
Ginkgo: Automated, Application-Driven
Memory Overcommitment for Cloud Computing

Abel Gordon, Michael R. Hines,
Dilma da Silva, Muli Ben-Yehuda,

Marcio Silva
IBM Research

{mrhines,dilmasilva,marcios}@us.ibm.com,
{abelg,muli}@il.ibm.com

Gabriel Lizarraga
Florida International University

gliza002@fiu.edu

Abstract
Continuous advances in multicore and I/O technologies have
caused memory to become a very valuable sharable resource that
limits the number of virtual machines (VMs) that can be hosted in a
single physical server. While today’s hypervisors implement a wide
range of mechanisms to overcommit memory, they lack memory
allocation policies and frameworks capable of guaranteeing levels
of quality of service to their applications.

In this short paper we introduceGinkgo, a memory overcom-
mit framework that takes an application-aware approach to the
problem.Ginkgo dynamically estimates VM memory requirements
for applications without user involvement or application changes.
Ginkgo regularly monitors application progress and incoming load
for each VM, using this data to predict application performance
under different VM memory sizes. It automates the distribution of
memory across VMs during runtime to satisfy performance andca-
pacity constraints while optimizing towards one of severalpossible
goals, such as maximizing overall system performance, minimiz-
ing application quality-of-service violations, minimizing memory
consumption, or maximizing profit for the cloud provider.

Using this framework to run the benchmarks DayTrader 2.0 and
SPECweb2009, our initial experimental results indicate that over-
commit ratios of at least 2x can be achieved while maintaining ap-
plication performance, independently of additional memory sav-
ings that can be enabled by techniques such as page coalescing.

Categories and Subject Descriptors Operating Systems [D]: 4
General Terms Virtualization, Experimentation, Performance
Keywords Virtual Machines, Operating Systems, KVM, Memory
Overcommit, Oversubscription

1. Introduction

The ability to overcommit different physical resources across mul-
tiple virtual machines (VMs) enables cloud providers to consoli-
date more VMs in a single physical host. However, simply trig-
gering existing memory overcommitment (MOC) mechanisms in

To appear at ASPLOS’s RESoLVE workshop.

hypervisors may cause significant performance degradationin VM
workloads. This may result in inadvertently reducing the mem-
ory sizes of some VMs to a level that hinders their ability to
make progress. A good MOC policy should incur as little perfor-
mance degradation as possible while maintaining existing perfor-
mance Service Level Agreements (SLAs) between the VM hosting
provider and the customer.

Memory is a very valuable, sharable resource and it limits cloud
providers’ ability to host more VMs in a single physical machine.
Almost all modern hypervisors implement MOC mechanisms such
as ballooning, page sharing, and host swapping. However, they
lack policies to coordinate these mechanisms in order to minimize
performance degradation as memory is deduplicated, redistributed
across VMs, or swapped out. Without such policies, cloud cus-
tomers may justifiably complain that they are not getting what they
paid for.

When customers run a workload in the cloud, they usually re-
quest and pay for an amount of system resources that they know
to be sufficient to enable their target application’s performance
under expected loads. For example, if they are using Amazon’s
EC2 infrastructure and they request the creation of a VM withthe
m1.small configuration, they expect the VM to be assigned 1.7 GB
of memory. They also expect applications to behave such thattheir
target performance indicators are met. Examples of performance
indicators includetransactions/requests completed per second, or
processing time (not including network delay) for multi-tier appli-
cations, and alsoinstructions per cycle for HPC-style applications.
The growing popularity of non-relational data stores (e.g., NoSQL)
might require even more exotic performance indicators. Currently,
most cloud providers do not consider this diversified list ofmet-
rics as they manage the physical resources backing their cloud ser-
vices. Some Platform-as-a-Service (PaaS) providers with homoge-
neous distributions of explicitly supported applicationswill focus
on very specific performance indicators. Our MOC approach ad-
dresses Infrastructure-as-a-Service (IaaS) environments where the
relevant performance indicators from one VM to the next are likely
to differ.

