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Cloud providers possessing large quantities of spare capacity must either incentivize clients to purchase it
or suffer losses. Amazon is the first cloud provider to address this challenge, by allowing clients to bid on
spare capacity and by granting resources to bidders while their bids exceed a periodically changing spot
price. Amazon publicizes the spot price but does not disclose how it is determined.

By analyzing the spot price histories of Amazon’s EC2 cloud, we reverse engineer how prices are set
and construct a model that generates prices consistent with existing price traces. Our findings suggest
that usually prices are not market-driven, as sometimes previously assumed. Rather, they are likely to be
generated most of the time at random from within a tight price range via a dynamic hidden reserve price
mechanism. Our model could help clients make informed bids, cloud providers design profitable systems,
and researchers design pricing algorithms.
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1. INTRODUCTION
Unsold cloud capacity is wasted capacity, so cloud providers would naturally like to
sell it. They would especially like to sell the capacity of machines which cannot be
turned off and have higher overhead expenses. Clients might be enticed to purchase
this capacity if they are provided with enough incentive, notably, a cheaper price. In
late 2009, Amazon was the first cloud provider to attempt to provide such an incentive
by announcing its spot instances pricing system. “Spot Instances [...] allow customers
to bid on unused Amazon EC2 capacity and run those instances for as long as their bid
exceeds the current Spot Price. The Spot Price changes periodically based on supply
and demand, and customers whose bids exceeds it gain access to the available Spot
Instances” [Amazon 2009]. With this system, Amazon motivates purchasing cheaper
capacity while ensuring it can continuously act in its best interest by maintaining
control over the spot price. Section 2 summarizes the publicly available information
regarding Amazon’s pricing system.
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Amazon does not disclose its underlying pricing policies. Despite much interest from
outside Amazon [Chohan et al. 2010; Samovskiy 2011; Mattess et al. 2010; Wee 2011;
Javadi and Buyya 2011], its spot pricing scheme has not, until now, been deciphered.
The only information Amazon does reveal is its temporal spot prices, which must be
publicized to make the pricing system work. While Amazon provides only its most re-
cent price history, interested parties record and accumulate all the data ever published
by Amazon, making it available on the Web [Lossen 2010; Vermeersch 2010]. We lever-
age the resulting trace files for this study. The trace files, along with the methodology
we employ to use them, are described in Section 3.

Knowing how a leading cloud provider like Amazon prices its unused capacity is of
potential interest to both cloud providers and cloud clients. Understanding the con-
siderations, policies, and mechanisms involved may allow other providers to better
compete and to utilize their own unused capacity more effectively. Clients can likewise
exploit this knowledge to optimize their bids, to predict how long their spot instances
would be able to run, and to reason about when to purchase cheaper or costlier capac-
ity.

Motivated by these benefits, we attempt in Sections 4–5 to uncover how Ama-
zon prices its unused EC2 capacity. We construct a spare capacity pricing model and
present evidence suggesting that prices are typically not determined according to Ama-
zon’s public definition of the spot pricing system as quoted above. Rather, the evidence
suggests that spot prices are usually drawn from a tight, fixed range of prices, reflect-
ing a random reserve price that is not driven by supply and demand. (A reserve price
is a hidden price below which bids are ignored.) Consequently, published spot prices
reveal little about actual, real-life client bids; studies that assume otherwise (in par-
ticular [Zhang et al. 2011; Chen et al. 2011]) are, in our view, misguided.We speculate
that Amazon utilizes such a price range because its spare capacity usually exceeds the
demand.

In Section 6 we put our model to the test by conducting pricing simulations (based
on cloud and grid workloads) and by showing their results to be consistent with EC2
price traces. We then discuss the possible benefits of using dynamic reserve price sys-
tems (such as the one we believe is used by Amazon) in Section 7. Finally, we survey
the related work in Section 8 and offer some concluding remarks in Section 9.

2. PRICING CLOUD INSTANCES
Amazon’s EC2 clients rent virtual machines called instances, such that each instance
has a type describing its computational resources as follows: m1.small, m1.large and
m1.xlarge denote, respectively, small, large, and extra-large “standard” instances;
m2.xlarge, m2.2xlarge, and m2.4xlarge denote, respectively, extra-large, double extra-
large, and quadruple extra-large “high memory” instances; and c1.medium and
c1.xlarge denote, respectively, medium and extra-large “high CPU” instances.

An instance is rented within a geographical region. We use data from four EC2 re-
gions: us-east, us-west, eu-west and ap-southeast, which correspond to Amazon’s data
centers in Virginia, California, Ireland, and Singapore.

Amazon offers three purchasing models, all requiring a fee from a few cents to a
few dollars, per hour, per running instance. The models provide different assurances
regarding when instances can be launched and terminated. Paying a yearly fee (of hun-
dreds to thousands of dollars) buys clients the ability to launch one reserved instance
whenever they wish. Clients may instead choose to forgo the yearly fee and attempt to
purchase an on-demand instance when they need it, at a higher hourly fee and with
no guarantee that launching will be possible at any given time. Both reserved and
on-demand instances remain active until terminated by the client.
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The third, cheapest purchasing model provides no guarantee regarding either
launch or termination time. When placing a request for a spot instance, clients bid
the maximum hourly price they are willing to pay for running it (called declared price
or bid). The request is granted if the bid is higher than the spot price; otherwise it
waits. Periodically, Amazon publishes a new spot price and launches all waiting in-
stance requests with a maximum price exceeding this value; the instances will run
until clients terminate them or the spot price increases above their maximum price.
All running spot instances incur a uniform hourly charge, which is the current spot
price. The charge is in full hours, unless the instance was terminated due to a spot
price change, in which case the last fraction of an hour is free of charge.

