level commands, while requiring as little

memory as possible, and acting as a listener. The fact that the

non-metadata block range holds also metadata information,

such as file names and indirect block pointers, amplifies the

challenges in this framework even further.

We will first show how to map a block to its inode, and

then explain what is required in order to map an inode to a

file name.

A. Block-Level Protocol Translation

At the file system level, a file is viewed using its name and is

composed of logical blocks of given size (e.g., 4KB). The SAN

block storage controller is not aware of the semantic meaning

of the content it stores and treats it as a sequential layout

of device blocks (e.g., 512B). A controller that is connected

via block-level protocols, such as iSCSI and Fibre Channel,

accepts a stream of read and write block-level commands.

Our goal in IDStor is to build an inverse mapping, where
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File Command iSCSI Operation,Block Type

Read File Read the data block
Write atime field in the inode table

Write File Write the data block
Overwrite Write inode table fields
Append in last block Write inode table fields
Append new blocks Write superblock

Write group desc.
Set the bit in data bitmap
Write inode table fields

Partial file truncate Write superblock
Write group desc.
Unset the bit in data bitmap
Write inode table fields

New File Write superblock
Write group desc.
Set the bit in data bitmap
Set the bit in inode bitmap
Write inode table fields
Write parent inode table fields
Write data blocks

Write parent data (the file name)

Delete File Write superblock
Write group desc.
Unset the bit in data bitmap
Unset the bit in inode bitmap
Write inode table fields
Write parent inode table fields

New Directory Write superblock
Write group desc.
Set the bit in data bitmap

Set the bit in inode bitmap
Write inode table fields
Write parent inode table fields
Write data block
Write parent data (the directory name)

Remove Directory Write superblock
Write group desc.
Set the bit in data bitmap
Set the bit in inode bitmap
Write inode table fields

Write parent inode table fields
Write parent data (remove the directory name)

TABLE I
EXAMPLES OF FILE-LEVEL COMMANDS TRANSLATED TO ISCSI

COMMANDS

blocks refer to the inodes that own them. In order to build and

maintain this mapping, IDStor performs the following steps:

captures the block-level commands, identifies the type of the

iSCSI command and the type of the block specified in the

command, inserts the relevant information to the state machine

and finally adds the block-to-inode information to the inverse

mapping.

Each host-level command is usually translated into several

different block-level commands that have no explicit relation-

ship to each other. For example, a host-level command that

creates a new file is translated into block-level commands

that: (1) updates the superblock fields specifying the number

of allocated blocks and inodes, (2) updates the field in the

group descriptor of the appropriate block group specifying the

number of free inodes, (3) sets the relevant bit in the inode

bitmap to true, (4) sets the relevant bits in the data bitmap

to true, corresponding to the additional data blocks that were

allocated for this file, (5) creates a new inode structure in the
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Fig. 4. Block Device Operation - stages.

inode table, (6) updates the access time fields in the parent

directory’s inode structure (assuming the file system was not

mounted using the no atime switch) , (7) adds the file name

to the relevant data block of the parent inode, and finally,

(8) writes the data blocks of this inode. Table I provides the

list of the file manipulation commands and the corresponding

list of the block-level manipulations. A consistent file system

requires that all the block-level commands that compose a

certain file-level command will finally arrive to the disk, but

often there are no requirements on the order in which they

do so. We can obtain a feasible inverse mapping by parsing

the block level commands. The challenge of this task arises

from the fact that the file system information can be delayed

in the host’s cache and flushed to the storage in any order

and usually after some delay. However, eventually all the

information should be flushed to the disk and captured at the

block-level.

An iSCSI command can be a “read” or a “write” command

that accesses some arbitrary block on the disk. This block can

be either a metadata block or a data block. Given a block

number, IDStor translates it from the block device address

space into the file-level address space by taking into account

the relation between the filesystem block size and the disk

sector size, and the on-disk offset of the partition (Figure 4

describes the different stages and components that a block

device operation passes). Then, in the case of a write to a

metadata block, it determines its type, i.e, to which block in

the block group it belongs (see Figure 3). The sizes of block

groups and metadata structures are set at file system creation

and are held in the superblock. The block type is identified

by performing simple division and modulo operations on

the retrieved block group size and metadata size. The block

numbers in commands 1 − 6 in the example above were

identified as metadata blocks while command 7 refers to a

fake data block. Command 8 describes a write of a pure data

block.

The identification of metadata blocks (as in commands 1−6)

is not enough for maintaining an inverse block to file mapping.

