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ABSTRACT
Virtual machine (VM) time travel enables reverting a vir-
tual machine’s state, both transient and persistent, to past
points in time. This capability can be used to improve vir-
tual machine availability, to enable forensics on past VM
states, and to recover from operator errors. We present
an approach to virtual machine time travel which combines
Continuous Data Protection (CDP) storage support with
live-migration-based virtual machine checkpointing. In par-
ticular, we present a novel approach for CDP which en-
ables efficient reverts of the storage state to past points in
time and makes it possible to undo a revert, and this is
achieved using a simple branched-temporal data structure.
We also present a design and implementation of a simple
live-migration-based checkpointing mechanism in Xen.

1. INTRODUCTION
Many hypervisors support checkpointing the state of a run-
ning virtual machine [20, 7, 25]. A checkpoint typically cap-
tures the transient memory and system state of the virtual
machine, writing this state to a file. The virtual machine
(VM) can later be quickly restarted from the point in time
(PiT) when the checkpoint was created by reloading its state
from a file. If the original VM is left running when the check-
point file is loaded and restarted, we have cloned the VM at
a prior point in time [27, 15].

While some checkpoint implementations account for the state
of internal persistent storage [26], this is atypical. More gen-
erally, checkpoints do not address the state of external (e.g.,
SAN or NAS attached) storage. A virtual machine can be
resumed from a checkpoint only if the persistent state upon
which it depends was not modified in a manner inconsis-
tent with the VM’s transient state after the checkpoint was
created.

Continuous Data Protection [9] (CDP) is a relatively recent
storage technology that enables fast revert of storage state to
any prior point in time. CDP at the extreme keeps a history
of the persistent disk state after every modification. More
generally, CDP may have a given granularity, such as every
second or every minute, for which it keeps a consistent copy
of the persistent storage state. Taking frequent snapshots
can be viewed as a degenerate form of CDP.

For some applications, reverting the persistent disk state
may suffice to quickly reset the virtual machine to a prior
state— performing a reboot of the VM after reverting the

disk state is similar to a boot after an unexpected power
outage. However, such a reboot loses the VM’s transient
state. For some applications the loss of the transient state
is unacceptable. Application restart may be very expensive,
entailing significant application recovery. A restart of the
virtual machine may also lead to the loss of critical informa-
tion, e.g., information required to diagnose a misbehaving
virtual machine, that only exists in the virtual machine’s
transient memory.

By combining a storage technology such as CDP, for record-
ing the persistent storage state at any prior point-in-time,
with VM checkpointing technology, we can build a mech-
anism for inexpensive virtual machine time travel. In VM
time travel, we quickly revert the coordinated transient and
persistent states back to a prior point in time. To enable
this time travel, we take VM checkpoints at points in time
that are consistent with the CDP history, and we record the
corresponding point in time in the CDP history together
with each VM checkpoint. To revert a VM to a prior point
in time, the VM’s transient state is loaded from the check-
point file, and the persistent state is reset to the correspond-
ing time using the CDP history. The time to perform time
travel is now roughly the time it takes to read the VM check-
point from disk, and no reboot or recovery is needed. The
cost of this approach is the overhead of periodically saving
VM checkpoints to disk. The more often one checkpoints a
VM’s memory state, the more points in time are available
to revert to.

Our main contribution is demonstrating a generic VM time
travel service through coordinated CDP and VM checkpoint-
ing which respectively capture the persistent and transient
states of a virtual machine. We have prototyped such a
service on Linux and Xen [3]. Our implementation provides
time travel to Xen VMs running any supported OS and does
not require any changes to be made to the VM.

Our implementation consists of two main components: a
storage subsystem with CDP support and a checkpointer
component which non-disruptively saves VM memory state
to disk. Periodically, mutually consistent versions of VM
memory state and storage state are saved.

The rest of the paper is organized as follows. We describe
several applications of VM time travel in section 2. Sec-
tions 3 and 4 describe our CDP storage and the checkpointer,
respectively. Related work is presented in section 5, and con-



clusions and further work appear in section 6.