In general, performance indicators for a workload will varyde-
pending on (1) the load being submitted to the VM, i.e., how many
requests a VM is required to process and (2) the amount of re-
sources that are allocated to the VM. It is exactly these variations
in load during runtime that we want to exploit for opportunities to
overcommit resources. At any given time, some VMs may receive
lighter loads and be able to achieve their target performance goals
using fewer resources. This allows parts of their pre-allocated re-
sources to be reallocated to VMs that require more resourcesin
order to meet performance targets.



In this paper we presentGinkgo, a MOC framework that enables
cloud providers to run more VMs in a single physical machine.
This is done by redistributing memory across VMs during runtime
so that (1) less memory is used overall and (2) VM performance
is maintained within acceptable levels.Ginkgo unobtrusively mon-
itors VM application performance indicators. Overtime,Ginkgo
models application behavior for each VM under different loads and
memory sizes. These models are used to estimate the performance
impact that reducing VM memory will have.Ginkgo uses this infor-
mation to calculate a desirable memory assignment, i.e, theamount
of memory to be given to each VM so that performance is max-
imized while satisfying the memory capacity constraints specified
by the provider.Ginkgo supports additional optimization objectives
or constraints in addition to reduced memory usage. For example, a
VM can be priced such that it maximizes cloud provider revenue or
in a way that we optimize memory usage while meeting SLA lev-
els between the customer and provider. In all these scenarios, after
an objective function is chosen and sufficient amount of historical
data is available about application performance,Ginkgo uses mem-
ory ballooning to dynamically assign memory sizes to each running
VM. This results in a closed loop of actions: monitor performance
for current load and memory, calibrate performance models,iden-
tify VM memory assignments which satisfy those constraintsand
maximize an objective function, deploy memory assignments, and
then repeat. This loop allowsGinkgo to regularly readjust memory
assignments so that each VM will continue to receive only what it
needs as load varies.

The main contributions in this work are:

• The design and implementation of a MOC framework that max-
imizes application performance while minimizing memory con-
sumption. Using this framework we were able to effectively
achieve an overcommit ratio of at least 2:1 with little degra-
dation in performance. These results were obtained withouten-
abling any page coalescing mechanisms, so additional memory
savings can still be realized.

• The performance evaluations of two benchmarks, SpecWeb
2009 and DayTrader 2.0, illustrating the non-linear relationship
between memory and performance. We demonstrate how this
relationship can be inferred and exploited for efficient memory
overcommitment.

The rest of the paper is organized as follows. Section 2 provides
a short description of the design and implementation ofGinkgo
and Section 3 presents the result from our initial experimental
evaluation. Section 4 reviews related work. Section 5 summarizes
our MOC approach and discusses possible paths for improvingthe
proposed framework.

2. Design and Implementation

TheGinkgo framework is both a modeling and control system for
sizing VM memory in such a way that a cloud provider can maxi-
mize a chosen aspect of overall system behavior while maintaining
the service level agreements specified for a VM’s application. The
framework is hypervisor-agnostic in the sense that it only requires
hypervisor support to dynamically control the memory size of a
VM, for example the ballooning mechanisms available in VMware
ESX server [19], Hyper-V [13], Xen [1], and KVM [4].Ginkgo
consists of monitoring, modeling, and decision-making compo-
nents. Figure 1 shows a high-level view of the framework and the
interaction between its components.

The framework’s components were written to address four dif-
ferent tasks simultaneously:

Figure 1. Ginkgo System Architecture

1. Collectors: transparent, transport-based agents (HTTP, JDBC,
or logs) that continuously poll virtual machines for application
performance indicators;

2. Graph Generator: constructs a memory performance model
based on collected values for memory size and performance.

3. Estimator: using information from the continuously-updated
performance model graphs, the Estimator uses a linear program
to make global optimization decisions, i.e., to identify a feasi-
ble memory assignment that optimizes an object function, de-
scribed later;

4. Orchestrator: deploys the Estimator’s decision, i.e., the iden-
tified memory assignments to each VM. This is executed by
using the hypervisor’s memory ballooning mechanism.

TheGinkgo framework can run either in the same server hosting
the VMs or on a separate networked machine. It is able to manage
any virtualization layer that exposes an API to control memory al-
location. In our prototype we used the KVM hypervisor to hostthe
virtual machines and the libvirt API [9] to invoke the balloon driver.
Conveniently, libvirt exposes a TCP control channel as wellas sup-
ports a long list of hypervisors. Thus,Ginkgo is able to control any
libvirt-supported hypervisor out-of-the-box without even logging
into the system under test.