For instance, we identify in command 5 that it accesses the
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inode table block, but we do not know which inode in the

inode table was accessed. Each inode table block contains

many inodes (as many as the block size divided by 128B,

so an inode table block with a logical block size of 4KB can

accommodate 32 inodes). As mentioned above, since we are

working as a listener to the network traffic, we do not have

access to the older copy of this block when encountering a new

write to it. One option of attacking this problem would be to

keep a copy of all such blocks, thus being able to compare the

new and old versions. There is a clear tradeoff here between

memory consumption and performance. We opted for another

option – we do not hold the older copy, but rather parse the

entire inode table block whenever it is written. Note that some

inodes are not in use, indicated by their non-zero deletion time

field, and there is no need to parse them any further. For the

rest, we extract the fields necessary to us from the new inode,

e.g., the inode type and the list of block it contains, and update

our data structures accordingly.

In order to identify when inodes and blocks are added

to the system, IDStor maintains intermediate state machines

for inodes and blocks that were encountered but are not yet

valid, i.e., for which not all commands required for complete

inference have arrived. We first present the state machine logic

assuming the iSCSI commands that compose a single file-level

command are not interleaved with other commands. Then, we

show that our parsing can be affected by certain cases in which

the commands are interleaved, and describe how this can be

handled.

1) Inferring a single host-level command: In this section,

we assume that the block-level commands related to a single

host-level command are not interleaved with other commands.

Clearly, this assumption is not realistic and will be relaxed in

the next section. IDStor keeps track of the status of each inode

and block for their validity since only the valid inodes and data

blocks are considered in the inverse block-to-file mapping. It

gathers the relevant iSCSI commands to infer the host-level

commands and to update the state machines and the file view.

It is enough to parse only the write commands, and only part

of those are necessary. In addition, pure data blocks need not

be parsed at all. Only metadata and fake data blocks, such as

indirect addressing blocks, are parsed. Data blocks that belong

to directories need to be parsed only in case we need to provide

an inode-file name mapping (see below).

We maintain three data structures for reaching the required

metadata information, as follows: the inodes hash table holds

all of the inodes that exist in the system, block-to-inode BTree

holds the numbers of all the allocated data blocks in the file

system, their role in the file system (e.g., pure data, or indirect

addressing), and their owning inodes, and the data block

tracker list holds the data blocks that were encountered so far

and that cannot yet be associated with any of the inodes with

certainty. The flowchart in Figure 5 assumes that the arrived

iSCSI command belongs to a single host-level command. It

identifies the block number and type, and by parsing its content

and using the information in the data structure it sets the

associated inode or data block validity as described below.

The following states are determined according to the content

of the arriving metadata blocks and these data structures.

Block to Inode

BTree

Inode Hash

Table

Data Block

Tracker List

Data StructuresiSCSI commnd

stream

Identify:

block Number, b lock type

metadata or pure/fake Data block

If metadata block

 (inode table, inode bitmap,

or data bitmap)

If fake data block

(unknown in advance - can

beindirect addr, directory data

block)

If pure data block

(unknown in advance - can be fake

data block)

Check if this block number

is already in the block list.

If yes update its state.

if Fake  or Valid

Parse:

For any inode appears in inode table or inode

bitmap:

Update inode state to be valid or deleted

 if Valid parse the i_block list

For any block appears in data bitmap:

Update data block state to be valid or deleted

If Valid and also fake data block parse it

Fig. 5. An algorithm to infer both a single host-level command and
the validity of the associated inodes and data blocks. It assumes the
commands arrive in order and gathers the commands that indicate
the states of the associated inode or data block until its state is
resolved (valid or deleted). The command is parsed if it is a metadata
command, otherwise it is kept and parsed only when it is declared
as valid.

• An inode is considered to be valid at the storage level

only when all the iSCSI commands that are relevant to it

have arrived and were written in the storage disk. IDStor

considers an inode to be valid after receiving and parsing

the following iSCSI commands (in any order):

– The inode was written in the inode table, with a dtime

field equal to zero (indicating this inode has not been

deleted).

– The corresponding part of the inode bitmap was

written, in which the bit for this inode was set to

true (indicating the inode is not free).

Whenever an inode becomes valid, the “New File” or

“New Directory” host-level command is announced, ac-

cording to the type of the inode.

• An inode is considered deleted after receiving the follow-

ing commands:

– The inode was written in the inode table, with a

non-zero dtime field (indicating this inode has been

deleted).

– The corresponding part of the inode bitmap was

written, in which the bit for this inode was set to

false (indicating the inode is free).

Whenever an inode is deleted, the “Delete File” or

“Delete Directory” host-level command is announced.

• A data block is valid after receiving the following block-

level commands:
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– A write command that updates this data block.

– A write command that updates the address to this

block. There are two ways to point at a block: a)

A valid inode was written to the inode table, with

this data block listed in the i block field (i.e., the

inode points directly at this data block), or b) a

block known to be an indirect addressing block was

written, with this block listed in it.

