
Ginseng: Market-Driven Memory Allocation

Orna Agmon Ben-Yehuda1 Eyal Posener 1 Muli Ben-Yehuda1 Assaf Schuster1 Ahuva Mu’alem1,2

1Technion – Israel Institute of Technology 2Ort Braude
{ladypine, posener, muli, assaf, ahumu}@cs.technion.ac.il

Abstract
Physical memory is the scarcest resource in today’s cloud
computing platforms. Cloud providers would like to max-
imize their clients’ satisfaction by renting precious phys-
ical memory to those clients who value it the most. But
real-world cloud clients are selfish: they will only tell their
providers the truth about how much they value memory
when it is in their own best interest to do so. How can real-
world cloud providers allocate memory efficiently to those
(selfish) clients who value it the most?

We present Ginseng, the first market-driven cloud sys-
tem that allocates memory efficiently to selfish cloud clients.
Ginseng incentivizes selfish clients to bid their true value for
the memory they need when they need it. Ginseng contin-
uously collects client bids, finds an efficient memory allo-
cation, and re-allocates physical memory to the clients that
value it the most. Ginseng achieves a 6.2×–15.8× improve-
ment, which is 83%–100% of the optimum, in aggregate
client satisfaction when compared with state-of-the-art ap-
proaches for cloud memory allocation.

Categories and Subject Descriptors D.4.2 Operating Sys-
tems [Storage Management]: Main memory

General Terms Virtualization, Economics, Performance

Keywords Virtual Machines, Operating Systems, KVM,
Memory Overcommit, Oversubscription

1. Introduction
Infrastructure-as-a-Service (IaaS) cloud computing providers
rent computing resources to their clients. As competition be-
tween providers gets tougher and prices decrease, providers
will need to continuously and ruthlessly reduce expenses,
primarily by improving their hardware utilization. Physi-
cal memory is the most constrained and thus precious re-
source in use in cloud computing platforms today [19, 25,
27, 36, 41, 55]. Google, for example, had to begin charging
for memory usage in addition to CPU usage: not charg-
ing for memory made the scaling of applications that use
a lot of memory and little CPU time “cost-prohibitive to
Google.” [12]. Other platforms (such as Amazon EC2) of-
fered virtual machines with varying amounts of memory to
begin with, thereby charging clients for memory usage in

addition to CPU and I/O usage. In general, today’s cloud
computing clients buy a supposedly-fixed amount of physi-
cal memory for the lifetime of their guests.

Providers can greatly reduce their expenses by using
less memory to run more client guest virtual machines on
the same physical hosts. This can be done transparently by
means of memory overcommitment [8, 34, 55]. When mem-
ory is overcommited, the clients have no way to discern how
much physical memory they are actually getting. Due to the
lack of transparency and difficulties with providing a given
level of quality of service when overcommitting memory,
some providers refrain from memory overcommitment and
let their hardware go underutilized. Others simply reduce
their clients’ quality of service.

Clients would much prefer to have full visibility and
control over the resources they receive [3, 42]. They would
like to pay only for the physical memory they need, when
they need it [1, 5, 18]. By granting clients this flexibility,
providers can increase client satisfaction: clients interested
in high quality of service (QoS) will be able to choose a
non-overcommited machine, while budget-conscious clients
will be able to enjoy the cloud at low prices when demand is
low. Finding an efficient allocation of physical memory on
each cloud host—an allocation that gives each guest virtual
machine precisely the amount of memory it needs, when it
needs it, at the price it is willing to pay—yields benefits for
both clients, whose satisfaction is improved, and providers,
whose hardware utilization is improved.

Previous physical memory allocation schemes assumed
that guest virtual machines are run by fully cooperative
clients, who let the host know precisely what each guest is
doing, how much benefit additional memory would bring to
it, and the importance of the workload to the client [19, 25,
27, 41]. Gingko, for example, assumed that guests are coop-
erative and that the host knows the benefit additional mem-
ory would bring each guest [19, 27]. Heo et al. [25] solved a
control problem over performance level objectives, by mea-
suring guest performance inside the guests, again assuming
guest cooperation. Nathuji et al. [41] sold performance in-
stead of resources, again by measuring guest performance
inside the guests. All these systems allocated memory effi-
ciently and improved the overall system’s performance, but
were unsuitable for real-world commercial clouds, because

Ginseng: Market-Driven Memory Allocation 1 2013/11/11

the assumption that the host has full, accurate information
on all aspects of guest performance is unrealistic.

As recent commercial cloud trends of price dynamicity
and fine-grained resource granularity [3] indicate, real-world
cloud clients act rationally and selfishly. They are black
boxes with private information such as their performance
statistics, how much memory they need at the moment, and
what it is worth to them. Rational, selfish black-boxes will
not share this information with their provider unless it is in
their own best interest to do so.

When white-box models are applied to selfish guests, the
guests have an incentive to manipulate the host into granting
them more memory than their fair share. For example, if the
host gives memory to those guests that will benefit more
from it, each guest will say it benefits from memory more
than any other guest. If the host gives memory to those
guests that perform poorly with their current allocation, each
guest will say it performs poorly.

The host can allocate memory on the basis of pas-
sive black-box or grey-box measurements [29, 34, 36, 55,
60, 61]. For example, Jones, Arpaci-Dusseau, and Arpaci-
Dusseau [29] monitored I/O and inferred major page faults,
and Zhao and Wang [61] monitored use of physical pages
to balance the guests’ need for physical memory. However,
in such cases the guests have an incentive to bias the mea-
surement results, e.g., by inducing unnecessary page faults
or accessing unnecessary memory. Furthermore, black-box
methods compare the guests only by technical qualities such
as throughput and latency, which are valued differently by
different guests under different circumstances.

In this work we address the cloud provider’s fundamental
memory allocation problem: How should it divide the phys-
ical memory on each cloud host among selfish black-box
guests? A reasonable meta-approach would be to give more
memory to guests who would benefit more from it. But how
can the host compare the benefits of additional memory for
each guest?

We make the following three contributions. Our first
contribution is the Memory Progressive Second Price
(MPSP) auction, a game-theoretic market-driven mecha-
nism which induces auction participants to bid (and thus
express their willingness to pay) for memory according to
their true economic valuations (how they perceive the bene-
fit they get from the memory, stated in monetary terms). In
Ginseng, the host periodically auctions memory using the
MPSP auction. Guests bid for the memory they need as they
need it; the host then uses these bids to compare the benefit
that different guests obtain from physical memory, and to
allocate it to those guests which benefit from it the most.
The host is not manipulated by guests and does not require
unreliable black-box measurements.

Our second contribution is Ginseng itself, a market-
driven cloud system for allocating memory efficiently to
selfish black-box virtual machines. It is the first full im-

plementation of a single-resource Resource-as-a-Service
(RaaS) cloud [3]. Ginseng is the first cloud platform to opti-
mize overall client satisfaction for black box guests. We also
build a strategic agent for the MPSP auction.

Ginseng supports static-memory applications—legacy
applications that require some fixed quantity of memory and
do not perform better with more memory, but is tailored for
elastic-memory applications—applications that can improve
their performance when given more memory on-the-fly over
a large range of memory quantities and can return mem-
ory to the system when needed. Many applications in use
today are static-memory applications, but elastic-memory
applications are starting to become more common. It is easy
to convert Java- or database-dependent static-memory ap-
plications to being dynamic using environments such as
Salomie et al.’s database [44] or a Java runtime with bal-
loons [19, 27, 44] or CRAMM [58]. Other examples of
dynamic-memory applications include dynamic heap ad-
justment for garbage-collected environments [21, 26, 59],
applications making use of the Linux mempressure control
group [40, 63] and CloudSigma’s Burst Pricing [1]. Our
third and final contribution is two elastic-memory bench-
mark applications: an elastic-memory version of Mem-
cached, a widely-used key-value storage cloud application,
and MemoryConsumer, an elastic memory benchmark we
developed.

Ginseng achieves a 6.2× improvement in aggregate client
satisfaction for MemoryConsumer and 15.8× improvement
for Memcached, when compared with state-of-the-art ap-
proaches for cloud memory allocation. Overall, it achieves
83%–100% of the optimal aggregate client satisfaction.

2. System Architecture
Ginseng is a market-driven cloud system that allocates mem-
ory to guests using guest bids for memory. It is imple-
mented for cloud hosts running the KVM hypervisor [31]
with Litke’s Memory Overcommit Manager MOM [34]. It
controls the exact amount of physical memory allocated to
each guest via the libvirt abstraction using balloon drivers [8,
34, 55].

The balloon driver, first presented by Waldspurger [55],
is installed in the guest operating system. The host’s Balloon
Controller controls the balloon driver, inflating or deflating
it. When inflating, the balloon driver allocates memory from
the guest OS and pins it, so that the guest OS won’t attempt
to swap it out; the balloon driver then transfers this memory
to the host. When deflating, the balloon driver frees memory
back to its OS, in effect giving the OS more memory from
the host. Ginseng does not specifically depend on any bal-
loon implementation; it only requires that the host supports
some underlying mechanism for balancing physical memory
between guests.