In this work, we assume that instances with bids equal to the spot price are treated
similarly to instances with bids higher than the spot price.

3. METHODOLOGY
Trace Files. We analyze 64 (= 8 × 4 × 2) spot price trace files associated with the

8 aforementioned instance types, the 4 aforementioned regions, and 2 operating sys-
tems (Linux and Windows). The traces were collected by Lossen [Lossen 2010] and
Vermeersch [Vermeersch 2010]. They start as early as 30 November 2009 (traces for
region ap-southeast are only available from the end of April 2010). In this paper, unless
otherwise stated, we use data accumulated until 13 July 2010.

Availability. We define the availability of a declared price as the fraction of the time
in which the spot price was equal to or lower than that declared price. Formally, a per-
sistent request is a series of requests for an instance that is immediately re-requested
every time it is terminated due to the spot price rising above its bid. Given a declared
price D, we define D’s availability to be the time fraction in which a persistently re-
quested instance would run if D is its declared price. Formally, let H be a spot price
trace file, and let Tb and Te be the beginning and end of a time interval within H. The
availability of D within H during [Tb, Te] is:

availabilityH(D) |[Tb,Te] =
TH
b→e(D)

Te − Tb

, where TH
b→e(D) denotes the time between Tb and Te during which the spot price was

lower than or equal to D. The availability of price D reflects the probability that spot
instances with this bid would be immediately launched when requested at some uni-
formly random time within [Tb, Te].

4. EVIDENCE FOR ARTIFICIAL PRICING INTERVENTION
4.1. Market-Driven Auctions
Amazon’s description of “How Spot Instances Work” [Amazon 2009] gives the impres-
sion that spot prices are set through a uniform price, sealed-bid, market-driven auc-
tion. “Uniform price” means all bidders pay the same price. “Sealed-bid” means bids
are unknown to other bidders. “Market-driven” means the spot price is set according
to the clients’ bids. Many auctions fit this description. One example of such an auction
is an (N +1)th price auction of multiple goods, with retroactive supply limitation (after
clients bid). Of course, Amazon could be using some other market-driven mechanism
consistent with their description.

In an (N + 1)th price auction of multiple goods, each client bids for a single good
(i.e., a spot instance). The provider sorts the bids and chooses the top N bidders. The
provider is free to set the number of sold goods N , as long as N does not exceed the
available capacity. The provider may set N up-front as the available capacity, but it
may also retroactively further restrict N after receiving the bids, to maximize revenue.
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Fig. 1. Availability of Windows-running spot instance types as a function of their declared price. The legend
is multiplexed: us-west, eu-west, ap-southeast all appear in the legend as “other regions”. m1.small, m1.large
and m1.xlarge all appear as m1. c1.medium and c1.xlarge appear as c1.

The provider sets the uniform price to the price declared by the highest bidder who did
not win the auction (bidder number N+1) and publishes it. The top N winning bidders
pay the published price and their instances start running. In this case, the published
price is a price bid by an actual client.

The provider may also decide to ignore bids below a hidden reserve price or below a
publicly known minimal price, to prevent the goods from being sold cheaply, or to give
the impression of increased demand.

We conjecture that usually, contrary to impressions conveyed by Amazon [Amazon
2009] and assumptions made by researchers [Zhang et al. 2011; Chen et al. 2011], the
spot price is set according to a constantly changing reserve price, disregarding client
bids. In other words, most of the time the spot price is not market-driven but is set by
Amazon according to an undisclosed algorithm.

4.2. Evidence: Availability as a Function of Price
In support of this conjecture, we analyze the relationship between an instance’s de-
clared price (how much a client would be willing to pay for it) and the resulting avail-
ability between 20 January 2010 and 13 July 2010. Fig. 1 shows the availability of
different spot instance types as a function of declared price (price-availability graphs),
for all examined Windows spot instance types in all regions. Results for instances run-
ning Linux (not shown) are qualitatively similar. The prices of different resources are
usually in different ranges (e.g., us-east.c1.medium’s usual price range is a third of us-
east.c1.xlarge’s), but they all share the same functional shape: a sharp linear increase
in availability, during which the price resolution is 0.1 cent. The increase may last un-
til an availability of 1.0 is reached, or end with a knee at a high availability (usually
above 0.95). A knee is a sharp change in the graph’s slope; it is usually accompanied
by a sharp decrease in the graph’s resolution. Above the knee, the availability grows
with declared price, but at a slower, varying rate.

Fig. 2 shows normalized price-availability graphs for Linux: each spot price is di-
vided by the price of a similar on-demand instance. We see that Linux types can be
classified by region. Each of the two region classes has a distinct normalized price
range in which the availability’s dependency on the price is linear. One class contains
us-east, and the other class contains the other regions.