– The corresponding part of the data bitmap was

written, in which the bit for this block was set to

true (indicating the block is not free).

• A data block is declared deleted after it was deleted in the

data bitmap only. Looking for any other evidence for this

deletion requires storing the list of the blocks that belong

to a certain inode. This information is kept in the file

system and requires additional memory. For our inverse

map it suffices to keep only the block to inode pointer.

While this prototype deals with the iSCSI protocol, switch-

ing to a different block-level protocol requires adapting a

very small part of the process, namely the high parsing layer

that parses the block-level protocol and extracts the sequence

of block-level operations from it. The described flow above

assumes that the arrived iSCSI commands belong to a single

host-level command without interleaving of commands that

may change the ownership and consequently the type of a

data block. The next section provides a modified algorithm

that considers the usual scenario with an interleaving and an

order change of the iSCSI commands.
2) Inferring host-level commands assuming interleaving

of commands: The file system information can be delayed

in cache at the host and flushed to the disk or storage at any

order, and usually after some delay. Although we maintain

asynchronous validity state machines, there are still several

ordering patterns that might lead to an ambiguous inode

identification by our online parser. For example, consider the

following scenario:
Assume block 1000 is currently assigned to inode inode a.

Inode inode a is truncated, thus block 1000 is freed but this

fact was not flushed to disk yet. Now a large amount of

data is added to inode inode b, such that it needs an indirect

addressing block, and block 1000 is assigned for that. Two

things should happen: a) block 1000 has to be written with the

indirect data, and b) the inode of inode b has to be written to

update that 1000 is an indirect block belonging to it.
If b) happens before a), our online parser will realize that

block 1000 is owned now by inode b and not by inode a

and upon the arrival of block 1000, it will know it is an

indirect block (fake data block) and will parse it appropriately.

However, if a) happens before b), our inverse map still holds

block 1000 as a valid pure data block belonging to inode a,

so we ignore it. Now when b) happens we mark 1000 as

indirect, but wait for the data (which has already arrived, and

will therefore not arrive again).
In order to be able to treat such scenarios correctly, our

algorithm must not rely on the order in which the block

commands are flushed to disk. Specifically, we need to use

additional information, and should parse arriving data blocks

only after verifying their validity and ensuring which file owns
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Fig. 6. (a1) presents a possible arrival order when the metadata
blocks are interleaved with the data blocks (a2) shows the parsing
order when the metadata blocks are parsed immediately and the data
blocks are ignored for the validity state machine and their parsing
is delayed until the end of the metadata period.(b2) illustrate the
order arrival and the parsing order in ext3 when there is no way to
differentiate between pure and fake block and both are viewed as
data blocks. Thus both types of data blocks, pure and fake, should
be delayed until the parsing of the metadata blocks.

them and with what role. In other words, we must parse

the data block after parsing the relevant metadata blocks.

Figure 6 a1) illustrates this scenario assuming interleaving

arriving commands and a2) shows the parsing order when

the data blocks are ignored for the validity state machine and

their parsing is delayed until the end of the metadata period.

6 b1) and b2) illustrate the order arrival and the parsing order

in ext3 when there is no way to differentiate between pure

and fake blocks and both are viewed as data blocks. Thus

both types of data blocks, pure and fake, should be delayed

until the parsing of the metadata blocks (Figure 6 b2)). This

is due to the fact that the only way to differentiate between

pure and fake blocks at the block level is by identifying their

correct inode association and their role within that inode. As a

result, we must identify a self contained epoch in an arriving

stream, containing a set of data blocks and all their associated

metadata blocks, or in other words all the block writes that

are associated with one or several host-level commands.

Unfortunately, in a file system without journaling there is

no way to know in advance when the relevant metadata per

each data block will appear, and thus there is no way to

know until when to delay the parsing of a data block. The

situation is different when adding journaling modes to a FS,

like in ext3 [6]. Not surprisingly, the order in which commands

are flushed to disk is affected by the journaling type that is
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used. ext3 adds three journaling methods to ext2, Journal,

Ordered and Writeback modes. Each is different in the type

of information that is kept in the journal and can be recovered

in case of a failure.

In the Journal mode of the ext3 journaling, all file system

data and metadata changes are logged into the journal. This

mode minimizes the chance of losing the updates made to

each file, but it requires many additional disk accesses. The

Ordered mode only logs changes to file system metadata,

but before performing the actual metadata modifications, it

requires all pure data blocks to be flushed to disk. The

Writeback mode logs only file system metadata, without any

ordering guarantees.

Each journaling transaction consists of several atomic oper-

ations, where each atomic operation logs all the relevant blocks

relative to a single high-level change of the file system. The

transaction stops accepting new handles to log when either a

fixed amount of time has elapsed, typically 5 seconds, or when

there are no free blocks in the journal left for a new handle.