Ginseng’s system architecture is depicted in Figure 1.
Ginseng has a host component and a guest component. The

Ginseng: Market-Driven Memory Allocation 2 2013/11/11

Figure 1: Ginseng system architecture

host component includes the Auctioneer, which runs the
MPSP auction that is presented in Section 3 and described
in detail in Section 5. The auctioneer and the guests asyn-
chronously communicate information for the purpose of the
auction using their respective Communicators, according to
the protocol specified in Section 4. The host’s communica-
tor is also responsible for instructing the Balloon Controller
how to allocate memory between different guests. The Bal-
loon controller inflates and deflates the balloon drivers inside
the guests. In the guest, the Strategy Adviser is the brains of
the guest’s economic learning agent, which acts on behalf
of the client. The client is free to choose its logic, provided
it speaks the MPSP protocol. Our implementation of an ad-
viser is described in Section 6.

3. Memory Auctions
Ginseng allocates memory efficiently because its guests bid
for the memory they want in a specially-designed auction.
We begin by describing how Ginseng auctions memory.

In Ginseng, each guest has a different, changing, private
(secret) valuation for memory. Simply put, this valuation
reflects how much additional memory is worth to each guest.
We define the aggregate benefit of a memory allocation to
all guests—their satisfaction from auction results—using the
game-theoretic measure of social welfare. The social welfare
of an allocation is defined as the sum of all the guests’
valuations of the memory they receive in this allocation. An
efficient memory auction allocates the memory to the guests
such that social welfare—guest satisfaction—is maximized.

VCG [11, 20, 53] auctions optimize social welfare by
incentivizing even selfish participants with conflicting eco-
nomic interests to inform the auctioneer of their true valua-
tion of the auctioned items. VCG auctions do so by charging
each participant for the damage it inflicts on other partic-
ipants’ social welfare, rather than directly for the items it
wins. VCG auctions are used in various settings, including
Facebook’s repeated auctions [24, 35].

Various auction mechanisms, some of which resemble
the VCG family, have been proposed for divisible resources,
in particular for bandwidth sharing [30, 32, 37]. For prac-

tical reasons, bidders in these auctions do not communicate
their valuation for the full range of auctioned goods. One
of these VCG-like auctions is Lazar and Semret’s Progres-
sive Second Price (PSP) auction [32]. None of the auctions
proposed so far for divisible goods, including the PSP auc-
tion, are suitable for auctioning memory, because memory
has two characteristics that set it apart from other divisible
resources: first, the participants’ valuation functions may be
non-concave; second, transferring memory too quickly be-
tween two participants leads to waste. The memory val-
uation function, which describes how much the guest is
willing to pay for different memory quantities, is a func-
tion of the load the guest is under, the performance gain or
loss it expects from less or more memory given that load,
and the value of (less or more) performance to the guest.
Formally, V (mem, load) = Vp(perf(mem, load)), where
Vp(perf) refers to the valuation of performance as described
below, and perf(mem, load) describes the performance the
guest can achieve given a certain load and a certain memory
quantity.

Performance might be measured in page hits per second
for a webserver, “get” hits per second for a caching service,
transactions per second for a database, trades per second for
a high-frequency-trading system, or any other guest-specific
metric. Performance can be mapped offline as function of
memory and load, and done by Hines et al. [27] and Gor-
don et al. [19]. As we demonstrate in Section 8.2, the perfor-
mance predictions made in this paper according to the offline
measurements were accurate enough. However, real-world
performance may depend on many variable conditions such
as program phase and bottlenecks in resources other than
memory. To this end, performance can be measured online as
several works demonstrate [60–62]. An important feature of
the MPSP auction is that it does not require the guest to have
its performance defined for any memory value. Hence, the
guest can keep a moving window of its latest performance
measurements, which reflect best the current conditions in
which it operates.

Vp(perf), the guest’s owner’s (i.e., the client’s) valuation
of performance function, describes the value the client de-
rives from a given level of performance from a given guest.
This function is different for each client and is private infor-
mation of that client. It is computed mostly on the basis of
economic considerations and business logic.

For example, an e-commerce website that typically makes
$100 sales and needs to present 10, 000 Web pages on aver-
age to generate a single sale might measure its performance
in displayed pages per second, and value each presented
page at $0.01. For this client, Vp(perf) = $0.01

page ·perf. Another
client might require the same average number of presented
pages to make a sale, but its typical sale would be $10 only.
For this client, Vp(perf) = $0.001

page · perf. Both clients will
need to know perf(mem, load): how many pages they can
present per second when given various amounts of memory

Ginseng: Market-Driven Memory Allocation 3 2013/11/11

and under the current conditions (e.g., load). The guests do
not need to measure the perf(·) function for the full range
of possible memory values. It is enough that these guests
measure it only for the working points that they would like
to consider bidding for.

If either of these functions is non-concave or not mono-
tonically rising, the composed function may be non-concave
or not monotonically rising as well. The PSP auction op-
timally allocates a divisible resource if and only if all the
valuation functions are monotonically rising and concave.
Other bandwidth auctions also rely on the monotonically ris-
ing concave property of the valuation functions.

Guest performance perf(mem, load), however, is not nec-
essarily a concave, monotonically rising function of phys-
ical memory. For example, the performance graph of off-
the-shelf memcached in our experimental environment is
monotonically rising, but not concave (Figure 2). This non-
concave function resembles a step function, and is typical
of the operating system’s efforts to handle memory pressure
through swapping. Non-concavity may also result from dif-
ferences in the size and frequency of use of various work-
ing sets, swapping policies, or garbage collection opera-
tions [49]. An application that knows how much memory
it can use and can change its heap size on-the-fly will have
a more concave graph. We modified memcached so that it
can be instructed to change its heap size on-the-fly by re-
leasing and allocating some of the memory used for its in-
ternal cache. Our elastic memcached has a concave, mono-
tonically rising performance graph in the same experimen-
tal environment (Figure 2). However, in a default system
configuration, its performance graph is neither concave nor
monotonically rising (Figure 2), due to a network bottle-
neck that was prevented in the experimental environment.
But a real production system guest cannot fine-tune its setup
parameters and re-design its software on-the-fly; it has to
make the best of the performance graphs it measures for the
current setup, which might look like Figure 2. To do that,
we designed Ginseng to allow valuation-of-memory graphs
V (mem, load) such as Figure 2 that are neither concave nor
monotonically rising.

Auction protocols that assume monotonically rising con-
cave valuation functions either interpret a bid of unit price
and quantity (p, q) as willingness to buy exactly q units for
unit price p or as willingness to buy up to q units at price
p. In the first case, the bidding language is limited to ex-
act quantities. In the second case, if the valuation function
is non-concave, the guest may get a quantity that is smaller
than the one it bid for, and pay for it a unit price it is not
willing to pay. If the function is not, at the very least, mono-
tonically rising, it may even get a quantity it would be better
off without.

MPSP supports monotonically rising concave memory
valuation functions in the same way that the PSP auction
supports them. In addition, it supports non-concave and

Figure 2: Application performance (“get” hits per second
for Memcached, hits per second for MemoryConsumer) as a
function of guest physical memory, for different load values.
The load is defined as the number of concurrent requests
made to the application.

(a) Elastic Memcached,
experimental system

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(b) Memcached, 500MB
internal cache, default system

0.4 0.5 0.6 0.7 0.8
Memory [GB]

0

1

2

3

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(c) Elastic Memcached,
default system

0.6 1.0 1.4 1.8 2.2 2.6
Memory [GB]

0

1

2

3

4

5

6

P
e
rf

o
rm

a
n
c
e
 [

K
h
it

s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(d) MemoryConsumer,
experimental system

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

9

P
e
rf

o
rm

a
n
c
e
 [

1
0
 h

it
s
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

non-monotonic valuation functions by specifying forbidden
ranges. These are forbidden memory-quantity ranges for a
single price bid. The guest can use forbidden ranges to cover
domains in which its average valuation per memory unit is
lower than its bid price. By definition, MPSP will not allo-
cate the guest a memory quantity within its forbidden ranges.
Rather, it will optimize the allocation given the constraints.
The guest can thus avoid getting certain memory quantities
in advance while still expressing a variety of desired quanti-
ties. The forbidden ranges are designed to efficiently convey
information about functions which are concave, monoton-
ically rising in separate ranges. However, the terminology
does not restrict the guest valuation functions in any way. In
particular, the guest can bid for a specific desired point (p, q)
by setting the open range (0, q) as a forbidden range.

4. MPSP: Repeated Auction Protocol
In Ginseng, each guest has some permanent base memory.
Guests pay a constant hourly fee for their base memory, and
it is theirs to keep as long as they run. In each auction round,
each guest can bid for extra memory. Ginseng calculates a
new memory allocation after every auction round and guests
rent the extra memory they won until the next auction round,
when the same memory will be put up for auction again.