Fig. 3 shows the data presented in Fig. 1 as normalized price-availability graphs. As
in Fig. 2, different types can be classified by region: us-east or all other regions. Not
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Fig. 1. All 32 curves are shown in full, but most of them overlap.
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Fig. 3. Availability of Windows-running spot instance types as a function of their normalized declared price.
The declared price is divided by the price of a similar on-demand instance. The legend is multiplexed as in
Fig. 1. All the data is shown in full, but many of the curves overlap. us-east.windows.m1.small is indicated
by an arrow.

as in Fig. 2, different types have different normalized prices within a class, and the
relative price difference between any type pair is the same in each class. The m1.small
type, indicated in Fig. 3 by an arrow, has a particularly low knee, with an availabil-
ity of 0.45. The normalized ranges of the us-east.windows.c1 instances, whose absolute
prices so differed in Fig. 1, are now identical. Figs. 1–3 show that availability strongly
depends on declared price for all regions and all instance types, and that this depen-
dency has a typical recurring shape, which can be explained by assuming that Amazon
uses the same mechanism to set the price in different regions. The particular shape
of the dependency could be explained in one of two ways: either Amazon’s spot prices
reflect real client bids and the shaped dependency occurs naturally, or the spot prices
are the result of a dynamic hidden reserve price algorithm, of which the shaped depen-
dency is an artifact.

Let us first consider the assumption that the shaped dependency occurs naturally
due to real client bids. The differences between absolute price ranges of the same type
in different regions (Fig. 1) show that different regions experience different supply and
demand conditions. This means that uncoordinated client bids for different types and
regions would have to naturally and independently create all of the following macro-
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economic phenomena: (1) normalized prices turning out identical for various Linux
types but different for Windows types; (2) a rigid linear connection between availability
and price that turns out to be identical for different types and regions; (3) a distinct
region having a normalized price range different than all the rest (which turn out to
have identical ranges); and (4) normalized prices for Windows instances which differ
from one another by identical amounts in each of the two region classes, creating the
same pattern for both.

If real client bids shape these dependencies, then real clients bid below the
knee. If that is indeed the case, then many spot instance clients present irrational
micro-economic behavior. As many researchers working from client perspectives have
found [Chohan et al. 2010; Mattess et al. 2010; Samovskiy 2011; Wee 2011], bidding
below the knee is not cost-effective because it will subject the instance to frequent un-
availability events. Slightly raising the bid, however, will result in the instance being
almost completely protected. Bidding below the knee is not only irrational in light of
low availability and a long waiting time for the price to drop below the bid, but also
in light of the short continuous intervals in which the low prices are valid, as noted
especially by Chohan et al. [2010]. Such short intervals might prohibit the successful
completion of a task, forcing the client to repeat it (and possibly pay for some of the
useless compute time).

For the sake of argument, let us also consider the possibility that causing the macro-
economic phenomena described above is the declared goal of a conspiring group of
clients. They have already reverse-engineered Amazon’s algorithm and submit coor-
dinated bids that cause the aforementioned phenomena. Since the phenomena we de-
scribe can be seen in all 64 analyzed traces, these clients would have to consume a
sizable share of the spot instance supply in all 64 resources, bidding low bids (which
would then eventually become the spot price). This would systematically limit the sup-
ply available to the many different legitimate clients known to use EC2 spot instances.
If the legitimate clients then bid higher than the spot price (which is usually below the
knee), the spot price would rise, terminating the conspiring clients’ instances. From
this point on, the conspiring clients’ effect on the spot price would be limited. Fur-
thermore, customers must have Amazon’s approval for the purchase of spot instances
beyond the first one hundred. Hence, we consider this explanation highly unlikely.

Our hypothesis: We consider it unlikely that all four phenomena could have re-
sulted from Amazon setting the price solely on the basis of client bids. We therefore
lean towards the hypothesis that Amazon uses a dynamic algorithm, independent of
client bids, to set a reserve price for the auction, that the auction’s result is usually
identical to the reserve price, and that the prices Amazon announces are therefore
usually not market-driven. Both the simulation results presented in Section 6 and
Occam’s razor—preferring the simplest explanation—support this hypothesis.

If our hypothesis is correct, then all four phenomena listed above are easily ex-
plained by a dynamic reserve price algorithm which gets as input prices normalized by
respective on-demand prices. This input is different for the us-east region, for different
sets of types, and for different operating systems.

4.3. Dynamic Random Reserve Price
First we will characterize the requirements for a dynamic reserve price algorithm that
will be consistent with the published EC2 price traces. Then we will construct such an
algorithm, and propose it as a candidate for the algorithm behind the EC2 pricing.

We contend that the dynamic reserve price algorithm gets as input a floor price
F and a ceiling price C for each spot instance type, with the floor and ceiling prices
expressed as fractions of the on-demand price. The floor price is the minimal price, ex-
emplified in Fig. 1 for the us-east.m2.2xlarge and us-east.m2.4xlarge types. The ceiling
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Fig. 4. Standard deviation of the white noise of the matched AR(1) process as a function of artificial price-
band width

price is the price corresponding to the knee in the graph (shown in the same figure), or
the maximal price if no knee exists. We refer to this price range, in which availability is
a linear function of the price, as the pricing band. The algorithm dynamically changes
the reserve price such that there is a linear relation between availability and prices
in the floor–ceiling range. It guarantees that the reserve price never drops below the
floor, which reflects Amazon’s minimal-reserve price for spot instances, nor rises above
the ceiling.