When the ordered mode is used, the sequence of events

for committing a transaction is as follows. First, all pure

data blocks are flushed to disk, then a journal entry is

written, recording the fact that the transaction changed status

to ’T FINISHED’. Finally,the metadata is flushed to disk.

Metadata in this context refers both to metadata blocks and

to fake data ones. Thus, with a minimum amount of parsing

of the journal, namely, finding the ’T FINISHED’ entries, one

can identify the point in which the flushing switches from data

blocks to metadata ones (both metadata and fake data). With

this information, the self-contained epoch can be identified.

3) inode-to-filename mapping: The framework described

above can map a block to an inode and also to a file name

in case there is only one file name per an inode. When using

hard links and there are several different file names to the

same inode, another level of translation and another set of

state machines has to be maintained. Such an additional level

of inverse mapping requires a lot of memory since it has to

hold the directory hierarchy information with all the filenames.

The decision whether to deploy it depends on the application,

and whether it has to answer the question: “What was the

exact file name that is related to a certain inferred host-level

command, given an inode?”. In Section V we will discuss

briefly how it can be used by the security layer of IDS for

block-based storage.

For now, we describe the involved iSCSI commands when

adding and deleting a hard link and what are the additional

challenges in its deployment. In this paper, we only describe

the challenges in handling hard links, and general ideas toward

handling them. We leave the details of this solution as future

work. It is hard to infer the addition or the deletion of another

file name to an inode because of the following reasons.

The files that belong to a directory are listed in data blocks

that are associated with the directory inode. These data blocks

hold an unsorted list of records, one record for each file name.

The record keeps the filename and its inode ID. A directory

that has a large number of files can span over many data

blocks. In order to discover whether a new file name was

added or deleted to the list, we need to keep a copy of the

entire directory hierarchy at the listener. A creation of a new

link at the host-level is translated into two block-level write

command: a) A write to a data block that belongs to the parent

directory with the additional name (hard link) added to the list.

b) A write to the inode table, in which the links counter of the

inode is updated. To find out which file name was added and

to which inode, we can traverse the list written to the directory

data block, and add any previously unknown file name to our

data structures.
Identifying the deletion of a hard link is somewhat more

challenging, and requires keeping the current version of the

directory data blocks at the listener. A deletion of a hard link

is also translated into a block level commands similarly to

addition of a link, i.e. a) A data block that belongs to the parent

directory is written, this time omitting this file name and inode,

and b) A write to the inode table, in which the links counter

of the inode is updated. Note that in this case, the deleted

filename record will simply not appear in the list. Therefore,

for identifying that a file name was listed there before, we

must keep some information on which file names are listed,

and where. One option, heavy on memory requirements, is to

simply keep the current version of all directory data blocks.

This additional deployment would enable us to infer file-level

commands by their file names and not only by their inode

number.

B. Data Structures

Unlike previous approaches, IDStor works in a listener

mode such that it does not interfere with the ongoing I/O

requests. The difficulty when working in a listener mode is

that each captured write command overwrites the content of

the block, thus preventing the comparison of the new content

with the old one. In a naı̈ve solution, the entire disk content

could be stored at the listener, which would require an amount

of memory equal to the size of the disk. Instead, we provide a

reliable map with significantly less memory requirements, by

maintaining an efficient data structure and keeping track only

of required metadata information. For this purpose, we keep

three data structures, as follows: inodes hash table, block-to-

inode BTree and data block tracker list.
Inodes hash table This hash table holds all the inodes that

exist in the system, valid and semi valid. For each inode,

we keep an inode structure that reflects the inode state, as

described in III-A. An inode is deleted from the list whenever

it is inferred as deleted. The keys in this table are the inode

numbers and the values are pointing to the appropriate inode

structures.
Block-to-inode BTree Holds the numbers of all the allocated

data blocks in the file system, their role in the file system (e.g.,

pure data, or indirect addressing), and their owning inodes.

The Block-to-inode map is built as a ranged BTree in a way

that given a block number, its owner inode can be fetched

efficiently. The keys in this BTree are consecutive ranges of

data blocks that carry the same role and are owned by the

same inode, and the values are the inode structures. This tree

contains only valid blocks, pointing to valid inodes.
Data block tracker list This list holds the data blocks that

were encountered so far (during a period of time) and that
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cannot yet be associated with any of the inodes with certainty.

For each such data block, we temporarily keep its state and

its content until its ownership and type are verified. We keep

the actual data since in cases where a block turns out to be a

fake data block, its data has to be parsed. This content can be

deleted once it is parsed.