2. APPLICATIONS
Possible applications of VM time-travel include:

Improving availability Historically, a prime motivator for
checkpointing (both with and without virtualization)
has been to recover from failures in long running com-
putations [20]. Traditionally such recovery has either
used ad hoc methods to coordinate the persistent state
or addressed applications without dependencies upon
external persistent state. With our coordinated time
travel, we have a generic means of recovering a VM’s
transient and persistent states after a failure. It is
possible to quickly recover from serious corruptions of
a VM, such as viruses or administration errors, using
time travel. Fast time travel is especially important
if determining the appropriate PiT to recover to re-
quires performing multiple trial reverts, e.g., to deter-
mine when a corruption occurred.

Forensics After a failure of a VM, one can revert the VM to
a point in time prior to the occurrence of the problem
and then run forward, e.g., after attaching a debugger,
to determine the cause. In addition, combining time
travel with VM cloning enables performing root cause
analysis while the production system is running.

System Administration Combining VM time travel with
VM cloning enables fast testing of upgrades, patches
and configuration modifications without affecting the
production system.

Boot speedup As a faster alternative to a reboot in some
scenarios, a checkpoint taken immediately after boot
could be reverted to.

We note time travel is problematic when used with most
transactional applications. Backing out of a committed trans-
action will cause problems for clients since it violates dura-
bility.

3. STORAGE SUPPORT
CDP capabilities can be provided by storage controllers, net-
work appliances or by software running on the target host.
We opt for a host-based solution that integrates with a hy-
pervisor to provide CDP services to VMs. This integration
point allows an OS-agnostic and storage-agnostic solution.

Based on the applications we foresee for virtual machine
time travel, we designed our storage support with the fol-
lowing requirements in mind:

Protection granularity: Protection granularity controls the
number of points in time available for reverting back
to. The system should support coarse granularity pro-
tection, avoiding needless overheads in this case, while
scaling well to fine granularity protection such as“once
every second” or finer.

Robust revert support: The system should support a fast
revert operation. It is important that the operation

does not have a long latency before responding to I/O’s
on the reverted volume. A reverted volume is now the
production volume and it should continue to provide
full time-travel capabilities. Revert needs to be a re-
versible operation since it is important to allow mis-
takes to be backed out of.

Space management: Automated space reclamation is re-
quired. CDP implementations typically define an ac-
cessibility window which specifies the period of time to
allow reverts to. This is usually on the order of days
or weeks. Data outside the accessibility window is to
be reclaimed.

Performance: The performance impact of having time-travel
support turned on should be minimal.

Support for clones: The system should support creating
clones which are writable copies of a volume at any pre-
vious PiT. This allows experimenting to find the best
PiT before reverting the production volume, as well as
forensics and system administration applications. For
some applications it may be important to be able to
create a large number of clones. Clone creation should
be fast and thin provisioning of clones should be sup-
ported. Finally, clones should be first-class citizens,
enabling both further revert and clone operations.

In this paper we focus on time travel support for the stor-
age layer, although the mechanisms described here can be
generalized in a straight forward way to support cloning.

The rest of this section is organized as follows. In section
3.1 we introduce the general architecture of our CDP sys-
tem. In section 3.2 we describe how CDP metadata can be
organized to support the above requirements. In section 3.3
we describe the software architecture of our prototype imple-
mentation and in section 3.4 we describe how the metadata
is put to use in the context of the whole system.

3.1 The Checkpointing CDP Architecture
In a recent paper we described several broad storage archi-
tectures for time travel support [16]. We focus here on the
Checkpointing CDP architecture. This architecture sepa-
rates the current version of a volume (its production device)
from the historical versions (contained in its repository de-
vice). Such a separation helps provide fast read access since
there is no indirection involved in accessing the production
device. Locality is also maintained in the production device,
ensuring sequential read performance is not affected. The
price to be paid is that data needs to be written or copied
to both the production device and the repository device. A
block is copied to the repository just before it is about to be
overwritten in the production device by an incoming write
I/O (i.e., copy-on-write, COW).