We deconstruct the reserve price algorithm using traces from April–July 2010, when
the spot price in eight ap-southeast.windows instance types almost always stayed
within the artificial band. We matched the price changes in those traces (denoted by
∆) with an AR(1) (auto-regressive) process. We found a good match (i.e., negligible
coefficients of higher orders ai for i > 1) to the following process:

∆i = −a1∆i−1 + ε(σ), (1)

where a1 = 0.7 and ε(σ) is white noise with a standard deviation σ. Let F,C denote
the floor and ceiling of the artificial band, respectively. We matched σ with a value
of 0.39(C − F ). These parameters fit all the analyzed types well, except for m1.small,
which matched different values (a1 = 0.5, σ = 0.5(C−F )). The standard deviations are
given in Fig. 4. This close fit—the same parameters characterizing the randomness of
several different traces—is consistent with our hypothesis that the prices are usually
set by an artificial algorithm. The reason for m1.small’s deviation is yet to be found.

On the basis of this analysis, we construct the AR(1) reserve price algorithm: The
process is initialized with a reserve price of P0 = F and a price change of ∆0 = 0.1(F −
C). The following prices are defined as Pi = Pi−1 + ∆i, where ∆i = −0.7 · ∆i−1 +
ε(0.39 · (C −F )). The process is truncated to the [F,C] range by regenerating the white
noise component while Pi is outside the [F,C] range or identical to Pi−1. All prices are
rounded to one-tenth of a cent, as done by Amazon during 2010.

To evaluate whether the trace produced by the truncated AR(1) process matches the
original EC2 trace, we compare their periodograms (normalized Fourier transforms)
in Fig. 5. The periodogram comparison verifies that we captured the original signal’s
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Fig. 5. Power spectral density (periodogram) estimate of an EC2 price trace, and our derived AR(1) price
trace

frequencies correctly, and not just the average time in each price. The match shows
that our reverse-engineered reserve price algorithm is consistent with Amazon’s.

The consistency of an AR(1) process with the EC2 traces does not indicate the dy-
namics which create it. If this consistency can be explained mostly by natural fluctu-
ations, then we would expect to see at least a weekly cycle. A daily cycle is unlikely,
since clients all over the world use the same machines.

To search for a weekly cycle, we analyzed the utilization of memory in three IaaS
pay-as-you-go cloud traces (described in detail in Section 6.2) and the price in the ap-
southeast.linux traces. We computed each day’s mean value (price or utilization for spot
trace or cloud, respectively), taking into consideration the duration for which the value
was valid. Each day’s mean value was normalized by the mean value over the week
to which it belongs. This local normalization is especially important when computing
mean utilization, since over the years of the trace, both the capacity and the utiliza-
tion increased. The autocorrelation of cloud utilization for three cloud workloads is
depicted in Fig. 6a. All three clouds have a significant weekly cycle, sometimes with
a pattern lasting for several weeks. The weekly cycle is expressed by strong, positive
autocorrelation coefficients for lags of 7, 14, 21 and even 28 days. In addition, there is
strong positive autocorrelation with the previous day, meaning today’s utilization is a
good prediction for tomorrow. The confidence bounds are low (0.081, 0.084, 0.068) and
slightly different from one.

Knowing autocorrelation can be expected in a cloud, let us turn to analyze the spot
price autocorrelation that is depicted in Fig. 6b. The confidence bounds are larger than
in the cloud load graphs, and are identical to the fifth digit (0.2097). None of the eight
price traces has any weekly cycle or any significant long range correlation. This finding
agrees with Wee [2011], who shows that none of the 64 EC2 traces we used exhibit
notable weekly or daily patterns. Moreover, the one-day autocorrelation coefficients are
negative for all the traces, meaning today’s price is a bad prediction for tomorrow. Thus,
the process generating the traces cannot be explained mostly by natural fluctuations.

Let us consider the hypothesis that natural dynamics account for a small part of
the trace: usually the spot price is the dynamic reserve price, but sometimes the spot
price rises above the reserve price due to market considerations. This would mean that
usually the price traces reflect the reserve price only, but sometimes the prices are
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bids declared by real clients. This scenario is unlikely because, as discussed earlier,
bidding inside the band is not cost-effective. Nonetheless, we check this hypothesis
by analyzing mean trace prices, with the alternate hypothesis that natural dynamics
account for no part of the trace. If the alternate hypothesis is true, the mean trace price
should be the mean of the truncated AR(1) process, which is a symmetric process: the
middle of the band. If natural dynamics sometimes raise the price above the reserve
price, the mean price should be higher than the middle of the band. However, for the 8
ap-southeast.windows traces we tested here, the mean price was lower than the middle
of the band by up to 2%.

We conclude that the impact of natural dynamics on the price traces in the band
range is statistically insignificant. The spot price within the band is almost always
determined solely by the AR(1) process, i.e., is equal to the reserve price. Since we
assume prices above the band usually result from natural dynamics, we need to es-
timate how frequently the prices are above the band. On average, over the 64 traces
we analyzed, prices were above the band 2% of the time. We conclude that during the
other 98% of the time, prices are mainly determined by an artificial AR(1) reserve
price algorithm and hardly ever represent real client bids.
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5. PRICING EPOCHS
To statistically analyze spot price histories, it would be erroneous to assume that the
same pricing model applies to all the data in the history trace. Rather, each trace is
divided to contiguous epochs associated with different pricing policies. We show here
that our main traces are divided into three epochs as depicted in Fig. 7. Since the
pricing mechanism changes notably and qualitatively between epochs, data regarding
these epochs should be separated if an associated statistical analysis is to be sound.
Accordingly, for the purpose of evaluating the effectiveness of client algorithms, strate-
gies, and predictions, the data from a (single) epoch of interest should be used.