Note that even though the file system metadata represen-

tation is different from one file system to another, our data

structure is mostly independent of the file system. The data

structures described above are first initialized and then updated

online. At application initialization, an offline builder module

traverses over the file system metadata that is stored at the

target disk and inserts each encountered inode, along with its

blocks, into the data structures. The data structures are then

updated online as described in Section III-A. For an extent

based file-system, such as ext4 or ntfs the described data

structures are correct but not optimal.

Memory Consumption We now study the extent to which

our data structures save memory compared to the basic ap-

proach.

The required amount of memory is divided into information

that is required by the block-to-inode mapping and information

that is required by inode-to-file mapping and is also specific to

the security application layer. The data structures, as described

in III-B, are used for the block-to-inode map. On disk, most of

the file system metadata space is occupied by the inode table

information where a structure is held per each inode (free and

not free). In our case, for the purpose of keeping an updated

list of inodes and their state, we must have an inode structure

for each used inode. The inode structure should hold only

those fields in the file system data structure that are necessary

for the block-to-inode inference.

Regarding data blocks, both pure and fake ones, there is

no need to keep the data itself. It suffices to maintain a list

of block numbers, each with a pointer to the owning inode.

Therefore, we keep at most 8 bytes per each data block. For

example, for a logical block of size 4KB, since we keep at the

listener only 8 bytes per block, the ratio between the amount

of memory we require for data blocks and their actual size on

disk will be the 4KB divided by 8, which is 500.

Note that this is an overestimated computation due to the

range-aware BTree data structure, in which the keys represent

a series of consecutive blocks rather than a single block

number.

Additional memory should be kept for the data block tracker

list. Each block is kept for a short interval, as short as the

time it takes for the journal mechanism to be flushed to disk.

During this interval, we need to keep the encountered data

blocks (both pure and fake). For example, consider a flush

period of 5 seconds, 2500 data block commands per second,

each block size of 4K bytes. In this case, we need to keep

4000*5*2500 = 50Mbytes for temporary data.

IV. EVALUATION

Our tests were designed to evaluate the feasibility of the

block to file translation and the quality of our inference

mechanism. We ran several scripts and “live” benchmarks

to check the consistency of the inverse data structure with

regard to the file system and to examine whether each host-

level command was inferred. We built a system as depicted in

Figure 1 using three x86 machines – a host, an iSCSI target

and an IDStor listener. The listener captures all traffic in and

out of the target via traffic mirroring at the switch.

An example of a test is provided in Table II. The left

column lists a simple shell script that creates a three-leveled

directory structure with some files, as illustrated in Figure 7.

It then appends and truncates some data from each of the files.

The right column presents the inferred commands as they are

printed by the IDStor listener application. For clarity, we do

not show the printing of each iSCSI identification, but only

the inference result. The test consists of the following four

parts.

1) Creating the directory structure and files. A small

amount of data is written to each new file, causing a

single block of data to be allocated for each file. Thus,

for each directory creation and file creation the listener

reports inferring that the new directory or file exists,

and a single data block being assigned to it. For clarity,

we list some of the inference printouts aligned with the

actual host commands, but in fact all inference printouts

are a result of the sync at the end of the batch that

caused all modifications to be flushed to disk, thus to be

captured and parsed by the listener.

2) Appending some data to files. The dd command is used

in order to write some random data to two files, of

lengths 12 KB and 8 KB, which caused three or two new

data blocks to be assigned to these files, respectively.

3) Truncating a file to the length of 4500 bytes, thus leaving

it with two blocks of data, and releasing the rest.

4) Removing the entire directory structure, which causes

inference of all data blocks being freed, and all directo-

ries and files being deleted.

In addition to running script examples, several benchmarks

were carried out, in which compilation of a large libraries

was executed on the host and captured by the listener. During

this test, 200 object files were truncated and then re-created,

and 2.5MB of data was written to them. Some of the files

were large enough to require one level of indirect addressing.

In order to check correctness of the file-level inference, i.e.,

consistency of our inferred data structure with regard to the

actual file system, at the end of the test we built another

inverse block-to-file data structure according to the actual state

of the file system structure at that moment. This data structure

was then compared to the one we maintained throughout the

test, and found to be identical. This shows that indeed all

commands were correctly inferred and that the data structure

has been updated appropriately. Note that no files are created

and then deleted during the test, nor data written and then

freed, thus the state of the file system at the end of the test

reflects all the commands that were executed in it.

The goal of our evaluation was to verify the feasibility of

our inference algorithm rather than evaluate its performance

or CPU utilization. Nonetheless, it is important to note that

the functionality that is added to the block-to-file mechanism
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test

son2file son3fileson1dir

gson11file gson13dirgson12file

ggson131file

Fig. 7. Directory hierarchy created by the test Shell script (Table
II,left column).

is mainly composed of updating the data structure; it is

lightweight and can handle the arriving stream of commands

at line rate.