When the user wishes to revert the system to a previous
PiT, the production device must be updated to contain the
correct data. We perform these copies in the background
and do not block I/O’s during this process: writes go to
their destination in the production device (possibly causing
COW to be performed) and reads are serviced directly from
the repository if necessary. To complete the illusion of quick



revert, the system supports performing another revert while
the background copy from a previous one is still in progress.
This results in a system where reverts appear instantaneous
to the user, although performance is degraded somewhat
while the background copy is in progress.

3.2 Repository Metadata
In this section we show how to use metadata to organize
the data in the repository device in order to support time
travel of a volume. A straight forward extension also sup-
ports cloning of volumes, but we omit the details. A main
contribution of our work is a metadata framework which
supports fast and reversible revert, where the revert opera-
tion returns the state of a volume to that of potentially any
previous point in time.

In addition to the Checkpointing architecture, our reposi-
tory metadata organization is also applicable to the other
CDP architectures described in our earlier work [16]. We
show how our metadata framework is integrated into the
Checkpointing architecture in section 3.4.

3.2.1 Metadata Indexes
In order to support fast and reversible revert, our meta-
data associates a logical timestamp, a physical address and
a branch with every block written to the repository device.
The timestamp is a counter associated with each volume
that is increased in accordance with the protection granu-
larity: less often for coarse protection and more often for fine
granularity protection—potentially as fine as “every write”.
The physical address is the location of the block in the repos-
itory device. Each revert operation introduces a new branch,
which inherits from a parent branch at the time being re-
verted to. Each volume is associated with a single current
branch which is the branch incoming writes for that volume
are associated with. We give a concrete example in Sec-
tion 3.2.2.

Timestamps, physical addresses and branches for blocks in
the repository are stored in two metadata indexes, which
can be implemented using standard B-Trees [4].

1. The branch table represents the branch hierarchy.
They key is <branch-id> and the data is <start-time,
end-time, parent-id, revert-to-time>.

2. the lpmap (logical to physical map) maps from key
<logical address, timestamp> to the physical location
in the repository <physical address>.

These indexes are used to service read, write and revert
requests to a volume, where read/write requests generate
lookup and insert operations on the indexes.

A final metadata structure is used to manage the space al-
location within the repository device. This structure need
not be time-travel aware and our current implementation
consists of a B-Tree indexing the free extents in the reposi-
tory. We point out that it is not critical to layout space in
the repository to give optimal sequential read performance,
because we only read from the repository immediately af-
ter a revert. The emphasis in our context is on speeding up

lookup(l)
b = current branch, t = current time
while (b != NULL) {
find the latest lpmap entry with prefix <l>

whose timestamp is between start-time(b) and t
if one exists

return associated physical address
else

t = revert-to-time(b)
b = parent(b)

}
return NULL

Figure 1: Pseudo-code for lookup(l) where l is a
logical address: Look for the last write on the path
from the current branch to its ancestors.

free space allocations and writes to the repository, somewhat
similar to LFS [18].

We implement the following metadata API:

insert (logical address, timestamp, physical address): In-
serts the corresponding entry to the lpmap.

lookup (logical address): This operation indicates the lo-
cation of the last write to the given logical address.
Since branches inherit writes from their ancestors, this
requires a recursive algorithm whose pseudo-code is de-
scribed in Figure 1. It returns <physical-address>.

revert (revert-to-time): Create a new branch which starts
at the current time and whose parent is the ancestor
of the current branch defined at revert-to-time. Mark
the end-time of the current branch, and set the newly
created branch to be the current branch.

Note that branches do not temporally overlap—there is ex-
actly one branch that contains any given timestamp. This
means the parent-id column of the branch table can be de-
duced from the revert-to-time column—the parent is the
branch whose start-time and end-time contain the revert-
to-time. We omit the parent-id column from the example in
Section 3.2.2.

We show how the above API is used in the Checkpointing
CDP storage architecture in section 3.4.

We expect the typical branch table size to be orders of mag-
nitude smaller than the corresponding lpmap, and to be able
to easily cache it in memory even when massive branching
(thousands of branches) is present. We should mention that
as long as the history of writes to a logical address is short
(e.g., can be stored within a single B-Tree disk page), then
there is an efficient implementation which avoids multiple
B-Tree accesses to implement lookup at that address. The
use of timestamps in addition to branches allows us to scale
well to “every write” protection granularity. The alternative
of introducing a new branch for every write would unneces-
sarily explode the size of the branch table.