The constant fees for base memory are designed to pro-
vide the lion’s share of the host’s revenue from memory,

Ginseng: Market-Driven Memory Allocation 4 2013/11/11

such that the host can afford not to make more profit off
the extra memory rental, and use this mechanism solely to
optimize social welfare, thereby attracting more guests. The
price of base memory is not affected by the prices paid for
extra memory.

Ultra high-end guests with hard QoS requirements are
expected to pre-pay for all the memory they need in advance,
to ensure that they always get the resources they need. Ultra
low-end budget-clients are expected to pre-pay only for as
much memory as they need to operate the guest OS and
limit their bids, so that they can temporarily rent additional
resources later while staying within their budget. The clients
spanning the range between those extremities are expected
to choose their flexible deal according to their needs.

Here we describe one MPSP auction round, accompanied
by a numeric example.

Initialization. Each guest i is set up with its base mem-
ory as it enters the system. For example, guest 1 runs mem-
cached and pre-pays for 1.4GB, while guest 2 runs Memo-
ryConsumer and pre-pays for 0.6GB.

Auction Announcement. The host computes the free
memory—the maximal amount of memory each guest can
bid for—as the excess physical memory beyond the amount
of memory in use by the host and the sum of base memo-
ries. It then informs each guest of the free memory and the
auction’s closing time, after which bids are ignored. In the
example, the machine has 4GB. The host uses 1.6GB, and
the guests pre-paid for 2GB, so the host announces an auc-
tion for 0.4MB.

Bidding. Interested guests bid for memory. Agent i’s bid
is composed of a unit price pi—memory price per MB per
hour (billing is still done per second according to exact rental
duration) and a list of desired ranges: mutually exclusive,
closed ranges of desired memory quantities, sorted in as-
cending order. We denote the desired ranges by [rj , qj] for
j = 1 . . .mi. The bid means that the guest is willing to rent
any memory quantity within the desired range list for a unit
price pi.

In the example, both guests experience a load of 10 con-
current requests. Guest 1 values its performance at $1 per
Khit/second, and bids $1 per GB of memory per second
(p = 1 $

GBs) for any amount of memory between 0 and
0.4GB (r1 = 0, q1 = 0.4GB), on the basis of Figure 2.
Guest 2 values its performance at $0.1 per hit/second, and
bids $5 per GB of memory per second for the same amount
of memory (p = 5 $

GBs , r1 = 0, q1 = 0.4GB), on the basis
of Figure 2.

Bid Collection. The host asynchronously collects guest
bids. It considers the most recent bid from each guest, dis-
missing bids received before the auction round was an-
nounced. Guests that did not bid lose the auction automati-
cally, and are left with their base memory.

Allocation and Payments. The host computes the alloca-
tion and payments according to the MPSP auction protocol

described in Section 5. For each guest i, it computes how
much memory it won (denoted by q′i) and at what unit price
(denoted by p′i). The payment rule guarantees that the price
the guest will pay is less or equal to the unit price it bid.
The guest’s account is charged accordingly. In the example,
guest 1 loses (p′1 = 0, q′1 = 0), and guest 2 wins all of the
free memory (p′2 = 1 $

GBs , q
′
2 = 0.4GB).

Informing Guests. The host informs each guest i of its
personal results p′i, q

′
i. The host also announces borderline

bids: the lowest accepted bid’s unit-price and the highest
rejected bid’s unit-price (5 $

GBs and 1 $
GBs in the example,

respectively). This is information that guests can work out
on their own; having the host supply it makes for a more
efficient system. The guests use this information in on-line
algorithms that decide how much to bid in future rounds, as
described in Section 6.3.

Adjusting and Moving Memory. After an adjustment
period following the announcement, the host actually takes
memory from those who lost it and gives it to those who
won, by inflating and deflating their balloons as necessary.
The purpose of the adjustment period is to allow each guest’s
agent to notify its applications of the upcoming memory
changes, and then allow the applications time to gracefully
reduce their memory consumption, if necessary. The appli-
cations are free to choose when to start reducing their mem-
ory consumption, according to their memory-release agility.
This early notification approach makes it possible for the
guest operating systems to gracefully tolerate sudden large
memory changes and spares applications the need to monitor
second-hand information on memory pressure [63]. Which
applications to notify and when to notify them is left to the
guest’s agent. In the absence of elastic applications, it is left
to the guest kernel to deal with memory pressure, e.g., by
shrinking internal caches.

5. MPSP: Auction Rules
Every auction has an allocation rule—who gets the goods?—
and a payment rule—how much do they pay? To decide
who gets the goods, the MPSP auction determines the opti-
mal allocation of memory. This is the allocation that max-
imizes social welfare—client satisfaction—as described in
Section 3. To determine the optimal allocation, the MPSP
auction solves a constrained divisible good allocation prob-
lem, as detailed in Section 5.1. To determine how much they
pay, the MPSP auction takes into account the damage they
inflict on other guests, as detailed in Section 5.2. After ex-
plaining the rules we discuss their run-time complexity and
provide an example for executing them. A correctness proof
is also available but has been omitted for the sake of brevity.

5.1 Allocation Rule
Ginseng finds the optimal allocation using a constrained
divisible-good allocation algorithm, which works in stages
as described below. In each stage, Ginseng attempts a divis-

Ginseng: Market-Driven Memory Allocation 5 2013/11/11

ible good allocation by sorting the guests lexically by three
qualities: first by their bid unit-price, second (to break ties)
by their current holdings [61] and last by a random shuffle.
Ginseng then allocates each guest its maximal desired quan-
tities according to this order.

If there are a guest g and a forbidden range R such
that g ends up with a memory quantity inside R, then the
allocation is invalid. This can happen if g is the last guest
allocated some memory and there is not enough memory left
to fulfill all of g’s requested quantity. Ginseng examines the
social welfare of such invalid allocations. If such an invalid
allocation gives a higher social welfare than the highest
social welfare seen to date in a valid allocation, then Ginseng
considers two constrained allocations instead of the invalid
allocation. In the first one, guest g gets a memory quantity
that is large enough to cover all of R. In the second one, g
gets a memory quantity that is small enough such that it does
not get any memory within R. The social welfare of the valid
allocations is compared to find the optimal allocation.

5.2 Payment Rule
The payments follow the exclusion compensation principle,
as formulated by Lazar and Semret [32]. Let q′′k denote the
memory that would have been allocated to guest k in an
auction in which guest i does not participate and the rest of
the guests bid as they bid in the current auction. Then guest
i is charged a unit price p′i, which is computed as follows:

p′i =
1

q′i

∑
k 6=i

pk (q
′′
k − q′k) . (1)

According to this payment rule, when guest i is charged
p′iq

′
i, it actually pays for the damage that its bid made to the

benefit of the rest of the guests. We note that to compute the
payment for a guest that gets allocated some memory, the
constrained divisible good allocation algorithm needs to be
computed again without this guest. In total, the allocation
procedure needs to be called one time more than the number
of winning guests.

5.3 Complexity
The problem that the MPSP algorithm solves—finding
the memory allocation that maximizes the social welfare
function—is defined over the domain of memory quantities
that guests agree to rent. This domain is not convex because
the forbidden ranges create “holes” in it. Maximizing a func-
tion over a non-convex domain is at least as hard as the knap-
sack problem, and therefore NP-hard. In the worst case the
algorithm needs to compute the social welfare which results
from each forbidden range being completely allocated or
completely denied: 2M different divisible allocations, where
M is the number of all the forbidden ranges in all the bids.
Each such allocation takes O(N) to compute, where N is
the number of bids, and each payment rule requires O(N)
allocations to be computed. Hence, the time complexity of
MPSP is O(N2 · 2M).

Nevertheless, for real life performance functions, a few
forbidden ranges should be enough to cover the non-concave
regions. We observed one forbidden range for off-the-shelf
memcached and zero forbidden ranges for elastic-memory
applications. Given the relatively small number of guests on
a physical machine, the algorithm’s run-time is reasonable:
we observed less than one second using a single hardware
thread, even in experiments with 23 guests.

5.4 Single Round Example
Consider a system with 6 GB of physical memory and two
guests. The first guest bids a unit price of 2 for between
3GBs and 4GBs of memory (p = 2, r1 = 3, q1 = 4) and
the second guest bids a unit price of 1 for between 3GBs and
5GBs of memory (p = 1, r1 = 3, q1 = 5). In the first stage,
we sort the guests by price, and try to allocate 4GB to guest
1 and 2GB to guest 2. This is an invalid allocation, because
the second guest gets a quantity that falls in its forbidden
range (anything less than 3GBs). We therefore examine two
constrained systems instead. (1) The second guest gets no
more than the minimum of the forbidden range, which is
0. In this case, the overall allocation is 4GB to the first
guest, with a social welfare of 8. (2) The second guest is
allocated at least as much as the maximum of its forbidden
range, i.e., at least 3GBs. Then the rest of the free memory
is allocated by the order of prices, so the first guest gets the
other remaining 3GBs. The social welfare in this case is 9,
and this is the chosen allocation.