V. IDS FOR BLOCK-BASED STORAGE (IDSTOR) -

SECURITY LAYER

This work provides only a preliminary design of the security

layer of IDStor that given the block-to-file layer is capable of

detecting both block-level and file-level threats. This section

presents the various threats that can be detected at storage

level and how the block-to-file features we presented can

contribute to detect them. Clearly, the iSCSI parser layer

enables the detection of block-threats, i.e. violations of the

iSCSI protocol. Specific examples are checking for ’too long

names’ in the iSCSI login stages that may cause buffer

overflows, or detecting data that is sent in chunks larger than

the negotiated maximum.

Detecting more sophisticated threats requires file-level

knowledge. Several papers [4], [7], [8] present different types

of malicious threats that can be handled at the storage as

presented in the list below. Most of these threats belong to

the Tripwire-like threat model [1] and are usually handled by

the Tripwire intrusion detection tool running at the host.

• Unexpected change of system files: Data or meta-data

changes to files that administrators expect to remain

unchanged (except during explicit upgrades). Examples

of such files include system executables and scripts,

configuration files, system header files and libraries.

• Unexpected file access pattern: Suspicious patterns of

access to certain files or to the file system, in particular

updates. Specific examples to this group of threats are

non-append modification of system log files and reversing

of inode times.

• Denial-of-service (DoS) attacks: An attacker may dis-

able specific services, or entire systems, by allocating all

or most of the free space or by allocating many inodes

or other metadata structures. When the system reaches

predetermined thresholds of allocated resources and al-

location rate, warning the administrator is appropriate

even in non-intrusion situations – attention is likely to

be necessary soon.

• Suspicious content appearance: The most obvious sus-

picious content is a known virus or rootkit, detectable by

its signature.

• Hidden “dot” files: Hidden files have names that are

not displayed by normal directory listing interfaces, e.g.,

ls, and their usage may indicate that an intruder is using

the system as a storage repository, perhaps for illicit or

pirated content. A large number of empty files or direc-

tories may indicate an attempt to exploit a race condition

by inducing a time-consuming directory. Another kind

of suspicious files are one with names that look like the

default ’.’, but with an additional space ’. ’

• Snooping on deleted storage blocks: In most file

systems, storage blocks are allocated to files on demand.

When a file is deleted, the storage block contents are not

necessarily erased. Rather, most file systems implement

file deletion simply by erasing the file from the directory

and deleting the file inode. Thus, data contents can be

left un-erased in deleted, and now free, storage blocks.

By accessing these storage blocks, it is possible for an

attacker to gain access to sensitive data.

• Data leakage prevention Checks whether someone read

data that he is not authorized to. Specifically, it prevents

the writing of sensitive data over non secured machines

or disks.

In order to detect the above types of threats, the security

layer has to be informed of the following file-level operations:

• Modification of the contents of an existing file (or inode).

In the block-level, this may manifest in the form of

modification of a data block already associated with the

inode, an addition of a new block to it, or a removal of

a block from an inode.

• Modification of the metadata of a file (or inode), e.g.,

file deletion, renaming, and addition or deletion of hard

links.

The security layer itself also has to maintain certain data

for each monitored file. For example, consider a log file, for

which an append-only rule is applied, calling for detection of

overwrites of existing data (as opposed to appends to the log).

In order to detect whether a write to the file indeed modifies the

last data block, it needs to know which of the blocks belonging

to the file is the last one. Moreover, the data in the last block

might also be overwritten, therefore the security layer needs

to keep enough information on this specific block in order

to infer, given the new data written to it, whether this is an

append or an overwrite operation. This may be implemented,

for example, by keeping a hash value of the existing data,

along with its length. Upon arrival of a write operation to this

block, the hash value of the relevant part of its data may be

computed and compared with the existing value.

Rules in an IDS are typically pairs of the form

〈identifier, rule〉, where identifier identifies a certain file

or group of files, either by their filenames or by their inode

IDs. rule is the rule to be applied to this file or group.

Security administrators clearly want to specify rules using
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Shell Script @ Host IDStor Infers Host-level Commands @ Listener

#! /bin/bash; cd /mnt/tmp
mkdir test; cd test 14:57:51 INFER: new dir /test (inode 310689)
mkdir son1dir 14:57:51 INFER: block 630784 valid belongs to /test (inode 310689)

14:57:51 INFER: new dir /test/son1dir (inode 310690)
echo “new file” > son2file 14:57:51 INFER: new file /test/son2file (inode 310691)
echo “new file” > son3file 14:57:51 INFER: new file /test/son3file (inode 310692)
echo “new file 1 sub son1dir” > son1dir/gson11file 14:57:51 INFER: block 634880 valid belongs to /test/son1dir (inode 310690)