3.2.2 Example



Figure 2 depicts the branch table (right), and the subset of
the lpmap for logical address 12 (left). It shows the evolution
from time 0 to 120, where revert operations took place at
time 80 (reverting to time 35) and at time 100 (reverting to
time 70). To lookup address 12 at time 105 we first look
for the latest lpmap entry in the interval [100,105). Since
there is none, we then look for the latest lpmap entry in the
interval [35,80), which is at time 60 (physical address d).
Note that the entry for time 60 was not accessible after the
first revert to time 35, although a second revert allowed us
to change the target revert-to-time. Since there is no bound
on the allowed number of reverts, this allows a search for the
best time to revert to, for example, the latest time before
the onset of a virus, which is typically not known in advance.

Figure 2: Metadata indexes for a particular se-
quence of inserts and reverts: lpmap (left) and
branch table (right).

3.2.3 Space reclamation
CDP systems enable specifying an accessibility window which
bounds the window of time they wish the system to provide
reverts to. Given this bound, our system performs auto-
mated space reclamation of unneeded metadata and user
data in the repository.

Space reclamation is done by scanning the lpmap structure,
one lba at a time. For each lba, a mark and sweep type
scan of all its entries is performed and any blocks that can-
not possibly be accessed are reclaimed. Obviously any block
with a timestamp within the accessibility window can not
be reclaimed. Blocks with older timestamps can only be
reclaimed if they are not visible within the CDP window,
taking into consideration writes performed at later times-
tamps and the branching structure. Garbage collection of
branch table entries must also be performed.

3.3 System Architecture
We implement a hypervisor based block CDP layer on Linux
and Xen which provides time-travel support to Xen guest
VMs. The prototype is in C and uses the Berkeley DB
library [24] for the persistent metadata B-Trees.

Under Xen, virtual machine I/O’s are served from a priv-
ileged domain (called dom0) running Linux. Xen provides
an extensible block I/O interception framework called blktap

Figure 3: System architecture and storage organiza-
tion.

(block tap) [28] which forwards VM block I/O requests to a
user-space process running in dom0. For performance, I/O
requests are aggregated and typically arrive in large batches.
Integrating our storage system with blktap allowed us to pro-
vide guest VMs with CDP-enabled volumes transparently.

In order to make most of our code hypervisor-agnostic we
split our storage subsystem in two parts—a hypervisor-specific
I/O interceptor and a separate CDP server process. All
metadata management, background tasks, management op-
erations, I/O’s to the repository, etc., are handled by the
CDP server process, while the interceptor process performs
the data I/O’s to the production device on behalf of the VM.
Our Xen interceptor runs within the blktap user-space pro-
cess and we run one such process per storage volume. There
is one CDP Server process per physical machine.

The interceptor communicates with the CDP server using
IPC. The IPC traffic has relatively low overhead as it con-
sists of the I/O requests and not of their contents. It provides
a way for the CDP server to redirect requests or to prepare
the production or repository devices prior to access by the
interceptor. The communication occurs once per batch of
I/O requests. Batches consisting entirely of reads avoid this
overhead entirely if there is no active revert background pro-
cess on the volume.

The CDP server supports a simple management protocol.
A command-line client enables administrators to provision
CDP-enabled volumes and to revert them to previous points
in time.

Our storage subsystem is event-based, meaning the volume
logical timestamp is increased under control of an external
program via the management protocol. The timestamp is
returned to the caller which can use it to later revert the
storage to that particular PiT. For fine granularity protec-
tion it is easy to have the storage system periodically incre-
ment its counters automatically.