According to the payment rule given in Equation 1, the
guests pay p′1 = 1

3 (1 [5− 3]) = 2
3 and p′2 = 1

3 (2 [4− 3]) =
2
3 , because in each other’s absence they each would have
gotten all of the memory they wanted.

6. Guest Strategy
So far, we discussed Ginseng system’s architecture, and the
MPSP memory auction from the auctioneer’s point of view.
But what should guests who participate in MPSP auctions
do? How much memory should they bid for and how much
should they offer to pay for it? In an exact VCG auction,
the guests would be expected to inform the host about their
valuation for different memory quantities. However, the re-
duced MPSP bidding language lightens the computational
burden off the host and leaves the choice of memory quan-
tity with the guest. Multi-bid auctions are further discussed
in Section 10.

In this section we present an example bidding strategy
we developed. It is used by the guests in the performance
evaluation in Section 8. Our guest wishes to maximize the
utility it estimates it will derive from the next auction. This
is a natural class of bidding strategies in ad auctions [9].

Our guest needs to decide how much memory to bid for,
and at what price. We show in Section 6.1 that for any
memory quantity, the best strategy for the guest would be
to bid its true valuation for that quantity. To choose the

Ginseng: Market-Driven Memory Allocation 6 2013/11/11

maximal quantity it wants to bid for, the guest compares its
estimated utility from bidding for the different quantities, as
described in Section 6.2, with the help of on-line algorithms
(Section 6.3).

6.1 Choosing a Bid Price
In this subsection we assume the guest has decided how
much memory (qm, or q for short) it wants to bid for and
show how much it should bid for it (p(q)). For the sim-
ple case of an exact desired memory quantity (m = 1,
rm = qm = q), for any value q, bidding the mean unit
valuation of the desired quantity p(q) = V (base+q)−V (base)

q
is the best strategy, no matter what the other guests do. By
bidding lower than p(q), the guest risks losing the auction;
by bidding higher it risks operating at a loss (paying more
than what it thinks the memory is worth).

For less simple cases when the guest bids for a range of
memory quantities up to q, if the valuation function is (at
least locally, in the range up to q) concave monotonically ris-
ing, bidding p(q) is still the best strategy for q regardless of
other guests’ bids: p(q) is the guest’s minimal valuation for
the range because the unit valuation drops with the quantity.
See, for example, Figure 3, where the valuation function is
above the line connecting the valuation of 1200 MB with the
base (400 MB) valuation. Since the connecting line’s slope
is the mean unit valuation of 1200MB, any point above the
line is a point whose mean unit valuation is higher than that
of 1200MB.

In the rest of the cases, the valuation function is non-
concave or not even monotonically rising. In such func-
tions, the mean unit-valuation p(q) may rise locally with
quantity: For example, in Figure 3, p(2200MB) is higher
p(1800MB). This means that simply bidding for 2200MB
with a unit-price of p(2200MB) may result in getting a
memory quantity for which the guest is not willing to pay
as much. The guest can avoid getting quantities for which
the mean unit valuation is lower than its bid price by ex-
cluding those quantities from its bid using the forbidden
ranges mechanism. In this example, the guest uses a for-
bidden range to exclude the quantities [1700, 2000] MBs of
memory from its range, since it is not economical to bid for
them with a unit price of p(2200MB).

The forbidden ranges mechanism allows the guest to bid
p(q) without a risk of operating at a loss. However, the guest
may have something to gain by bidding with a unit-price
that is less than p(q). If the guest does not get the maximal
memory quantity it bid for, it can try exploring its strategy
space. It can retain q, lower the bid price, and decrease the
forbidden ranges. Thus the guest enables the host to give
it a partial allocation in more cases, when the alternative
might be not getting any memory at all. In Figure 3, the
lowest bid-price worth exploring is labeled as “Low Slope”:
it eliminates any need of forbidden ranges.

Figure 3: Strategies for choice of unit price for two maxi-
mal quantities, using the same valuation function. Figure 3
demonstrates a single desired range strategy for a concave
monotonically rising part of the valuation function. Figure 3
demonstrates a multiple desired range strategy for a non-
concave, not even monotonically rising part of the valuation
function.

(a) Single range (b) Multiple range

When the auction has reached a steady state—when a
guest’s won goods and payment turn out the same in sub-
sequent auctions in response to the same strategy—the guest
already knows how much memory it can get for any bid it
makes. The guest is incentivized to raise its bid price to a
maximum, thus increasing the exclusion compensation that
other guests pay and making them more considerate. Hence,
our guests always bid p(qm). In our experiments, a steady
state is typically reached after 3 auction rounds.

6.2 Choosing a Maximal Memory Quantity qm

To maximize the guest’s estimated utility from the next auc-
tion, the guest chooses qm. Our guest assumes it is in a
steady state, and estimates its utility using past auction re-
sults. The guest assesses its utility from the next auction by
estimating the quantity of memory it will get qest, which is
estimated for simplicity as qm if p > pmin, and as 0 other-
wise. pmin is the lowest price the guest can offer and still
have a chance of getting any memory at all. The guest’s es-
timation of pmin is discussed in Section 6.3.

The utility estimation also requires an estimation of the
unit price to be paid for the allotted memory amount, pest.
The guest’s utility is its valuation of the memory it gets
minus the charge. The guest estimates its utility from bidding
(p, qm) by dividing it to two components: (1) its estimate
of the valuation improvement from winning the memory
it expects to win and (2) its estimate for the charge. For
concave valuation functions V (·), the estimated utility is
maximized when p(qm) = pmin. In such cases, the guest
needs only estimate and predict pmin to bid optimally. For
other (non-concave) functions, to find the memory quantity
that maximizes the estimated utility the guest must evaluate
the estimated charge. To this end it assesses the estimated
memory quantity it will get qest as described above and the
estimated unit price it will pay according to Section 6.3.
If several values of qm maximize the estimated utility, the

Ginseng: Market-Driven Memory Allocation 7 2013/11/11

guest prefers to bid with higher p values, which improve its
chances of winning the auction.

6.3 Predicting Guest Utility
In this subsection we describe the learning algorithms used
by the guest to predict its utility. The guest evaluates pmin

for the current round on the basis of ten recent borderline
bids that are announced by the host. The price to be paid,
p′, depends mainly on losing bids. To predict p′, the guest
maintains a historical table of (p′, q′) pairs, and uses it as a
basic estimate for pest. The pest estimate is further bounded
from above by the highest losing bid price in the last auction
round.

7. Experimental Setup
In this section we describe the experimental setup in which
we evaluate Ginseng.

Alternative Memory Allocation Methods. We com-
pared Ginseng with memory overcommitment and allocation
methods that are available to commercial IaaS providers:
static, host-swapping and MOM. In the Static method,
each guest is allocated a fixed amount of memory without
any overcommitment. This is a common method in public
clouds. When relying on host-swapping, each guest gets a
fixed memory quantity regardless of the number of guests,
and the host is allowed to swap guest memory to balance
memory between guests as it sees fit. This method is the
fallback of many overcommitment methods. The Memory
Overcommitment Manager (MOM) [34] collects data from
its guests to learn about their memory pressure and continu-
ously adjusts their balloon sizes to make the guests feel the
same memory pressure as the host. This is a state-of-the-art
overcommitment method that is freely available, but it is not
a black-box method: it relies on probes inside the guests, and
it can be easily circumvented by a malicious guest.

Workloads. To experiment with overcommitment trade-
offs, we used benchmarks of elastic memory applications:
applications that can improve their performance when given
more memory on-the-fly over a large range of memory quan-
tities, and can return memory to the system when needed. We
experimented with a modified elastic memcached and with
MemoryConsumer, a dedicated dynamic memory bench-
mark. Both applications interacted with the Ginseng guest
agent to dynamically adjust their heap sizes when they won
or lost memory: the Ginseng agent informed the applica-
tion of the upcoming change and the application reacted by
reducing its working-set size accordingly, so that when the
balloon is inflated, the system would not run out of memory.

Elastic memcached is a version of memcached that can
change its heap size on-the-fly to respond to guest memory
changes. When ordered, memcached can free some internal-
cache slabs (the less-needed ones, according to its internal
statistics), or alternatively increase its internal cache size.
Memcached was driven by a memslap client, a standard

memcached benchmarking utility. To test a large number
of guests quickly, we configured memslap such that mem-
cached’s performance graphs saturated at 2GB. To this end
we ran memslap with a key size of 249 bytes, a value size
of 1024 bytes, a window size of 100K, and a get/set ratio of
30:70, for 200 seconds each time. The application’s perfor-
mance is defined as the “get” hits per second. 1

MemoryConsumer is an elastic memory benchmark. It
tries to write to a random 1MB-sized cell from a predefined
range. If the address is within the range of memory currently
available to the program, then 1MB of data is actually writ-
ten to the memory address and it is considered a hit. Af-
ter each attempt, whether a hit or a miss, it sleeps for 0.1
seconds, so that misses cost time. The application’s perfor-
mance is defined as the hits per second. This application is
tailored as a pure memory overcommitment benchmark, in
order to create clean tests, unhindered by bottlenecks in re-
sources other than memory. As with memcached, we chose
a range of 1950 cells, so that performance graphs would sat-
urate at 2GB.