The construction of models to correlate resources (e.g. VM
memory size) to VM performance becomes more complex if the
models have to handle scenarios with highly dynamic variations in
demand of VM services. We chose to address this issue inGinkgo
by characterizing a VM memory-to-performance relationship on a
per-load basis. This means that the demand for VM services ismon-
itored and mapped to an application-specific load classification. For
example, the load for a web server can be classified in terms ofthe
number of simultaneous sessions.

By continuously profiling and updating memory versus perfor-
mance graphs for different applications and loads,Ginkgo is able
to characterize the application performance behavior for different
memory allocations. With this information,Ginkgo can now pursue
its memory overcommitment objectives by determining how much
memory each VM actually requires to deliver good performance
under its current load.

After Ginkgo has calculated a memory assignment for each VM,
Ginkgo still needs to apply these assignments to each VM. The
orchestrator computes the difference between the current memory
assignment and the target memory assignment, gradually inflating



and deflating the balloon in incremental steps (a configurable value
defined to be 64MB in our experiments) until it achieves the target
assignment for every virtual machine. The delay between steps is
also a configurable parameter, set to 1 second in our experiments.

3. Evaluation

In this section, we evaluateGinkgo’s ability to overcommit memory
without degrading application performance. We use Daytrader 2.0
and SpecWeb 2009 to represent cloud workloads. Our setup con-
sisted of two IBM x3550 M2 machines, configured with 2 quad-
core Intel Xeon 2.9Ghz CPUs (16 cores with hyperthreading en-
abled). One of the machines, configured with 64GB of RAM was
used as the system under test, while the other, configured with 24
GB of RAM was used as the load driver. On both machines, we
used Redhat Enterprise Linux 6.0 as our host OS and KVM to run
the virtual machines. To increase memory pressure, we disabled
page coalescing support (KSM) in all our experiments — despite
the fact that our linear model already supports it. To avoid any arti-
facts due to throttling on cores eventually submitted to lighter loads,
we also disabled all cpu throttling support (e.g., cpufreq)that comes
enabled by default on RedHat linux. The guest images are Ubuntu
Linux 9 and were placed in an IBM XIV storage system accessed
using the iSCSI protocol over a 1Gb Ethernet interface. Our load
driver machine is directly connected to the system under test via a
dedicated 10Gb Ethernet interface (crossover-cable).Ginkgo itself
is written in java and uses the java bindings from the libvirtAPI.
These come standard with a Redhat 6 installation.Ginkgo runs on
the the load driver machine and is able to operate remotely because
our collectors use http and jdbc connections to query the applica-
tion and also because we submit balloon adjustments using libvirt
over TCP/IP.

Profiling Phase

Before we can evaluate the effectiveness ofGinkgo, we need infor-
mation on the expected VM performance for each of the workloads.
For this purpose, we start running multiple instances of SPECweb
and Daytrader at different loads levels (as much as a single VCPU
can handle). Then, we incrementally change the amount of mem-
ory assigned to the VMs from 2.0GB to 0.25GB to see how mem-
ory variations affect performance. In general, we profile byhaving
Ginkgo make balloon adjustments at increments of 128 megabytes
and waiting several minutes before making the next adjustment.
At the end of the profiling phase, we store the performance mea-
surements intoGinkgo and use them later for benchmarking real
scenarios. Again, note that as we described previously, data collec-
tion and graph generation continue to occur even after the profiling
phase has ended.

When the workloads run in a stand-alone configuration they
do not share physical resources with other guests running inthe
same physical host. Previous work [15] has shown degradation in
application performance when multiple VMs share CPU and I/O,
even when they receive 100% of their pre-allocated quota forthese
resources. To create memory performance graphs that include the
interference of multiple virtual machines running in the same host,
we perform the profiling phase running 10 SPECweb stacks (20
VMs) and 10 Daytrader VMs simultaneously.