14:57:51 INFER: new file /test/son1dir/gson11file (inode 310693)
echo “new file 2 sub son1dir” > son1dir/gson12file 14:57:51 INFER: new file /test/son1dir/gson12file (inode 310694)
mkdir son1dir/gson13dir 14:57:51 INFER: new dir /test/son1dir/gson13dir (inode 310695)
echo “new file sub gson13dir” > son1dir/gson13dir/ggson131file 14:57:51 INFER: block 638976 valid belongs to /test/son1dir/gson13dir (inode 310695)

14:57:51 INFER: new file /test/son1dir/gson13dir/ggson131file (inode 310696)
sync 14:57:51 INFER: block 628736 valid, belongs to /test/son2file (inode 310691)

14:57:51 INFER: block 628737 valid, belongs to /test/son3file (inode 310692)
14:57:51 INFER: block 628738 valid, belongs to /test/son1dir/gson11file (inode 310693)
14:57:51 INFER: block 628739 valid, belongs to /test/son1dir/gson12file (inode 310694)
14:57:51 INFER: block 628740 valid, belongs to /test/son1dir/gson13dir/ggson131file

echo “Done creating directories and files.” (inode 310696)

echo “Appending more data...”
dd if=/dev/urandom of=son3file bs=4096 count=3 15:01:07 INFER: block 628741 valid, belongs to /test/son3file (inode 310692)

oflag=append conv=notrunc 15:01:07 INFER: block 628742 valid,belongs to /test/son3file (inode 310692)
15:01:07 INFER: block 628743 valid,belongs to /test/son3file (inode 310692)

dd if=/dev/urandom of=son1dir/gson11file bs=4096
count=2 oflag=append conv=notrunc 15:01:07 INFER: block 628744 valid, belongs to /test/son1dir/gson11file (inode 310693)

15:01:07 INFER: block 628745 valid, belongs to /test/son1dir/gson11file (inode 310693)
sync ; echo “Done appending data”

echo “Truncating some data...”
truncate son3file 4500 15:01:42 INFER: block 628742 no longer in use

15:01:42 INFER: block 628743 no longer in use
sync ; cd ..

echo “Deleting everything...” 15:01:59 INFER: block 628736 no longer in use
rm -rf test 15:01:59 INFER: block 628737 no longer in use

15:01:59 INFER: block 628738 no longer in use
15:01:59 INFER: block 628739 no longer in use
15:01:59 INFER: block 628740 no longer in use
15:01:59 INFER: block 628741 no longer in use
15:01:59 INFER: block 628744 no longer in use
15:01:59 INFER: block 628745 no longer in use
15:01:59 INFER: block 630784 no longer in use
15:01:59 INFER: block 634880 no longer in use
15:01:59 INFER: block 638976 no longer in use
15:02:00 INFER: file /test/son2file (inode 310691) deleted
15:02:00 INFER: file /test/son3file (inode 310692) deleted
15:02:00 INFER: file /test/son1dir/gson11file (inode 310693) deleted
15:02:00 INFER: file /test/son1dir/gson12file (inode 310694) deleted
15:02:00 INFER: file /test/son1dir/gson13dir/ggson131file (inode 310696) deleted
15:02:00 INFER: dir /test/son1dir/gson13dir (inode 310695) deleted
15:02:00 INFER: dir /test/son1dir (inode 310690) deleted
15:02:00 INFER: dir /test (inode 310689) deleted

TABLE II
EXAMPLE

filenames (or directory names), thus when using inode IDs

as identifiers, there is a need to translate the filenames into

inodes. For such files that already exist in the system, their

associated inodes can be fetched easily from the file system.

However, for files that do not yet exist, the rule will have

to be applied to the inodes as soon as the inodes are created.

Therefore, we need to reliably identify filenames and full paths

of inodes as they are created or renamed, even if the rules are

identified using inode IDs. Also, consider a scenario where

a directory is renamed, and thus affects the full path of all

files underneath it. To handle such cases, we must maintain

a memory-consuming inode-to-filename mapping, as well as

keep the whole directory hierarchy, i.e. the list of inodes within

a directory, a list that requires even more memory.