We profiled the performance of each workload with vary-
ing amounts of memory to create its perf(mem, load) func-
tion. We measured performance under different loads for
four concurrent guests without memory overcommitment,
as also done by Hines et al. [27]. We gradually increased
and decreased the physical memory in small steps, wait-
ing in each step for the performance to stabilize. For mem-
cached we waited and measured the performance for 200
seconds, and for MemoryConsumer for 60 seconds. The
perf(mem, load) graphs can be seen in Figure 2 for the elas-
tic Memcached and Figure 2 for MemoryConsumer.

Load. We defined “load” for memcached and Memo-
ryConsumer as the number of concurrent requests being
made. We used coordinated dynamic loads, where each
pair of guests exchange their loads every Tload. The load-
exchange timing is not coordinated among the different
guest pairs in the experiments. Loads are in the range [2, 10].
The total load is always the number of guests ×6, so that
the aggregate hits per second of different experiments will
be comparable. The load values and their exchange tim-
ing were chosen to increase the diversity among the guests,
as expected in a real system, where guests’ loads change
independently of other guests. Guests with different loads
also have different memory valuation functions, and are thus
more diverse, as in a real system.

Machine Setup. We used a cloud host with 12GB of
RAM and two Intel(R) Xeon(R) E5620 CPUs @ 2.40GHz
with 12MB LLC. Each CPU has 4 cores with hyper-threading
enabled, for a total of 16 hardware threads. The host ran
Linux with kernel 2.6.35-31-server-#62-Ubuntu, and
the guests ran 3.2.0-29-generic-#46-Ubuntu. To re-
duce measurement noise, we disabled EIST, NUMA, and
C-STATE in the BIOS and Kernel Samepage Merging

1 Elastic-memcached is available from ANON. INFO..

Ginseng: Market-Driven Memory Allocation 8 2013/11/11

Method/Memory (GB) Initial Maximal
Ginseng 0.6 10

Static 11.25/N 11.25/N
Host-swapping 10 10

MOM 0.6 10
Hinted host-swapping 2 2

Hinted MOM base 2

Table 1: Guest configuration: initial and maximal memory
values for each overcommitment method. N denotes the
number of guests.

(KSM) [4] in the host kernel. To prevent networking bot-
tlenecks, we increased the network buffers. We dedicated
hardware thread 0 to the host and pinned the guests to hard-
ware threads 1 . . . N . When the host also drove the load for
memcached, memslap processes were randomly (uniformly)
pinned to threads (N + 1) . . . 15.

Memory Division. 0.75GB were dedicated to the host. To
allow guests to both grow and shrink their memory alloca-
tions, we configured all guests with a high maximal memory
of 10GB, most of which was occupied by balloons, leaving
each guest with a smaller initial memory. However, when
using host-swapping and MOM, extensive host-swapping
caused the host to freeze when the maximal guest memory
was set to 10GB. Hence we also created a hinted (white-box)
version of each of these methods to compare against: we in-
formed the host that the applications actually cannot benefit
from the full 10GB, and that a rational guest would only
need 2GB. As a result, the provider in the hinted-MOM and
hinted-host-swapping methods configured the guests with at
most 2GB. This white-box configuration, which is based on
our knowledge of the experiment design, is intended to get
the best performance out of the alternative memory alloca-
tion methods. The initial and maximal memory values are
summarized in Table 1.

Reducing Guest Swapping. Bare metal operating sys-
tems shield applications from memory pressure by paging
memory out and by clearing buffers and caches, but elastic-
memory applications should be exposed to memory-pressure
in order to enable them to respond. To this end we minimized
guest swapping by setting vm.min free kbytes to 0. Note
that this did not hinder performance of host-swapping.

Reducing Indirect Overcommitment. Bare metal oper-
ating systems keep some memory free, in case of sudden
memory pressure. In a virtualized system, the hypervisor can
indirectly overcommit this memory by giving it to other op-
erating systems while it is not in use; the hypervisor relies
on its ability to page out guests if and when sudden memory
pressure occurs. Since we focus on direct overcommitment
(e.g., using balloons), we made the accounting more accu-
rate by setting the tunable knob vm.overcommit memory

to 1 in our guests, thus making the guest physical memory
the exact limitation for guest memory allocations. These set-

tings make more sense for a production VM than the default
settings (vm.overcommit memory=0) that are intended for
a bare-metal OS. In a VM with the default settings, an ap-
plication which needs 600MB would have required on our
system 300MB more, which it could not make use of. These
300MB would only be available for use by other virtual ma-
chines.

Time Scales. Three time scales define the usability of
memory borrowing and therefore the limits to the exper-
iments we conducted: the typical time that passes before
the change in physical memory begins to affect perfor-
mance (e.g., cache-warming time—time for the cache to
be filled with relevant data), Tmemory; the time between
auction rounds, Tauction; a typical time scale in which con-
ditions (e.g., load) change, Tload. Useful memory borrowing
requires Tload >> Tmemory . This condition is also neces-
sary for on-line learning of the performance resulting from
different memory quantities. To evaluate Tmemory , we per-
formed large step tests, making abrupt sizable changes in the
physical memory and measuring the time it took the perfor-
mance to stabilize. We empirically determined good values
for Tload on the basis of step tests results: 1000 seconds for
memcached experiments, whereas for MemoryConsumer
200 seconds are enough. We also used those step tests to
verify that guest major faults were insignificant (indicating
guest thrashing hardly happened), and to verify that the per-
formance measurement method was getting enough time to
evaluate the performance. For example, memslap required
200 seconds to start experiencing cache misses.

In realistic setups providers should set Tauction <<
Tload, to get a responsive system. Therefore, we set Tauction

to 12 seconds. In each 12-second auction round the host
waited 3 seconds for guest bids and then spent 1 second
computing the auction’s result and notifying the guests. The
guests were then allowed 8 seconds to prepare in case they
lost memory. We note that due to the long Tload, most of
the auctions in the experiments did not result in memory
changes, and the cache-warming was not affected.

8. Performance Evaluation
This section answers the following questions: (1) Which
memory allocation method provides the most satisfied guests
(i.e., the highest social welfare)? (2) How accurate is off-line
profiling of guest performance?

8.1 Comparing Social Welfare
We begin by evaluating the social welfare achieved by Gin-
seng vs. each of the five other methods listed in Table 1 for
a varying number of guests on the same physical host. We
evaluate memcached guests and MemoryConsumer guests in
separate sets of experiments. Each Memcached experiment
lasted 60 minutes, with Tload = 1000 seconds. Each Memo-
ryConsumer experiment lasted 30 minutes with Tload = 200
seconds. For each set we present average results of 5 ex-

Ginseng: Market-Driven Memory Allocation 9 2013/11/11

Figure 4: Valuation functions for different loads

(a) MemoryConsumer

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

V
a
lu

a
ti

o
n
 [

$
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

(b) Elastic Memcached

0.6 1.0 1.4 1.8 2.2
Memory [GB]

0

1

2

3

4

5

6

7

8

9

V
a
lu

a
ti

o
n
 [

$
/s

]

load: 10

load: 8

load: 6

load: 4

load: 2

load: 1

periments. Ginseng guests use the strategy described in Sec-
tion 6.

In both benchmarks, perf(mem) is a concave function. To
evaluate Ginseng’s abilities over non-concave functions, we
used performance valuation functions Vp(perf) that make
the resulting composed valuation function V (mem) non-
concave.

In the first experiment set (MemoryConsumer), each
guest i’s valuation function is defined as Vi(mem) = fi ·
(perf(mem))

2, where the fi values were drawn from the
Pareto distribution, a widely used model for income and as-
set distributions [50]. We used a Pareto index of 1.1, which is
reasonable for income distributions [51], and a lower bound
of 10−4 $

Khit .
The “square of performance” valuation function is char-

acteristic of on-line games and social networks, where the
memory requirements are proportional to the number of
users, and the income is proportional to user interactions,
which are proportional to the square of the number of users.
The composed valuation function is illustrated in Figure 4.

In the second experiment set (elastic memcached), each
guest i’s valuation function is defined as V(mem) = fi ·
perf(mem), where the fi values were distributed according to
a Pareto distribution with a Pareto index of 1.36 (according
to Levy and Solomon’s wealth distribution [33]), bounded in
the range [10−4, 100] $

Khit . The bounding represents the fact
that on-line trading does not span the whole range of human
transactions: some are too cheap or too expensive to be made
on-line. The highest coefficient was set as:

f1 =

{
0.1 $

Khit perf(mem) < 3.4Khit
s

1.8 $
Khit otherwise.

(2)

This sort of piecewise-linear valuation functions character-
izes service level agreements that distinguish usage levels by
unit price. The valuation function for the first guest is shown
in Figure 4.