Figure 3 shows the basic software components as well as
the storage layout. The figure depicts multiple VMs run-



ning on a physical machine, whose I/O’s are intercepted via
the I/O Interceptor component which communicates with
the CDP server. Administrative commands such as event
marking and revert are handled via an administration client.
The memory checkpointer can be invoked at the desired fre-
quency, and is discussed in detail in Section 4. Each CDP
enabled storage volume has an associated production device,
repository device, and metadata files (Berkeley DB indexes).
Each VM has associated checkpoint files. If live migration
between physical machines needs to be supported, then all
data should reside on shared storage.

No caching of VM I/O data traffic is performed by our
storage subsystem. Write I/O’s reach the interceptor once
the virtual machine’s operating system’s buffer-cache has
flushed them, at which point the OS expects disk-like se-
mantics. Reads have already had the benefit of the VM
buffer-cache and there is likely no point second guessing it.
CDP Server metadata on the other hand can be cached, and
it is cached by Berkeley DB in our implementation.

A block size defines the alignment of actual I/O’s performed
to both the production and history volumes. VM I/O re-
quests of any size are supported, however non block-aligned
requests may require an extra I/O. The larger the block size,
the less repository metadata is needed. Typically setting a
block size which is identical to the VM’s buffer-cache page
size (4KB) is a good idea. For VM’s running databases, the
best block size would be the database page size.

3.4 Use of Metadata in the Checkpointing CDP
Architecture

We give a brief outline of the actions taken by the CDP
server for each of the read, write and revert operations.

Performing a revert involves invoking the metadata revert
operation which will create a new branch and associate it
with the volume. A revert operation starts a background
task in the CDP server, transparent to the guest VM, which
copies data from the repository device to the production
device. We say a volume has an active revert if this copy
process is in progress.

If no revert is active (this is the common case) reads typically
do not involve metadata lookup. If a revert is active then the
data to be read may reside in the repository device. This can
happen for example if the background process has not copied
it yet. In this case the CDP server performs a metadata
lookup to locate the required data and then copies it from
the repository device to the production device. Once this is
done, the interceptor can read the data from the production
device, as though no revert had been active.

Writes whose previous versions need to be copied to the
repository (COW) involve a space allocation followed by a
metadata insert operation. Note that this occurs only for
the first write to a particular logical address after an event
was marked. Whether this is the case can be determined by
maintaining an in memory bitmap or performing a metadata
lookup operation.

Space reclamation continuously runs as a background task in
the CDP server. We note that our space reclamation only

deals with metadata, unlike Rosenblum and Ousterhout’s
Log-Structured Filesystem cleaner processes [18].

4. CHECKPOINTER
Xen did not have integral support for virtual machine check-
pointing at the time of this work (although such support
was merged into the xen-unstable tree recently). We there-
fore implemented a “good enough” checkpointer component
which makes use of available Xen features and does not re-
quire any changes to Xen itself. Xen supports two opera-
tions related to checkpointing: save and restore, and VM
live migration [11, 22, 6]. Saving a VM causes it to become
suspended; restoring it causes it to resume execution from
the point at which it was suspended. Unfortunately, check-
pointing in Xen cannot be trivially implemented as a combi-
nation of save followed by restore, since save is disruptive to
the domain being saved. As part of the saving process Xen
suspends the domain, severing all open network connections.

Xen’s support for live migration [6], on the other hand, en-
ables a running VM to be migrated to a different physical
machine with minimal disruption (i.e., network connections
are not severed). We therefore implemented checkpointing
by migrating a VM to the same hypervisor. During the mi-
gration, a copy of the migration bit stream is written to a
file. Our checkpointer intercepts the migration traffic be-
tween the source and target machines, masquerading as the
target machine to the original source machine and as the
source machine to the original target machine.

Checkpointer

Storage

VM

Xen

Figure 4: Checkpointing via localhost live migra-
tion.

When the checkpointer is started, it creates a listening socket
on a well known port and waits for incoming migration re-
quests. To create a VM checkpoint, a Xen live migration
of the VM is directed to that port on the same physical
machine where the VM is executing. The checkpointer per-
forms the migration protocol with the initiator, and initiates
a migration back to Xen on the same physical machine. As
the migration data begins to flow through, the checkpointer
intercepts it, writing the VM’s transient state to disk as well
as forwarding it back to Xen. A unique feature of live mi-
gration is that the VM continues running while most of its
state is transferred. Its execution is only paused for the bare



minimum of time needed to get a consistent view of the last
few dirty frames of memory and the CPU registers state.