VI. RELATED WORK

Several works have suggested to add a file system view to

a block-based storage controller in order to handle file-level

threats. However, all these works are within the controller’s

I/O path, and not at a listener. Banikazemi et al. [2] provide

block to file mapping for a real time intrusion system in the

SVC product by translating each file-based rule into a block-

level rule that is attached to the appropriate block. This work

does not provide file-level inference as we are doing. More

than that, they can not handle a rule whenever it can not be

translated to block-level commands. They build their mapping

inside the I/O path, where write operations of new content can

be delayed in case there is a need to read the old content before

overwriting it. They use the ext2 file system. Zhang et al. [3]
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maintain a sector-to-file mapping table at a virtual machine in

the host. They use this table to update a sector-base rule set

that is located at the storage. The goal of the sector-base rule

set is to identify intrusion at the storage level. They are not

maintaining file-view at the controller and their IDS will not

be effective in case of a compromised host. Zhang et al. [9]

combine intrusion detection with data recovery. Specifically,

they detect the intrusion at the file-level in the host and trigger

recovery process at the block-level in the SAN controller

without dealing with an inverse map.
Several works have dealt in general with obtaining file-

awareness at the block storage controller, not necessarily for

intrusion detection. Arpaci-Dusseau et al. [10] discuss the past,

present and future directions in the design and implementation

of smarter storage systems. Sivathanu et al. [11] provide

important and detailed guidelines for block-to-file mapping

in different file system, and with regard to several issues

and metrics. They check whether the liveness property of a

block, i.e. knowing at any point of time whether this block

is free or owned by a certain inode, can be identified at the

block-level storage only by an implicit capture of the packet

blocks (without extra information from the file system). They

are not dealing with the specific implementation at a listener

appliance for detecting intrusions. Bairavasundaram et al. [12]

by observing which files have been accessed through updates

to file system meta-data, construct an approximate image of

the contents of the file system cache and uses that information

to determine the exclusive set of blocks that should be cached

by the array. Sivathanu et al. [13] study the applicability

of semantically smart disk technology underneath database

management systems. Li et al. [14] develop an algorithm

to correlate blocks in storage systems for caching efficiency.

Gunawi et al. [15] introduce a new reliability infrastructure for

file systems called I/O shepherding. I/O shepherding allows

a file system developer to craft nuanced reliability policies

to detect and recover from a wide range of storage system

failures. They incorporate shepherding into the Linux ext3

file system through a set of changes to the consistency

management subsystem. Macko et al. [16] implement back-

references, which is a metadata that maps block numbers to

the data objects that use them. Yadwadkar et al. [17] analyze

traces of file-level traffic in order to understand higher-level

semantics of the data.
Finally, [4], [7] and [8] discuss the importance of storage-

based intrusion detection and describe the threats that are

expressed at the storage but can harm the host components

as well. Most of the threats belong to the Tripwire-like threat

model [1]. They are usually handled by the Tripwire intrusion

detection tool at the host. One of the key factors for a

storage-based IDS in order to handle such threats is to have a

semantic file view. Factor et al. [18] present an approach which

leverages the OSD (Object-based Storage Device) security

model to provide a logical, cryptographically secured, in-band

access control for today’s existing block-level devices.

VII. CONCLUDING REMARKS AND FUTURE WORKS

This research deals with how to provide a better data

protection at the block storage controller by enabling intrusion

detection at a listener appliance. To handle a wider range of

threats, we deploy an online mechanism that infers file-level

commands. In order to answer questions as “given a block

number, which inode owns it?” and “what is the file name of

this inode?”, we explored the file system layout, implemented

the translation mechanism and discussed its limitations . Our

implementation and discussion provide a proof-of-concept and

open the door for additional research directions in the storage-

based IDS field.

This work deals with detecting intrusions and sending

relevant alerts. We do not deal with the questions of who

actually receives this alert and how. The question of who the

alert should be sent to is related to the question of what exactly

the system protects. For example, if the goal is to protect the

storage system itself, the alert should be sent to a storage

administrator. If, on the other hand, the host is the concern,

then some host administrator should be alerted.

We also do not consider prevention mechanisms. In network

IDS, dropping suspicious packets usually suffices. Host-based

IDS triggers anti-virus or file system rollback mechanism upon

violation. In storage IDS, however, this seems not to be the

case. For example. dropping packets might cause unwanted

file system inconsistency. One possible way of dealing with

prevention is by using snapshots mechanisms. Consistent

snapshots may be kept over time, such that the last known

snapshot can be reverted in case of an intrusion. Thus, another

possible and very interesting research work is how to prevent

intrusions to storage in addition to their detections.

Given today’s high distribution of web-based threats that

inject malicious content into database tables, dealing with the

detection at the block-level storage is essential, though very

challenging task. One way to extend this work, is providing an

additional level of mapping where each file name is mapped to

its corresponding table in the database to detect database-level

intrusions, assuming the tables are mapped to files, or map the

blocks to tables in case the database tables are mapped directly

to raw blocks.

The block-to-file mechanism can be used by applications

other than security, applications that can benefit from the file-

view at block storage controller such as performing file-level

replication or providing file-level monitoring at the storage

controller. Moreover, this research focuses on the ext3 file

system as a representing journaling filesystem. An extended

research over other filesystems, can make it more robust and

effective.
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