We calculated the social welfare for each experiment us-
ing each VM’s measured performance that VM’s valuation
function. The social welfare of the different experiments is
compared in Figure 5. The figures contain two upper bounds
for the social welfare, achieved by simulating Ginseng’s auc-
tion and assuming the guests perform exactly according to

5 6 7 8 9 10 11 12 13
Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

S
o
c
ia

l
W

e
lf
a
re

 [
$
/s

]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(a) MemoryConsumer, valuation is a square of perfor-
mance

6 7 8 9 10 11 12 13

Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

S
o
c
ia

l
W

e
lf
a
re

 [
$

/s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(b) Memcached, first guest valuation is piecewise linear

Figure 5: Social welfare (mean and standard deviation) un-
der different allocation schemes as a function of the number
of guests. The dashed lines indicate simulation-based upper
bounds on Ginseng’s social welfare.

their predicted performance (neglecting cache warmup, for
example). The tighter bound results from a simulation of
Ginseng itself. The looser bound results from a white-box
on-line simulation, that results in the theoretically optimal
allocations given full offline information. The MOM and
host-swapping methods yield negligible social welfare val-
ues for these experiments, and are not presented.

As can be seen in Figure 5, Ginseng achieves much bet-
ter social welfare than any other allocation method for both
workloads. It improves social welfare by up to 15.8× for
memcached and up to 6.2× for MemoryConsumer, com-
pared with both black-box approaches (static) and white-
box approaches (hinted-mom). As the number of guests in-
creases, so does the potential for increased social welfare,
because more individual utilities are aggregated to compose
the social welfare. However, each guest is allocated a fixed
amount of memory (base) on startup, reducing our host’s
free memory, which is available for auction; hence the rela-
tive peak in social welfare for 7 guests (MemoryConsumer).
In the Memcached experiment the relative peak is flat be-
cause the first guest’s valuation is much higher than the rest.
In both experiment sets, Ginseng achieves 83%–100% of the
optimal social welfare. The sharp decline in Ginseng’s social
welfare for 13 guests comes when Ginseng no longer has

Ginseng: Market-Driven Memory Allocation 10 2013/11/11

5 6 7 8 9 10 11 12 13
Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
e
rf

o
rm

a
n
c
e
 [
1
0
2

h
it

s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(a) MemoryConsumer, valuation is a square of perfor-
mance. Performance is in terms of hits per second.

6 7 8 9 10 11 12 13

Number of VMs

0.0

0.5

1.0

1.5

2.0

2.5

P
e
rf

o
rm

a
n
c
e
 [
1
0
4

h
it

s
]

static

ginseng

hinted-host-swapping

hinted-mom

Upper Bound

Ginseng Simulation

(b) Memcached, first guest valuation is piecewise linear. Perfor-
mance is in terms of “get” hits per second.

Figure 6: Performance (mean and standard deviation) under
different allocation schemes as a function of the number of
guests. The dashed lines indicate the performance according
to the simulation from which the upper bounds on Ginseng’s
social welfare were derived.

enough free memory to answer even the needs of the most
valuable guest.

As we saw above, Ginseng provides much better so-
cial welfare than alternative memory allocation method. But
does it do so at the cost of reducing overall aggregate per-
formance? As can be seen in Figure 6, Ginseng provides
aggregate performance that is roughly equivalent to the per-
formance of the better methods, namely hinted-MOM and
static division, while providing an order of magnitude better
social welfare.

8.2 Impact of Off-Line Profiling
In our experiments we used performance graphs that were
measured in advance in a controlled environment. In real
life, artificial intelligence methods should be used to col-
lect such data on-the-fly, considering both data accumula-
tion and data freshness in view of changing environment
conditions. Since the accuracy of the best on-the-fly meth-
ods is bounded by the accuracy of hindsight, we can bound
the impact of refraining from on-the-fly evaluation on the
performance graphs. In Figure 7 we compare our bench-
marks’ predicted performance (according to measured load

and memory quantities, and using Figure 2) with perfor-
mance values measured during Ginseng experiments for the
same loads and memory quantities. The experimental values
were collected after the memory usage stabilized (more than
Tmemory after a memory change). The comparison shows
that the profiled data is accurate enough, as can be seen when
comparing Ginseng’s results in the full experiments to its re-
sults with simulated guests in Figure 5.

9. Discussion: Host Revenue and Collusion
Ginseng does not attempt to maximize host revenue directly.
Instead, it assumes that the host charges an admittance fee
for the seed virtual machine and maximizes the aggregate
client satisfaction (the social welfare). Maximizing social
welfare improves host revenues indirectly because better-
satisfied guests are willing to pay higher admittance fees.
Likewise, improving each cloud host’s hardware (memory)
utilization should allow the provider to run more guests on
each host.

The guests we implemented reach a steady state using
indirect negotiations that result from their on-line strategy
(in Section 6.3). More sophisticated guests may directly col-
lude and negotiate to ease their way into a steady state of
their choice [6]. They can complete the deal among them-
selves by subletting memory to each other or by making
side-payments. Such guests might bid differently than their
true valuation of the memory, or coordinate the memory
quantities they bid for such that they only bid together for
as much as the host can offer, thus reducing and even elimi-
nating all charges.

The bright side of collusion is that it shortens the time it
takes the system to converge to a steady state. In particular,
when the colluding guests only change their desired quan-
tities and keep bidding a true unit-price, the allocation still
optimizes the social welfare.

If the host cares about its revenue from the extra memory
rental, e.g., due to power-related operational costs, it can set
a minimum (reserve) price for the extra memory. This can
easily be implemented by adding a dummy bidder that bids
on behalf of the host for all the memory with a unit-price that
equals the operational costs. The dummy bid will prevent the
host from renting the extra memory at a loss, and will also
limit the gain that guests can achieve at the expense of other
guests.

The dark side of collusion is that if guests do not bid
with their true valuations, the allocation will not necessar-
ily be optimal. However, bidding with a unit-price which is
not the true valuation carries the risks of losing the auction
or working at a loss, as described in Section 6.1. Colluding
to bid unit prices which are not true valuations is beneficial
when the other guest’s bids and the auctionable memory are
known in advance. In a cloud platform guests may join the
auction between rounds, or the valuation of existing guests
might change, and a new bid might be made below a ficti-

Ginseng: Market-Driven Memory Allocation 11 2013/11/11

0 1 2 3 4 5 6
Predicted [khits/s]

0

1

2

3

4

5

6
A

c
tu

a
l
[k

h
it

s
/s

]
Theoretical

(a) memcached

0 2 4 6 8 10
Predicted [0.1 hits/s]

0

2

4

6

8

10

A
c
tu

a
l
[0

.1
 h

it
s
/s

]

Theoretical

(b) MemoryConsumer

Figure 7: Comparison of predicted performance values (ac-
cording to the profile graphs, given load and memory alloca-
tion) with measured performance.

tious high bid, forcing the colluding guest to pay more than
the memory is worth to it. The host can further increase the
risk involved in such bids by introducing uncertainty to the
supply, for example, by randomly limiting the auctionable
memory [2]. This will usually not greatly hinder the opera-
tion of non-colluding guests, but it will make the planning of
collusion much harder.

10. Related Work
White-Box Memory Overcommitment. Heo et al. [25] bal-
anced memory allocations according to desired performance
levels. Under memory pressure they divided the memory ac-
cording to a fair share policy. Nathuji, Kansal and Ghaf-
farkhah [41]’s guests specified several performance and pay-
ment levels and the host chose which level to fulfill. This ap-
proach guarantees the host demand for any excess produc-
tion power it has. Our approach is guest oriented, leaving
the designation of the current required resource amount in
the hands of the guest. In Ginkgo, Hines et al. [27] and Gor-
don et al. [19] used optimization with constraint satisfaction
to optimize a general social welfare function of the guests’
performance. These works assume guest cooperation, while
we analyze the guest as a non-cooperative, selfish agent. Our
work is the first work on memory allocation which assumes
non-cooperative guests.

Grey-Box and Black-Box Techniques. Magenheimer [36]
used the guests’ own performance statistics to guide over-
commitment. Jones, Arpaci-Dusseau, and Arpaci-Dusseau [29]
inferred information about the unified buffer cache and vir-
tual memory by monitoring I/O and inferring major page
faults. Zhao and Wang [61] monitored use of physical pages,
and Zhao et al. [60] balanced memory between VMS on
the basis of on-the-fly intermittently-built miss-rate curves.
Waldspurger [55] randomly sampled pages to estimate the
quantity of unused guest memory, to guide page reclaim.
These methods can be circumvented by a selfish guest, and
like white-box methods, ignore the client’s valuation of per-
formance. Gupta et al. [22] did not require any guest cooper-
ation for their content based page sharing. Wood et al. [57]
allocated guests to physical hosts according to their memory

contents. Gong, Gu and Wilkes [18] and Shen et al. [48] used
learning algorithms to predict guest resource requirements.