We use the Banking version of SpecWeb 2009 [18] deployed
in two different virtual machines - one running the web server
and one running the backend database, configured with 1 VCPU
and 2GB of memory each. We profile each 2-VM pair (stack) of
SPECweb VMs from loads ranging from 10 to 100 simultaneous
sessions. Even though our hardware can handle as many as 900

sessions when a single stack is running, we do not stress SPECweb
with this high load to avoid CPU and I/O bottlenecks when running
multiple stacks. We use the average server processing time during
a 30-second time period as a performance indicator. We have a
loadable apache module which simply outputs over HTTP the time
taken to process each URL, averaged over 30 seconds. We do
not include network delays in the reported values, as they are not
directly affected by changes in memory pressure. For this particular
experiment, the application — SPECweb front-end (apache) —
operates best with 1.5 GB of memory or more, but can still function
well with less depending on the incoming load. Processes running
inside the web server do not consume all the physical memory -
however the remaining memory is used by the guest’s Linux kernel
to cache I/O operations and thus increase application performance.

Daytrader is an online stock trading system benchmarking ap-
plication. It is a multi-tier system, with a web front end, a J2EE
application layer and a DB layer. We deployed Daytrader 2.0 in a
single virtual machine with 2 VCPUs and 2GB of memory, running
on top of Apache Geronimo Application Server using the Apache
Derby DB, populated with 40,000 quotes and 2,000 customers.We
configured Daytrader’s parameters to use Session EJB3 and asyn-
chronous 2-phase order-processing. The java maximum heap size
was configured not to exceed the initial allocation of memoryfor
the VM. To measure Daytrader performance, we profile each in-
stance from loads ranging from 10 to 20 simultaneous requests per
second. The collector parses tomcat logs and calculates theaverage
processing time of the requests served in the latest 30 seconds.

Cross-workload Comparisons

As we described in the previous section, each collector can use a
different metric to represent application performance. These met-
rics can have different meanings and limits. For example, when
Ginkgo monitors processing time, smaller values are better. In con-
trast, ifGinkgo monitors requests per second, bigger values are bet-
ter. Absolute values for different workloads might have different
implications. While for DayTrader, 700ms processing time might
represent good performance, for SPECweb similar values could be
catastrophic.

Ginkgo needs to compare different workloads and identify what
is good and what is bad to make a global memory allocation deci-
sion. To solve this problem we normalize the memory performance
graphs, where 100% always represents the best performance indi-
cator ever seen for each load level. In addition, for each workload
we define a 0% performance indicator. Based on the absolute values
we observed, we considered any processing time value higherthan
750ms, 2500ms and 7500ms as 0% performance for the SpecWeb
front-end, back-end and Daytrader respectively.

3.0.1 Baseline Load Generation

Coming up with some baseline degree of load variation is important
for testing real virtual machines in a controlled, overcommitted
environment. Note that it is not our intent to try to characterize the
meaning of a load “spike” or the effect of different loads on CPU
performance. Thus, in order to simplify the problem and still be
able to assessGinkgo’s effectiveness, we generate what we call a
“load plan”, consisting of a set of time steps for all of the VMs
running on the server such that each virtual machine receives a
specific load from our testing infrastructure. Variation ateach time
step is done in the following manner:

1. First we take the range of loads ever seen for each workload
(from our profiling phase) and statically assign to the guests



running such workload a virtual CPU capacity (i.e., number of
vCPUs) that is sufficient to avoid a processing bottleneck.

2. For each timestep, we randomly choose one of the loads in
the observed range and one of the running VMs on the system
under test, assigning that load to the chosen VM iterativelyuntil
one of two conditions happens: either we run out of VMs to
assign or we run out of available host CPU capacity, whichever
comes first.

This simplistic assignment of loads to VMs gives us enough load
variation over time for testing theGinkgo system. To our surprise,
as we will see later, there were occasionally some spikes in the
generated load plan, but most of the time the aggregate load on the
system remained steady while loads for individual virtual machines
went up and down dynamically. We generated this type of load
plan consisting of 20 SPECweb virtual machines (10 for each tier)
and 10 virtual machines for DayTrader - 30 virtual machines total.
Recall that each VM has 2GB of memory and the total memory is
64 GB, so no memory pressure is permitted in the baseline load
generator.