The first epoch starts, according to our analysis, as early as 30 November 2009 and
ends on 14 December 2009, the date on which Amazon announced the availability of
spot instances. During this time, instances were unknown to the general public. Hence,
the population which undertook any bidding during the first epoch was smaller than
the general public, of nearly constant size, and possibly had additional information
regarding the internals of the pricing mechanism at that time.

The second epoch begins with the public announcement on 14 December 2009. It
ends with a pricing mechanism change around 8 January 2010, when minimal spot
prices abruptly change in most instances (usually decrease, though Fig. 7 demon-
strates an increase). It is characterized by long intervals of constant low prices.

The third epoch begins on 20 January 2010. Instance types and regions began to
change minimal price around January 8th, but we define the beginning of the epoch as
the date in which the last one (eu-west.linux.m2.2xlarge) reached a new minimal price.
Due to (1) the gradual move to the new minimal values and to (2) a bug in the pricing
mechanism that was fixed in mid-January 2010 [Amazon 2010], we choose to disregard
data from the transition period between the second and third epochs.

Additional epoch-defining dates are dates when the price-change timing algorithm
was changed, e.g., 20 July 2010 and 9 February 2011 for the us-east region (see Sec-
tion 6).

These abrupt time-correlated changes in many regions and instance types further
support our hypothesis, since prices are likely to undergo abrupt changes at exactly
the same time either when the market is efficient (which is not the case here, since
absolute prices in Fig. 1 are not leveled) or when the prices are artificial.

6. SPOT PRICE SIMULATION
To get a better feel for the validity of our hypothesis, we simulated two spot pricing
systems, representing the dynamic hidden reserve price hypothesis and the alternate
hypothesis of a constant reserve price. Both systems are based on a sealed-bid (N+1)th

price auction with a reserve price with retroactive supply limitation, as described in
Section 4.1. The simulator structure is described in Section 6.1.

In both systems we set the on-demand price to 1. In the constant reserve price sys-
tem we set the reserve price to 0.4. In the AR(1) reserve price system we set the reserve
prices according to the reserve price algorithm defined in Section 4.3, with a band of
[0.4, 0.45]. To run the simulation, we need to know not only what the new reserve price
should be, but also when it should be changed. To this end, we deconstructed the price
change timing, as explained in Section 6.4.

To fully model a spot pricing system, three input data sets or models are required:
for available machine supply, for instance demand, and for client bids. We modeled the
machine supply as a fixed-size, because spot instances are a good practice for a quick-
launch buffer: those machines which need to be kept running, in case an on-demand
or reserved instance is requested. We do not expect spot-instance machine supply to
represent the full variation of on-demand and reserved instance demand. We used real
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grid and cloud traces for instance demand (Section 6.2), and three client bid models
(Section 6.3). The simulation results are presented in Section 6.5.

6.1. Simulator Event-Driven Loop
We created a trace-based event-driven simulator, where events are: (1) instance sub-
mission and termination and (2) price changes (due to a scheduled change or to a
waiting instance with a bid higher than the spot price). We ran the grid trace-driven
simulation on 70 CPUs, according to the number of CPUS in the trace. Since CPU
was over-committed on the cloud traces but physical memory was not, we defined each
cloud’s capacity as the maximal amount of memory concurrently used in its trace. We
ended the simulation when the last input-trace job had been submitted.

6.2. Workload Modeling
We fed the simulation with tasks with run-times in the range of 10 minutes to 24 hours,
taken from several large system traces. According to Iosup et al. [2011], a typical EC2
instance overhead is two minutes. We deem clients unlikely to wait two minutes and
pay for a full hour for an activity which lasts only a few minutes, so we only used
tasks longer than 10 minutes. We assume spot instances are usually used for relatively
short-running instances, with longer running instances more likely to be deployed on
more stable offerings such as on-demand and reserved instances. Thus we omitted
tasks longer than 24 hours. We discuss the task length cut-off point in Section 6.5.

We used traces from one grid and three clouds. In the simulation, each task was
interpreted as a single instance, submitted at the same time and requiring the same
run-time as in the original trace to complete. The grid trace is 20K tasks from the LPC-
EGEE workload1. LPC-EGEE is characterized by tasks which are small in comparison
to the capacity of the cluster, allowing for elasticity.

We also used traces of three pay-as-you-go IaaS clouds2. These clouds were partitions
of IBM’s RC2 cloud [Ryu et al. 2011]. The partitions used different underlying physical
resources and hypervisors, and it was up to the user to choose the partition. The traces
were taken from 2 April 2009 to 22 August 2011 (2.5 years). During this time, the
capacity of the partitions changed with demand, reaching concurrent use of thousands
of CPUs (6522, 1420, and 845 for clouds 1, 2, and 3, respectively) and thousands of
gigabytes of memory (10175, 1996, and 2386 for the respective clouds). Clients of these
clouds were charged 2-3 cents per hour per GB for running instances. In addition,
creating an instance for the first time cost 20 cents.

The workloads of these clouds are characterized by significantly longer runtimes
than grid jobs: only half the cloud instances take less than 24 hours, while 98% of
the tasks last less than a day on grids (LPC-EGEE, GRID50003) and parallel sys-
tems (LANL CM-54, SDSC-Paragon5) that we evaluated, as seen in Fig. 8. Many cloud
instances last months and even years. Furthermore, the clouds exhibit longer and
stronger inter-arrival time correlation than typical grids, as seen in Fig. 9. The au-
tocorrelations of their inter-arrival times is even larger than those of parallel systems,
even though both system types are only accessible to a limited set of clients.