Sekar and Maniatis [47] argued that all resource use must
be accurately attributed to the guests who use it so that it can
be billed. In contrast, Ginseng lays the burden of metering
on the client.

Guest Hint Techniques. Schwidefsky et al. [46] used
guest hints to improve host swapping. Miłoś et al. [39] incen-
tivized guests to supply sharing hints by counting a shared
page as a fraction of a non-shared page. Like Ginseng, their
method can be applied to non-cooperative guests.

Resource Allocation with Funny Money Funny money
was used in shared systems to control resource allocation.
However, when using funny money, the problem is attach-
ing real value to it. For example, Waldspurger [54] used a
proportionally fair allocation using tickets, which stood for
shares. Tickets had to be allocated by a centralized know-all
control. In a cloud there is no know-all control that can al-
locate tickets to separate economic entities. However, such a
control is not needed in a cloud which already charges clients
real money, which has intrinsic value.

General Resource Allocation For Monotonically Ris-
ing, Concave Valuations. Kelly [30] used a proportionally
fair allocation: clients bid prices, pay them, and get band-
width in proportion to their prices. His allocation is optimal
for price taking clients (who do not anticipate their influence
on the price they pay). Popa et al. [43] traded off proportional
fairness with starvation prevention. Johari and Tsitsiklis [28]
computed the price of anarchy of Kelly’s auction, and Sang-
havi and Hajek [45] improved the auction in this respect.

Maillé and Tuffin [37] extended the PSP to multi-bids,
thus saving the auction rounds needed to reach equilibrium.
Their guests disclosed a sampling of their resource valuation
function to the host, which computed the optimal allocation
according to these approximated valuation functions. One
such single auction has the complexity of a single PSP auc-
tion, times the number of sampling points. Non-concave or
non-monotonically rising functions require more sampling
points to express them with the same accuracy, thus increas-
ing the multi-bid auction’s complexity. Though a multi-bid
auction is more efficient for static problems, it loses its ap-
peal in dynamic problems which require repeated auction
rounds anyhow. Other drawbacks of the multi-bid auction
are that the guest needs to know the memory valuation func-
tion for the full range; that frequent guest updates pose a
burden to the host; and that the guest cannot directly explore
working points which currently seem less than optimal. (It
can do so indirectly by faking its valuation function.) In con-
trast, the MPSP auction leaves the control over the currently
desired resource allocation to the guest, who best knows its
own current and future needs. Maillé and Tuffin also showed
that the PSP’s social welfare converges to theirs [38].

Ginseng: Market-Driven Memory Allocation 12 2013/11/11

Chase et al. [10] allocated CPU time assuming client
valuations of the resource are fully known, concave, and
monotonically increasing.

Google’s GSP auction uses a limited bidding language
and is not a VCG auction [16].

Urgaonkar, Shenoy, and Roscoe [52] overbooked band-
width and CPU cycles given full profiling information but
did not address memory.

Unlike bandwidth and CPU auctions, our memory auc-
tion is oriented toward minimizing transfer of ownership.
Unlike divisible good auctions, it supports non-concave val-
uation functions.

Ghodsi et al. [17], Dolev et al. [14] and Gutman and
Nisan [23] considered allocating multiple resources to strate-
gic guests whose private information is the relative resource
quantities they require. In contrast, Ginseng compares valu-
ations of different strategic clients.

Drexler and Miller suggested auctioning memory chunks
to reach a market clearing price [15]. Waldspurger et al.
used multiple concurrent sealed-bid, second price auctions
to auction processor time slices [56].

Auctions With Non-concave Valuations. Bae et al. [7]
supported a single bidder with a non-concave valuation func-
tion. Dobzinski and Nisan [13] presented truthful polyno-
mial time approximation algorithms for multi-unit auctions
with k-minded valuations. They only assumed that the valua-
tions are non-decreasing (because they allow free disposal—
shedding of unneeded goods), and did not require them to be
concave. Our bidding language of forbidden ranges creates
more efficient allocations than free disposal, because it al-
lows undesired memory to be auctioned to guests who value
it more, instead of disposing of it. Had Ginseng been im-
plemented on the basis of bundles in a multi-unit auction,
the memory would have been divided to units. The clients
would have bid for bundles of such units. The host would
have had to trade off the accuracy of the final allocation with
the complexity of the auction by controlling the bundle size.
As the number of units grew, the final allocation would be
more accurate, but the auction’s complexity would grow. In
contrast, the MPSP auction is of a continuous resource, and
thus its fine-grained allocation accuracy does not increase its
algorithmic complexity.

11. Conclusions
Ginseng is the first cloud platform that allocates physical
memory to selfish black-box guests while maximizing their
aggregate benefit. It does so using the MPSP auction, in
which even guests with non-concave valuation of memory
are incentivized to bid their true valuations for the memory
they request. Ginseng achieves an order of magnitude of im-
provement in the social welfare when compared with alter-
native cloud memory allocation methods.

Although Ginseng focuses on selfish guests, it can also
benefit altruistic guests (e.g., when all guests are owned by

the same economic entity). In this case, guests that perform
the same function for different purposes, such as a test server
vs. a production server, can be distinguished by their eco-
nomic valuation functions.

The MPSP auction is suitable for memory auctioning, but
is not limited to this purpose. When used for the allocation of
another divisible resource, e.g. bandwidth, whose valuation
functions are concave, monotonically rising, it is as efficient
as the PSP auction. Hence, Ginseng is not just a memory
auctioning platform, but rather the first concrete step towards
the Resource-as-a-Service (RaaS) cloud [3]. In the RaaS
cloud, all resources, not just memory, will be bought and
sold on-the-fly. Extending Ginseng to resources other than
physical memory remains as future work.

References
[1] Cloudsigma price schedules: Burst pricing. http://www.

cloudsigma.com/en/pricing/price-schedules.

[2] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster,
and Dan Tsafrir. Deconstructing Amazon EC2 spot instance
pricing. In IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom), 2011.

[3] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster,
and Dan Tsafrir. Raas: Resource as a service. In USENIX
Conference on Hot Topics in Cloud Computing (HotCloud),
2012.

[4] Andrea Arcangeli, Izik Eidus, and Chris Wright. Increasing
memory density by using ksm. In Ottawa Linux Symposium
(OLS), pages 19–28, 2009.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D
Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Communications of the ACM,
53(4):50–58, 2010.

[6] Lawrence M. Ausubel and Paul Milgrom. Combinatorial
auctions, chapter 1. The lovely but lonely Vickrey auction,
pages 17–40. MIT Press, 2006.

[7] Junjik Bae, Eyal Beigman, Randall Berry, Michael L. Honig,
and Rakesh Vohra. An efficient auction for non concave
valuations. In 9th International Meeting of the Society for
Social Choice and Welfare, 2008.

[8] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. In ACM Sym-
posium on Operating Systems Principles (SOSP), pages 164–
177, 2003.

[9] Matthew Cary, Aparna Das, Ben Edelman, Ioannis Giotis,
Kurtis Heimerl, Anna R. Karlin, Claire Mathieu, and Michael
Schwarz. Greedy bidding strategies for keyword auctions. In
ACM conference on Electronic Commerce (EC), pages 262–
271. ACM, 2007.

[10] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar,
Amin M. Vahdat, and Ronald P. Doyle. Managing energy and
server resources in hosting centers. In ACM Symposium on
Operating Systems Principles (SOSP), 2001.

Ginseng: Market-Driven Memory Allocation 13 2013/11/11

[11] Edward H. Clarke. Multipart pricing of public goods. Public
Choice, 11(1):17–33, Sep 1971.

[12] Greg D’Alesandre. Updated app engine pricing faq! Web site,
June 2011. http://tinyurl.com/D-Alesandre.

[13] Shahar Dobzinski and Noam Nisan. Mechanisms for multi-
unit auctions. Journal of Artificial Intelligence Research,
37:85–98, 2010.

[14] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz
Kupferman, and Nathan Linial. No justified complaints: on
fair sharing of multiple resources. In Innovations in Theo-
retical Computer Science Conference (ITCS), pages 68–75.
ACM, 2012.

[15] K. Eric Drexler and Mark S. Miller. Incentive engineering
for computational resource management. In B.A. Huberman,
editor, The ecology of computation, pages 231–266. Elsevier
Science Publishers, North-Holland, Ansterdam, 1988.

[16] Benjamin Edelman, Michael Ostrovsky, and Michael
Schwarz. Internet advertising and the generalized second-
price auction: Selling billions of dollars worth of keywords.
American Economic Review, 97(1):242–259, March 2007.

[17] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Kon-
winski, Scott Shenker, and Ion Stoica. Dominant resource
fairness: Fair allocation of multiple resource types. In
USENIX Symposium on Networked Systems Design & Imple-
mentation (NSDI), 2011.

[18] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Pre-
dictive elastic resource scaling for cloud systems. In Inter-
national Conference on Network and Service Management
(CNSM), pages 9–16. IEEE, 2010.