Finally, before the load plan is actually generated, we “prime”
the Ginkgo database with a baseline of CPU performance data
from which to start. So, we run our benchmarks on a system with
64GB of memory all available and vary the load until there is no
more CPU capacity available. At that point, we stop the baseline
experiment and activateGinkgo as described in the next section.

3.0.2 Memory overcommit withGinkgo

To measureGinkgo’s effectiveness at maximizing performance
over the baseline (which has a constant performance of 100% for
the whole load range), we now limited our host to use only 32GB
of memory by setting the kernel to boot 32768M of RAM. We also
configured the Estimator component’s linear model to limit the to-
tal allocatable memory to 28GB. Thus, for both the baseline and the
real experimental scenario, 4GB of memory were left to be used
by the host. Then we simultaneously ran all 30 virtual machine
instances with the aforementioned loadplan, both with onlyhalf
the physical memory (w/Ginkgo running and re-allocating physi-
cal memory) and with all the physical memory available (without
Ginkgo).

In Figure 2 we show the results obtained when the host used
only 32GB andGinkgo managed the memory allocations. The x-
axis represents run time, divided in steps of 10 minutes. Foreach
step, the y-axis shows the normalized values for different metrics,
including load, performance, memory, and CPU activity. We can
see thatGinkgo was able to maintain near maximum performance
while overcommitting memory by a factor of 2.14x (60GB/28GB).
Figures 3, 4, and 5 show a similar timeline for individual VMs
running different workloads. One can see howGinkgo adjusts the
memory allocation for each VM according to the incoming load.

4. Related Work

Issues related to overcommitment of resources in virtualized envi-
ronments have been investigated from several angles, building up
on the extensive list of results from resource management research.

Hypervisor-level enhancements to memory management have
been proposed to allow for a better understanding of how VMs
use their memory: the Geiger project [8] introduces techniques for
the hypervisor to infer guest OS buffer cache behavior; Lu and
Shen propose an efficient method for tracing VM memory access
that can be used to predict the VM miss rate for a given memory
size assignment [10]; Magenheimeret al proposed the idea of a

Figure 2. Aggregate 2.14x overcommitment performance with
32GB host memory andGinkgo enabled.

Figure 3. Individual SpecWeb VM front-endGinkgo performance
with 32GB host memory.

Figure 4. Individual SpecWeb VM back-endGinkgo performance
with 32GB host memory.

hypervisor-based cache [11]; Antfarm [7] introduces techniques to
enable the hypervisor to gain knowledge about processes within the
hosts.Ginkgo takes a different approach to model VM memory us-
age: it targets environments in which application-level performance
indicators for the VMs are available, thereby directly correlating
memory size and application behavior.



Figure 5. Individual Daytrader VMGinkgo performance with
32GB host memory.

In [2, 3, 6, 12, 14, 17, 19], methods are proposed for reducing
memory usage by leveraging redundancy of memory among VMs.
Wood et al propose a method for VM placement that collocates
VMs in servers based on their page sharing potential [20]. These
memory saving techniques are orthogonal toGinkgo. In some cloud
environments, the runtime page content commonality of VM im-
ages may be large enough to enable a reasonable memory overcom-
mitment ratio, but many data-intensive workloads (such as database
servers) may limit the impact of page coalescing techniques.

In order to dynamically adjust the amount of memory given to
a specific VM, researchers have looked at the behavior of applica-
tions running inside the VM. Waldspurger presents a page sampling
technique to infer the memory needs of a VM [19]. Zhao and Wang
proposed a scheme for dynamic VM memory balancing [21] where
VM memory needs are estimated by monitoring swap space and
intercepting VM memory accesses to maintain a LRU histogram.
Padalaet Al proposeAutoControl, an automated method to dynam-
ically control and manage resources in a virtual environment by
estimating the relationship between applications and resources. It
combines an online model estimator and a multi-input, multi-output
(MIMO) resource controller [16].Q-Clouds [15] also uses online
feedback to construct a MIMO model to perform CPU resource
management to mitigate the performance interference effects from
a virtualized environment. NeitherAutoControl nor Q-Clouds di-
rectly address memory.