It is during the small window of time when the VM is paused
that the checkpointer causes the memory checkpointed to be
synchronized with the disk state, by marking a CDP event
on the VM’s storage devices. To revert a VM to a previous
PiT, given the checkpoint file and associated CDP events,
one would first revert each of the VM’s storage devices to the
appropriate event using the CDP administration client, and
then run the standard Xen xm restore command with the
checkpoint file as a parameter. The VM would then resume
from the requested point in time.

Our approach to checkpointing, based on Xen’s live migra-
tion support, is fast enough, transparent and unobtrusive.
Other approaches are certainly possible and more efficient
approaches may be worthwhile for very frequent checkpoints
or for specific workloads. Our checkpointer was implemented
initially in a few hundred lines of Python for quick proto-
typing and then in (a few hundred more) lines of C for the
production version. It should be noted that since this work
was done, Xen has gained integrated checkpointing support
in the xen-unstable tree, via the“xm save –checkpoint” com-
mand [7, 8]. We are in the process of evaluating its suitabil-
ity for our purposes.

5. RELATED WORK
Point in time copies (snapshots) of storage [2] are a com-
mon feature, supported by storage controllers, appliances,
logical volume managers and filesystems. In the context of
time-travel, snapshot support often has limitations such as a
relatively small number of allowed snapshots on a volume, or
overheads relating to snapshots which preclude very frequent
snapshotting. Another issue using these systems for time-
travel is that revert of a volume is often a slow synchronous
operation during which I/O’s can not be performed. It is
also common that reverting to a snapshot destroys interme-
diate snapshots, making reverts non reversible.

Versioned filesystems [23, 21, 17] keep track of updates to
files and enable access to historical versions. The unit of
protection in these filesystems is a file—the user may access
a historical version of a specific file—while in block-based
CDP the unit of protection is an entire LUN. However since
typical files and directories are much smaller than LUN’s
and have far fewer updates than a LUN, the design of the
metadata structures for managing file and directory history
is usually not as scalable. Typically only read-only access to
old versions is offered and no revert operation is supported.

TRAP-Array [32] is a system which supports fine-granularity
CDP. The focus of the system is on reducing the space con-
sumption of the CDP history data. For fine-granularity pro-
tection they achieve good compression of the version history
of each block in the repository by XOR’ing consecutive ver-
sions of the block. One cost of such a system is that it
becomes necessary to retrieve the entire history of a block
in order to access any particular version. The system does
not support performing revert in the background while ac-
cepting new I/O’s.

An example of putting time-travel to work is given by Brown

and Patterson [5]. Time-travel is used there for supporting
recovery from operator errors in an email-store. They pro-
vide time-traveling storage based on NetApp filer snapshot
support. They had to overcome a limitation of this support
which they call ‘no forward time travel’. This means that
once a volume is reverted to a snapshot, all the snapshots be-
tween the current time and the snapshot are lost. This loss
of history at revert makes it impossible to ‘undo an undo’,
a capability they think important enough that they devel-
oped a workaround. The proposed workaround is slow and
cumbersome—they resort to implementing revert by copying
all files from the old snapshot to the current volume using
the filers support for constant-time copying of a file from an
old snapshot. Another limitation they mention is that only
31 snapshots were supported. This is overcome by using a
log of all incoming email traffic (which they have to maintain
for other reasons) to roll the system forward from the closest
available snapshot. They measure these workarounds to be
about two orders of magnitude slower than native disk-level
time travel support for their application. It is clear that
better time travel support in the disk layer would make a
big difference for their intended application.

A different example of an application enabled by VM time
travel functionality is presented by Whitaker et al. [30]. A
system is described which performs VM time travel as part
of an automated search for the point in time when a VM
transitioned into a failed state, for example, due to operator
error. In their system only disk state time travel is supported
and VMs need to be rebooted from the reverted disk state.
Their time-travel disk (TTDISK) works by logging all writes
and maintaining an lpmap like data structure. However a
TTDISK has no notion of branches and read-write access to
a previous PiT requires a separate COW disk with its own
meta data to be mounted over the TTDISK. It is not clear
how time travel of this COW disk can be supported.