[19] Abel Gordon, Michael Hines, Dilma Da Silva, Muli Ben-
Yehuda, Marcio Silva, and Gabriel Lizarraga. Ginkgo: Auto-
mated, application-driven memory overcommitment for cloud
computing. In Runtime Environments/Systems, Layering,
and Virtualized Environments (ASPLOS RESoLVE) workshop,
2011.

[20] Theodore Groves. Incentives in teams. Econometrica,
41(4):617–631, Jul 1973.

[21] Chris Grzegorczyk, Sunil Soman, Chandra Krintz, and Rich
Wolski. Isla vista heap sizing: Using feedback to avoid pag-
ing. In In Proceedings of the International Symposium on
Code Generation and Optimization (CGO, pages 325–340,
2007.

[22] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Sav-
age, Alex C. Snoeren, George Varghese, Geoffrey M. Voelker,
and Amin Vahdat. Difference engine: harnessing memory re-
dundancy in virtual machines. In USENIX Symposium on Op-
erating Systems Design & Implementation (OSDI), 2008.

[23] Avital Gutman and Noam Nisan. Fair allocation without
trade. In International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), volume 2, pages 719–728,
2012.

[24] John Hegeman. Facebook’s ad auction. Talk at Ad Auctions
Workshop, May 2010.

[25] Jin Heo, Xiaoyun Zhu, Pradeep Padala, and Zhikui Wang.
Memory overbooking and dynamic control of xen virtual ma-

chines in consolidated environments. In IFIP/IEEE Sympo-
sium on Integrated Management (IM), 2009.

[26] Matthew Hertz, Stephen Kane, Elizabeth Keudel, Tongxin
Bai, Chen Ding, Xiaoming Gu, and Jonathan E. Bard. Waste
not, want not: resource-based garbage collection in a shared
environment. In Proceedings of the international symposium
on Memory management (ISMM), 2011.

[27] Michael Hines, Abel Gordon, Marcio Silva, Dilma Da Silva,
Kyung Dong Ryu, and Muli Ben-Yehuda. Applications know
best: Performance-driven memory overcommit with ginkgo.
In CloudCom ’11: 3rd IEEE International Conference on
Cloud Computing Technology and Science, 2011.

[28] Ramesh Johari and John N. Tsitsiklis. Efficiency loss in a net-
work resource allocation game. Mathematics of Operations
Research, 29(3):407–435, 2004.

[29] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Geiger: monitoring the buffer cache in a vir-
tual machine environment. In ACM Architectural Support for
Programming Languages & Operating Systems (ASPLOS),
pages 14–24, 2006.

[30] Frank Kelly. Charging and rate control for elastic traffic. Eu-
ropean Transactions on Telecommunications, 8:33–37, 1997.

[31] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. KVM: the Linux virtual machine monitor. In Ottawa
Linux Symposium (OLS), pages 225–230, 2007.

[32] Aurel Lazar and Nemo Semret. Design and analysis of the
progressive second price auction for network bandwidth shar-
ing. Telecommunication Systems - Special issue on Network
Economics, page http://comet.columbi, 1999.

[33] Moshe Levy and Sorin Solomon. New evidence for the power-
law distribution of wealth. Physica A, 242:90–94, 1997.

[34] Adam G. Litke. Memory overcommitment manager. website,
2011. https://github.com/aglitke/mom.

[35] Brendan Lucier, Renato Paes Leme, and Eva Tardos. On rev-
enue in the generalized second price auction. In International
World Wide Web Conference (WWW), 2012.

[36] Dan Magenheimer. Memory overcommit... without the com-
mitment. In Xen Summit. USENIX association, June 2008.

[37] Patrick Maillé and Bruno Tuffin. Multi-bid auctions for band-
width allocation in communication networks. In IEEE INFO-
COM, 2004.

[38] Patrick Maillé and Bruno Tuffin. Multi-bid versus progressive
second price auctions in a stochastic environment. Quality of
Service in the Emerging Networking Panorama, pages 318–
327, 2004.

[39] Grzegorz Miłoś, Derek G. Murray, Steven Hand, and
Michael A. Fetterman. Satori: Enlightened page sharing. In
USENIX Annual Technical Conference (ATC), 2009.

[40] Kim Minchan. [PATCH v2] memcg: Add mem-
ory.pressure level events. http://tinyurl.com/

KimMinchan, February 2013.

[41] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
clouds: Managing performance interference effects for qos-
aware clouds. In ACM SIGOPS European Conference on
Computer Systems (EuroSys), 2010.

Ginseng: Market-Driven Memory Allocation 14 2013/11/11

[42] Zhonghong Ou, Hao Zhuang, Jukka K Nurminen, Antti Ylä-
Jääski, and Pan Hui. Exploiting hardware heterogeneity
within the same instance type of amazon EC2. In USENIX
Conference on Hot Topics in Cloud Computing (HotCloud),
2012.

[43] Lucian Popa, Arvind Krishnamurthy, Sylvia Ratnasamy, and
Ion Stoica. Faircloud: Sharing the network in cloud comput-
ing. In ACM HotNets, 2011.

[44] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and
Kevin Elphinstone. Application level ballooning for efficient
server consolidation. In ACM SIGOPS European Conference
on Computer Systems (EuroSys), pages 337–350. ACM, 2013.

[45] Sujay Sanghavi and Bruce Hajek. Optimal allocation of a
divisible good to strategic buyers. In IEEE Conference on
Decision and Control (CDC), 2004.

[46] Martin Schwidefsky, Hubertus Franke, Ray Mansell, Himan-
shu Raj, Damian Osisek, and JongHyuk Choi. Collaborative
memory management in hosted linux environments. In OLS
’06: 2006 Ottawa Linux Symposium, 2006.

[47] Vyas Sekar and Petros Maniatis. Verifiable resource account-
ing for cloud computing services. In ACM Cloud Computing
Security Workshop (CCSW), 2011.

[48] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John
Wilkes. Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In ACM Symposium on Cloud Computing
(SOCC), page 5. ACM, 2011.

[49] Sunil Soman, Chandra Krintz, and David F. Bacon. Dynamic
selection of application-specific garbage collectors. In 4th
International Symposium on Memory Management (ISMM),
2004.

[50] Wataru Souma. Universal structure of the personal income
distribution. Fractals, 9(04):463–470, 2001.

[51] Wataru Souma. Physics of personal income. http://arxiv.
org/pdf/cond-mat/0202388, 2002.

[52] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe.
Resource overbooking and application profiling in a shared
internet hosting platform. ACM Trans. Internet Technol., 9(1),
2009.

[53] William Vickrey. Counterspeculation, auctions, and competi-
tive sealed tenders. Journal of Finance, 16(1), 1961.

[54] Carl A. Waldspurger. Lottery and Stride Scheduling: Flexi-
ble Proportional-Share Resource Management. PhD thesis,
Massachusetts Institute of Technology, 1995.

[55] Carl A. Waldspurger. Memory resource management in
Vmware ESX server. In USENIX Symposium on Operating
Systems Design & Implementation (OSDI), volume 36, pages
181–194, 2002.

[56] Carl.A. Waldspurger, Tad. Hogg, Bernardo A. Huberman, Jef-
frey O. Kephart, and W. Scott Stornetta. Spawn: a distributed
computational economy. IEEE Transactions on Software En-
gineering, 18(2):103–117, 1992.

[57] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy, Pe-
ter Desnoyers, Emmanuel Cecchet, and Mark D. Corner.
Memory buddies: exploiting page sharing for smart colocation
in virtualized data centers. In ACM/USENIX Int’l Conference
on Virtual Execution Environments (VEE), pages 31–40, 2009.

[58] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B.
Moss. Cramm: virtual memory support for garbage-collected
applications. In Proceedings of the 7th symposium on Op-
erating systems design and implementation, pages 103–116,
2006.

[59] Chengliang Zhang, Kirk Kelsey, Xipeng Shen, Chen Ding,
Matthew Hertz, and Mitsunori Ogihara. Program-level adap-
tive memory management. In Proceedings of the 5th interna-
tional symposium on Memory management (ISMM), 2006.

[60] Weiming Zhao, Xinxin Jin, Zhenlin Wang, Xiaolin Wang,
Yingwei Luo, and Xiaoming Li. Low cost working set size
tracking. In USENIX Annual Technical Conference (ATC),
2011.

[61] Weiming Zhao and Zhenlin Wang. Dynamic memory balanc-
ing for virtual machines. In ACM/USENIX Int’l Conference on
Virtual Execution Environments (VEE), pages 21–30, 2009.

[62] Pin Zhou, Vivek Pandey, Jagadeesan Sundaresan, Anand
Raghuraman, Yuanyuan Zhou, and Sanjeev Kumar. Dynamic
tracking of page miss ratio curve for memory management.
In Proceedings of the 11th international conference on Archi-
tectural support for programming languages and operating
systems, 2004.

[63] Bartlomiej Zolnierkiewicz. The mempressure control group.
http://lwn.net/Articles/531077/, January 2013.

Ginseng: Market-Driven Memory Allocation 15 2013/11/11