Heoet al present a dynamic memory controller that uses feed-
back control to dynamically adjust the allocation of CPU andmem-
ory while maintaining service level objectives [5]. This approach
differs fromGinkgo’s in that it does not attempt to characterize in-
coming load so that load-specific controllers could be deployed.
Also, their experimental evaluation was based on syntheticwork-
loads and real world traces, whileGinkgo deploys actual work-
loads. In terms of scale, Heo’s approach was demonstrated ina
scenario with 4 VMs, whileGinkgo’s results presented in Section 3
involve dozens of VMs.Ginkgo has been designed to scale to hun-
dreds of VMs; so far we have runGinkgo experiments involving 64
VMs.

5. Conclusions and Future Work

Managing memory overcommitment mechanisms is a complex task
and must be done carefully to avoid performance degradation.
As we shown in this paper, application performance metrics can
be used to infer memory needs and calculate efficient memory
assignments.

In Ginkgo we used a white-box approach to monitor the appli-
cation, assuming we have some limited monitoring support from
virtual machines images. While this kind of solution easilyfits
Platform-as-a-Service clouds, Infrastructure-as-a-Service clouds
may require a different and non-intrusive solution. To address this
problem, we plan to infer application performance indicators using
monitors running at the hypervisor level. For example, the numbers
of requests and response time of a web server can be estimatedby
observing incoming and outgoing TCP connections/packets.

Albeit treated as white-box regarding the performance metrics,
the application is still seem as a black-box regarding service cor-
rectness under extreme conditions. In our experiments we were
able to detect a small minority of corner cases where extremely low
memory under high load turned the performance metrics reported
by the application unrealiable due to silent errors. We planto imple-
ment a ”sanity checking” mechanism for the values reported (e.g.,
the performance cannot improve suddenly as we take away mem-
ory for a given load) in order to discard spurious data collected.

In this work we showed how to overcommit memory based on
application performance. In the future, we plan to extendGinkgo to
allocate CPU and I/O by creating multi-dimensional performance
model graphs and extending the linear model to consider assign-
ments for each sharable resource.

Hypervisor support for memory compression was presented in
Difference Engine [2] and was recently incorporated to VMware
vShpere 4.1. While this technology can increase memory overcom-
mit ratios, it also impacts application performance. We canextend
Ginkgo to profile and model 2-dimensional memory assignments,
where the first dimension represents the amount of physical mem-
ory each VM needs and the second dimension the portion reserved
for compressed memory.

We can also useGinkgo to improve and accelerate the deploy-
ment of new virtual machines. At any given point in time, the es-
timator can consider the new VM and simulate a memory assign-
ment, even when the VM is not actually running in the host. By
looking at optimization results, we can estimate performance and
memory consumption or profit in cases where the host absorbs the
VM. Management software can then use this information to decide
whether or not start running the VM.

On the other hand,Ginkgo is already capable of modeling sit-
uations where VM migration features are enabled in the cloud. If
the estimator component is configured with a linear model that al-
lows VMs to be exempt from receiving a memory assignment and
defines a corresponding penalty for this case, it can then identify
a more flexible subset of VMs that should run on the host which
would still improve the object function value (overall performance
or profit).

Although our evaluation ofGinkgo chose to maximize perfor-
mance, in some scenarios we don’t need to achieve maximum
performance to pass quality of service goals. We can define “ac-
ceptable” performance for each workload and give the minimum
amount of memory required to satisfy this constraint. This def-
inition for acceptable performance can be provided by the cus-
tomer or the provider. However, without previous profiling and
run-time modeling, the cloud provider would not be able to esti-
mate the memory requirements needed to host a workload without
noticeable violations. Alternatively, providers might offer service
category levels, such as bronze, silver, and gold to avoid defin-
ing these values in absolute terms. Based on expected profit or
maximum allowed resources,Ginkgo can be used to estimate what
acceptable performance values might be for each category. These
values can even be updated on a daily or weekly basis, accord-
ing to runtime/history measurements. By publishing these updated
values, the provider can give customers the opportunity to up-



grade/downgrade the QoS category assigned to a VM or to further
optimize their own workloads.

Acknowledgments

The author Gabriel Lizarraga appreciates the support provided
by the National Science Foundation under grants HRD-0833093,
CNS-0837556, CNS-0540592, and CNS-0426125.