1Graciously provided by Emanuel Medernach [2005], via the Parallel workload archive [Feitelson ], file
LPC-EGEE-2004-1.2-cln.swf.
2Graciously provided by Mariusz Sabath.
3Graciously provided by Franck Cappello, via the Grid Workloads Archive [Iosup et al. 2008], file
grid5000 clean trace.swf.
4Graciously provided by Curt Canada, via the Parallel workload archive, file LANL-CM5-1994-3.1-cln.swf.
5Graciously provided by Reagan Moore and Allen Downey, via the Parallel workload archive, file SDSC-Par-
1995-2.1-cln.swf.
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Fig. 8. CDF of instance or task runtimes on clouds, parallel systems and grids

6.3. Customer Bid Modeling
Due to the lack of information on the distribution of real client bids (since we argue
that Amazon’s price traces supply little information of this type), we compare several
bidding models, and verify that the qualitative results are insensitive to the bid mod-
eling. All the distributions were adjusted to uniform minimal and on-demand prices.

The first model is a Pareto distribution (a widely applicable economic distribu-
tion [Souma 2002; Levy and Solomon 1997]) with a minimal value of 0.4, and a Pareto
index of 2, a reasonable value for income distribution [Souma 2002]. The second model
is the normal distribution N (0.7, 0.32), truncated at 0.4. The third is a linear map-
ping from runtimes to (0.4, 1], which reflects client aversion to having long-running
instances terminated.

6.4. Price Change Timing
Price changes in the simulation are triggered according to the cumulative distribution
function (CDF) of intervals between them, collected during January–July 2010, and
given in Fig. 10 (solid line). This period was characterized by quiet times—prices never
changed before 60 minutes or between 90 and 120 minutes since the previous price
change. It is interesting to note that such quiet times can be monetized by clients
to gain free computation power with a probability of about 25%, by submitting an
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Fig. 10. CDF of time interval between price changes for different versions of the price change scheduling
algorithm. Input: us-east.linux.m1.small.

instance with a bid of the current spot price 31 minutes after a price change. The
instance would then have a 50% possibility of undergoing another price change within
30-60 minutes. If that change is a price increase, the instance would be terminated,
and the client would gain, on average, 45 minutes of free computation. Clients do not
exploit this loophole in our simulation.

Fig. 10 also presents the evolution of the timing of price changes for the us-east
region. The next algorithm (in place from July 2010 until 8 Feb 2011) allowed for
a quiet hour after a price change. The following one (starting 9 Feb 2011) matches
an exponential distribution with a 1.5 hour rate parameter, with five quiet minutes.
This almost memory-less algorithm prevents abuse of the timing algorithm. A similar
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evolution of the algorithm took place in other regions on different dates. On Linux
instances in regions other than us-east, an interim algorithm was used between the
second and third algorithms, such that the quiet hour was abolished before the transfer
to the algorithm of 2011.

6.5. Simulation Results
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Fig. 11. Simulation results for various bidding models, with constant and AR(1) reserve price, on the basis
of a grid trace (LPC-EGEE) and three cloud traces

Simulation results in terms of price-availability graphs are presented in Fig. 11, for
different input traces, bid models and price setting mechanisms. The functions of simu-
lations with the AR(1) reserve price feature a linear segment and a knee in high avail-
ability, as do the availability functions of EC2 during the third epoch, which are shown
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Fig. 12. Availability as a function of the declared price during the second epoch for us-west.linux.m1.xlarge.

in Figs. 1, 2, and 3. The constant reserve price functions do not exhibit this behav-
ior. Rather, they are jittery, like the high price regime of the us-east.windows.m1.small
graph in Fig. 3, and the second epoch graph in Fig. 12. These results are not sensitive
to our of choices of bidding model and workload.

Furthermore, the availability of the reserve price in the constant reserve price sim-
ulations is high (0.2-0.9), as it is in the second epoch (0.63 in Fig. 12). In contrast,
the availability of the minimal price in the AR(1) reserve price simulations and in the
third epoch tends to zero as the number of discrete prices within the band grows.

These macro-economic qualitative differences can be better understood by focusing
on three classes of availability graphs that resemble one another and do not present
straight lines: (1) the constant minimal reserve price simulations, (2) the second epoch,
and (3) the high regime of the third epoch (in particular us-east.windows.m1.small).
Since the graphs of the first class reflect client bids, the qualitative resemblance sug-
gests that the last two also reflect client bids: during the second epoch, a constant
reserve price algorithm is used, and the demand for us-east.windows.m1.small exceeds
the supply so much that excess demand is no longer masked by the dynamic reserve
price.

To investigate the effect of truncating long running instances from the traces (mainly
from the cloud traces), we ran the AR(1) simulations with different maximal run-time
truncations (1 day, 2 days and 100 days). As can be seen from the price-availability
graphs (Fig. 13), raising the upper truncation point of the trace lowers the availability
at the knee. The truncation does not affect the important features discussed earlier
(the straight line and the existence of the knee). From the EC2 traces we learn that
the knee is usually high (above 0.9, with the exception of some m1.small instances).
Thus we conclude that the workload of Amazon’s EC2 spot instances is consistent with
relatively short instances, and that our choice of truncating the traces at 24 hours is
reasonable.