VM time travel is put to use in the context of facilitating
OS debugging by King et al. [14]. Their system enables fine
grained logging of VM actions to enable exact replay of VM
execution from past points in time. This involves logging all
non-deterministic events that can affect VM execution. To
reduce log replay overhead, periodic checkpoints of memory
and disk state are taken and the log is replayed relative to a
checkpoint. The work was done in the context of the UML
virtualizer [10]. Their memory checkpointer implements the
optimization of only saving pages that were changed since
the previous checkpoint. The storage support for time travel
is based on a no-overwrite scheme. An in-memory structure
maps logical addresses to physical locations. This structure
reflects the current version only. To support time travel
a log of changes to this structure is maintained separately.
Performing time travel involves synchronously performing
log replay/undo of these metadata changes.

A system for Xen VM fault tolerance is presented by Vallée
et al. [26]. The system is based on checkpoint/restart of
VM disk and memory states. Similar to our checkpointing
approach, their memory checkpointing is based on existing
Xen features (save/restore and migration). For support in
saving disk state they make use of unionFS [31] running in
the guest VM and seem to have to shut down the guest at
every disk-state snapshot. In addition taking a disk-state



snapshot in their system is an expensive operation involving
a significant amount of data copying.

Our approach to structuring repository metadata is related
to work done on temporal database access methods [19].
Most temporal access methods however do not support branch-
ing which is important for enabling fast, reversible reverts
and clones. One exception is Jiang et al.’s BT-tree [13]
which is a branched-temporal structure. The idea of a sepa-
rate small branch-table was inspired by their work. For the
following reasons, in our context we can afford to use a sim-
pler data-structure which can be mapped onto a standard
B-Tree. First, our lpmap structure does not support fast
queries along the time dimension. This enables us to avoid
duplicating entries—a certain key (lba,branch,timestamp)
appears in our lpmap at most once. The BT-tree uses dupli-
cation to balance the tree by both time and key dimensions
which increases the size of the metadata and can complicate
space-reclamation. Another simplification is that since CDP
windows tend to be relatively small and given support for
space-reclamation, we felt it reasonable to have lookup time
at a particular address proportional to the size of the lpmap
for that address.

The WAFL [12] and ZFS [1] filesystems can support a large
number of snapshots. By frequently creating snapshots,
CDP-like functionality could be supported. These filesys-
tem adopt a no-overwrite policy for both data and meta-
data. The filesystem (both user data and metadata) is log-
ically organized as a large tree. Creating a snapshot cre-
ates a new tree root which shares all children with existing
nodes. The first write to any logical block will now cause
an entire tree-path of metadata to change. This should be
contrasted with an update-in-place metadata structure such
as the lpmap where a B-Tree insert operation is performed.
In the context of fine granularity protection the update-in-
place approach to metadata has smaller overheads.

Parallax [29] is a proposed storage subsystem for clusters of
Xen virtual machines. Being able to perform VM memory
checkpointing coupled with disk snapshots every 30 seconds
is mentioned as a design goal. A radix tree is proposed for
the mapping between from logical block address to physical
address and like in WAFL designs, branching is to be sup-
ported by creating a new (overlapping) tree for each branch.

6. CONCLUSIONS AND FURTHER WORK
We have described a system which supports VM time travel
by taking VM checkpoints which are coordinated with CDP
at the storage layer. Our system supports fast, reversible
revert which speeds the return to VM availability after a
VM failure. Storage cloning is also needed to complement
time travel for some applications such as system administra-
tion and forensics, and clones also have applications in areas
such as VM image management. Our infrastructure can be
extended to clones in a straight forward way, and we would
like to fully incorporate clones into our system as first class
citizens. We also plan to perform a detailed performance
analysis of our work at the storage layer, and are interested
in adding support for the SplitStream CDP architecture [16]
and comparing the performance of the various CDP archi-
tectures defined in our recent paper [16] empirically.
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