References
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualiza-
tion. In SOSP ’03: Proceedings of the nineteenth ACM symposium on
Operating systems principles, pages 164–177, New York, NY, USA,
2003. ACM.

[2] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference engine: Harnessingmemory
redundancy in virtual machines. In8th USENIX Symposium on Op-
erating System Design and Implementation (OSDI 2008). USENIX,
December 2008.

[3] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. Difference engine: harnessingmemory
redundancy in virtual machines.Commun. ACM, 53(10):85–93, 2010.

[4] I. Habib. Virtualization with kvm.Linux J., 2008(166):8, 2008.

[5] J. Heo, X. Zhu, P. Padala, and Z. Wang. Memory overbookingand dy-
namic control of xen virtual machines in consolidated environments.
In IM’09: Proceedings of the 11th IFIP/IEEE international conference
on Symposium on Integrated Network Management, pages 630–637,
Piscataway, NJ, USA, 2009. IEEE Press.

[6] K. Jin and E. L. Miller. The effectiveness of deduplication on virtual
machine disk images. InSYSTOR ’09: Proceedings of SYSTOR 2009:
The Israeli Experimental Systems Conference, pages 1–12, New York,
NY, USA, 2009. ACM.

[7] S. T. Jones, Andrea, and Remzi. Antfarm: Tracking processes in a
virtual machine environment. InProceedings of the 2006 USENIX
Annual Technical Conference, pages 1–14, Boston, MA, USA, 2006.

[8] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Geiger: monitoring the buffer cache in a virtual machine environment.
SIGOPS Oper. Syst. Rev., 40(5):14–24, 2006.

[9] Libvirt Team. libvirt: The virtualization api. http://libvirt.org.

[10] P. Lu and K. Shen. Virtual machine memory access tracingwith hy-
pervisor exclusive cache. InATC’07: 2007 USENIX Annual Technical
Conference on Proceedings of the USENIX Annual Technical Confer-
ence, pages 1–15, Berkeley, CA, USA, 2007. USENIX Association.

[11] D. J. Magenheimer, C. Mason, D. McCracken, and K. Hackel. Par-
avirtualized paging. InWorkshop on I/O Virtualization, 2008.

[12] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis.
Efficient resource provisioning in compute clouds via vm multiplex-
ing. In ICAC ’10: Proceeding of the 7th international conference
on Autonomic computing, pages 11–20, New York, NY, USA, 2010.
ACM.

[13] Microsoft Technet. Hyper-V dynamic memory evaluationguide.
http://technet.microsoft.com/en-us/library/ff817651)WS.1.0).aspx,
July 2010.

[14] G. Milos, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
Enlightened page sharing. InUSENIX ’ATC, 2009.

[15] R. Nathuji, A. Kansal, and A. Ghaffarkhah. Q-clouds: managing per-
formance interference effects for qos-aware clouds. InEuroSys ’10:
Proceedings of the 5th European conference on Computer systems,
pages 237–250, New York, NY, USA, 2010. ACM.

[16] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Sing-
hal, and A. Merchant. Automated control of multiple virtualized re-
sources. InEuroSys ’09: Proceedings of the 4th ACM European con-
ference on Computer systems, pages 13–26, New York, NY, USA,
2009. ACM.

[17] M. Schwidefsky, H. Franke, R. Mansell, H. Raj, D. Osisek, and
J. Choi. Collaborative memory management in hosted linux environ-
ments. InOLS ’06: 2006 Ottawa Linux Symposium, 2006.

[18] Standard Performance Evaluation Corporation. SPECweb2009.
http://www.spec.org/web2009/.

[19] C. A. Waldspurger. Memory resource management in vmware esx
server. InOSDI ’02: Proceedings of the 5th symposium on Operating
systems design and implementation, pages 181–194, 2002.

[20] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cecchet, and
M. D. Corner. Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers. InVEE ’09: Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, pages 31–40, New York, NY, USA, 2009.
ACM.

[21] W. Zhao and Z. Wang. Dynamic memory balancing for virtual ma-
chines. InVEE ’09: Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, pages 21–
30, New York, NY, USA, 2009. ACM.