We consider these simulation results a constructive indication that most prices in
the EC2 traces during the third epoch are set using an AR(1) reserve price, which is
not market driven. The simulation results also suggest that Amazon set prices via a
market-driven auction with a constant reserve price during the second epoch (Decem-
ber, 2009 until January, 2010), and that prices above the band are market-driven. (In
the traces we studied, prices are above the band only 2% of the time on average.)

ACM Transactions on Economics and Computation, Vol. V, No. N, Article A, Publication date: January YYYY.



A:16 Orna Agmon Ben-Yehuda et al.

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

declared price [fraction of on demand price]

av
ai

la
bi

lit
y 

fr
ac

tio
n

 

 

Pareto dist., up to 100 days

Normal dist., up to 100 days

Pareto dist., up to 2 days

Normal dist., up to 2 days

Pareto dist., up to 1 day

Normal dist., up to 1 day

Fig. 13. Impact of running time truncation of the cloud 2 trace on price-availability graphs for simulations
with Pareto and normally distributed bids and AR(1) reserve price

7. DYNAMIC RESERVE PRICE BENEFITS
The dynamic AR(1) reserve price mechanism has several long-term, wide-range ben-
efits that may justify its use. Like a constant minimal or reserve price, it guarantees
that on-demand instances are not completely cannibalized by spot instances. Yet it
also allows the provider to sell instances on machines which would otherwise run idle,
to provide elasticity for the fixed price instances. Spot instances, which can be quickly
evacuated, still reduce the costs associated with idle servers, with no real harm to the
main offering of on-demand instances.

Using a hidden reserve price allows the provider to change the reserve price with
no obligation to inform the clients, an obligation which cannot be avoided when using
a minimal price. A dynamic reserve price is better than a constant minimal price,
because it maintains an impression of constant change, thus preventing clients from
becoming complacent. It forces them to either bid higher than the band or tolerate
sudden unavailability. It also serves to occasionally clear queues of low bids within
the band, a purpose that is not served by a constant reserve price that is equal to the
ceiling price. Furthermore, Vincent [1995] argues that in common value English and
second price auctions, a random reserve price encourages participation, and thus the
exchange of more information about the value of the goods.

A random reserve price might also serve other goals, if the public is unaware of
its use. By creating an impression of false activity (demand and supply changes), the
random reserve price can mask times of low demand and price inactivity, thus possibly
driving up the provider’s stock. A large enough band covering the spectrum of probable
prices could also mask high demand and low supply, and thus help to maintain the
illusion of an infinitely elastic cloud. However, if the artificial band is relatively small,
as in the case of Amazon EC2 spot prices, the provider’s use of an AR(1) process for
setting the price within the band is a strong indication of low demand.
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8. RELATED WORK
We will now review the literature on pay-as-you-go IaaS cloud workload traces (and
spot prices in particular), reexamining past conclusions in light of our results. We will
also review literature on computation markets and on reserve prices, examining the
implications of these works on our results.

Cloud Traces. IaaS pay-as-you-go cloud workload traces and models are so hard to
come by that researchers like Toosi et al. [2011] resorted to a grid and parallel systems
model [Lublin and Feitelson 2003] with adapted runtime parameters to describe cloud
workloads. Google [Hellerstein et al. 2011] released two backend workload traces, the
longest of which lasts 29 days. Liu [2011] measured week-long traces of CPU utiliza-
tion of EC2 machines, showing a strong daily pattern of the guest machines on the
measured host. This pattern indicates that clients prefer to keep instances running
idle rather than shut them off for the night. Such client behavior weakens the daily
cycle of demand for EC2 machines in general (not necessarily spot instances).

Reserve Prices. Li and Tan [2000] showed that a (hidden) reserve price improves rev-
enues of first price, sealed bid auctions for risk-averse clients. Li and Perrigne [2003]
showed that for first price sealed bid auctions, an optimal announced minimal price in-
creases the seller’s revenue compared with an arbitrary reserve price. They used data
of timber sales in Canada. Katkar and Reiley [2006] found that for low-priced eBay
sales of up to $20, (hidden) reserve prices deter good clients and yield lower revenues
than minimal (published) prices. However, none of these works relate to an N+1th auc-
tion with arandom reserve price. Ramberg [2002] says that “the existence of a hidden
reserve price is to a great extent similar to the situation where the invitor is bidding.”
She recommends that when the auction is run by the invitor (as is the case with Ama-
zon’s spot instances), “. . . it should not be a second price auction, or otherwise there
should be some assurance that the invitor/operator will not submit bids.”

Analyzing Spot Price Traces. Concurrently with this work, Wee [2011] also analyzed
price-availability graphs of early EC2 traces, noted the knees and the different be-
havior of m1.small, and that the average price does not change over time. Wee only
analyzed epochs in which the timing of price changes always included a quiet hour
and assumed that Amazon does not have an incentive to change prices more often
than once an hour. However, as we show in Section 6.4, Amazon’s early price change
timing was a vulnerability, incentivizing it to change prices more frequently than once
an hour, as it later did. Wee [2011] and Javadi and Buyya [2011] also checked EC2
price traces for cycles. Javadi and Buyya, who computed various price trace statis-
tics, claimed spot prices have daily and weekly cycles, but Wee found that cycles are
statistically insignificant. Our findings for the ap-southeast region agree with Wee’s.

Using Spot Price Traces for Client Strategy Evaluation. Most studies that use price
traces use them to evaluate client strategies. The relevance of such work to future de-
ployment of instances needs to be re-evaluated when the nature of the traces changes
(i.e., when a new epoch starts). Andrzejak, Kondo and Yi used spot price histories to
advise the client how to minimize monetary costs while meeting an SLA [Andrzejak
et al. 2010], and to schedule checkpoints [Yi et al. 2010] and migrations [Yi et al. 2011].
The first two works used data from the transition period between the second and third
epoch for their evaluation. They focused on eu-west, which suffered most from this
transition. The last interchangeably used data from before and after the change in the
price change algorithm on July 25, 2010, as did Voorsluys et al. [2011].

Mattess et al. [2010] examined client strategies for using spot instances to manage
peak loads on scientific workloads. They evaluated the strategies using an EC2 spot
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instance trace of the third epoch only, attributing the different trace behavior prior to
January 18th, 2010 to Christmas and to the recent introduction of spot instances. They
identified the price band, noted that bidding just above the band is almost as good as
bidding very high, and recommended bidding right under the on-demand price.

Chohan et al. [2010] processed price histories to answer the question, What is the
probability that an instance with a certain bid price would last a certain time? They
analyzed price histories from the third epoch only, because of the pricing bug that
was fixed in mid-January 2010 [Amazon 2010]. The bug allowed instances with prices
higher than the regional spot price to be terminated due to congestion in their avail-
ability zone (which is a part of the region), while keeping the regional price low. The
authors attributed the qualitative change of prices between the second and third epoch
to the bug fix. However, this bug fix is unlikely to have caused the qualitative price
changes we observe during January 2010, namely, the appearance of the pricing band.
The authors also noted the cost-effectiveness of bidding at the top of the band.

Wieder et al. [2010] described a model for optimizing map-reduce on clouds using a
utility function that depends on execution time, data transfer costs, and computation
costs, which they assumed can be predicted for spot instances.

Brebner and Liu [2011] assessed cost and performance of various clouds, including
spot instances. They represented the cost of spot instances as a constant, which equals
the average of several months of the price trace, but did not state the duration or
length of the history they used. It is thus impossible to determine which epochs they
used, and what the given average values represent.

Vermeersch [2011] analyzed spot price histories with the goal of optimizing the
client’s choice of deals on EC2.

Zhao et al. [2012] and Mazzucco and Dumas [2011] assumed spot instance prices are
market-driven, and modeled some of them to be used as a client decision aid. These
models are no longer relevant once a drastic policy change is made.

Using Spot Price Traces to Learn about the Market. Zhang et al. [2011] assumed
Amazon uses a market-driven auction, which led them to conclude that spot price
histories reflect actual client bids. On this basis they sought resource allocations to
instance types which optimized the provider’s revenue. Chen et al. [2011], who tested
provider scheduling algorithms, likewise assumed EC2 price traces represent market
clearing prices. We consider these assumptions doubtful, in light of our findings that
98% of the time, on average, EC2 price traces are the reserve prices, and as such do not
provide a lot of information about real client bids, nor are necessarily clearing prices.

Free Spot and Futures Markets. While Amazon is currently the only provider offering
“spot instances,” free computing resource markets have already been analyzed. Ortuno
and Harder [2010] modeled a free market for computing power. Altmann et al. [2008]
described GridEcon, a foundation for a free spot and futures market. Vanmechelen
et al. [2011] modeled a free market for computing power using spot and futures deals.
Price traces of such free markets [Ortuno and Harder 2010; Vanmechelen et al. 2011]
differ from EC2 spot price traces: they do not have a hard minimal price and are not
anchored in the bottom of the price range. Rahman et al. [2011] evaluated free spot
market options using EC2 traces, and noted that the “data does not show enough fluc-
tuations as expected in a free market.”

9. CONCLUSIONS
Amazon EC2 spot price traces provide more information about Amazon than about its
clients. We have shown that during the examined period Amazon probably set spot
prices using a random AR(1) (hidden) reserve price. This price might have been the
basis of a market-driven mechanism, in which high prices might have reflected market
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changes, but most low prices, within a band of prices, were usually indicative only of
the dynamic reserve price.

Understanding how Amazon prices its spare capacity is useful for clients, who can
decide how much to bid for instances; for providers, who can learn how to build more
profitable systems; and for researchers, who can differentiate between prices set by an
artificial process and prices likely to have been set by real client bids. We have shown
that many price trace characteristics (e.g., minimal value, band width, change timing)
are artificial and might change according to Amazon’s decisions. Thus, researchers
should be aware of the epochs present in their traces when using those traces to model
future price behavior or to evaluate client algorithm performance. We have shown that
indiscriminately using Amazon’s current traces to model client behavior is unfounded
on average 98% of the time for the examined period.

10. EPILOGUE
Amazon’s EC2 spot instance pricing mechanism underwent a radical change between
the first submission of this paper and its first acceptance. Several days after its ac-
ceptance, the spot instance prices underwent another extreme change, and the pric-
ing band disappeared from the traces altogether. For example, in the trace shown in
Fig. 14, the spot price is constant throughout October 2011, except for a change in
the minimal price. While these radical qualitative changes are further evidence of the
former prices being artificially set, the October prices are consistent with a constant
minimal price auction, and are no longer consistent with an AR(1) hidden reserve
price.
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