
c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Using IOMMUs for Virtualization in
Linux and Xen

Muli Ben-Yehuda, Jon Mason, Orran Krieger, Jimi Xenidis, Leendert Van Doorn, Asit

Mallick, Jun Nakajima, Elsie Wahlig

muli@il.ibm.com

– p.1/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Table of Contents

Introducing IOMMUs

The different types of IOMMUs

Calgary

Linux

Xen

Roadmap

Status

– p.2/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Introducing IOMMUs

An I/O Memory Management Unit (IOMMU) is a hardware
component that provides two main functions: IO Translation
and Device Isolation.

The IOMMU translates memory addresses presented
by devices from “IO space” to “machine space” to allow
a particular device to access physical memory
potentially out of its range. It does this by providing an
“in range” address to the device and translating the “in
range” address to the physical memory address on the
fly.

The same translation function, when coupled with
access permissions (“who can access this memory?”)
can limit the ability of devices to access specific regions
of memory.

– p.3/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Why do we need an IOMMU?

Pros
32-bit DMA capable, non-DAC, devices can access
physical memory addresses higher than 4-GB.
IOMMUs can be programmed so that the memory
region appears to be contiguous to the device on the
bus (scatter/gather coalescing).
Device Isolation and other RAS features.

Cons
TANSTAAFL, “there ain’t no such thing as a free
lunch.” Remapping adds a performance hit to the
transfer, albeit one which can be mitigated by an
IOTLB.

– p.4/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

The Main Advantage — Isolation

For device isolation, an IO translation needs to be
available to a given device, but not to some other
device.

We also need to restrict which domain can program
which device — this is done by the hypervisor by
controlling which domain can program which adapter.

Unfortunately, only one IOMMU available today on Intel and
AMD based servers can do isolation.

– p.5/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

AMD GART

AMD Graphical Aperture Remapping Table (GART)
provides a basic, translation only, IOMMU.

Implemented in the on-chip memory controller

Physical memory window and list of pages to be
translated.

Addresses outside the window are not translated.

Fully supported in Linux; Xen support posted by not in
the main tree.

– p.6/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

AMD IOV Technology and Intel VT-d

Provides translation and isolation.

Devices are assigned into a protection domain with a
set of I/O page tables defining the allowed memory
addresses.

Before a DMA transfer begins, the IOMMU intercepts
the access and checks its cache (IOTLB) and (if
necessary) the I/O page tables for that device, based
on the device’s Bus/Dev/Func.

Can be arranged in a topology of IOMMUs.

IO page tables maintained in system memory by host
software; with AMD’s implementation, the page table
format is compatible with the MMUs page table format.

– p.7/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

swiotlb

Linux includes swiotlb which is a software
implementation of the translation function of an IOMMU.
Also known as “bounce buffers”.

Linux always uses swiotlb on IA64 machines, which
have no hardware IOMMU, and can use it on x86-64
when told to do so or when the machine has too much
memory and not enough IOMMU.

As of 3.0.0, Xen always uses swiotlb in dom0, since
swiotlb provides machine contiguous chunks of memory
(required for DMA) unlike the rest of the kernel memory
allocation APIs when running under Xen.

Using swiotlb (or any other IOMMU) is completely
transparent to the drivers - everything is implemented in
the architecture’s DMA mapping API implementation.

– p.8/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Calgary TCEs

Calgary’s Translation Control Entries (TCEs) provide
functionality to translate and isolate.

Calgary provides a unique I/O address space up to
4-GB in size to all devices behind each PCI Host Bridge
(PHB)

Calgary uses the DMA address as an index into its
IOTLB. If a translation is not found in the IOTLB, the
address is used as an index a system controlled
translation table in memory.

Calgary is found in some of IBM’s System P and
System X servers.

– p.9/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Calgary TCE format

#define TCE_ENTRY_SIZE 8 /* in bytes */

#define TCE_READ_SHIFT 0

#define TCE_WRITE_SHIFT 1

#define TCE_HUBID_SHIFT 2 /* unused */

#define TCE_RSVD_SHIFT 8 /* unused */

#define TCE_RPN_SHIFT 12

#define TCE_UNUSED_SHIFT 48 /* unused */

– p.10/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Linux

Linux has a standard API for dealing with DMA memory
which all well written drivers are already using, the
DMA-API.

First we cleaned up the x86-64 DMA-API
implementation to support more than nommu, swiotlb
and gart cleanly — the dma-ops patch.

Then we did Calgary bringup on bare metal Linux.

And implemented the DMA-API for Calgary on the
server formerly known as “xSeries x366.”

Despite the hardware having never been validated, it
actually works.

We had to work around a few oddities creatively - cue
funny story about TCE shoot-downs.

– p.11/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Linux continued

Calgary merged in 2.6.18-rc1.

This provides an isolation capable IOMMU on
Intel/AMD based servers - get your DMA handling
wrong and the DMA will be stopped by the IOMMU with
an informative message rather than corrupting memory!

Some open issues: direct userspace access (i.e., X),
graceful handling and recovery of driver errors, better
integration with swiotlb, NUMA support, etc, etc...

– p.12/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

dmesg in action

PCI-DMA: Using Calgary IOMMU

Calgary: enabling translation on PHB 0

Calgary: errant DMAs will now be prevented on this bus.

Calgary: enabling translation on PHB 1

Calgary: errant DMAs will now be prevented on this bus.

Calgary: enabling translation on PHB 2

Calgary: errant DMAs will now be prevented on this bus.

– p.13/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Direct Hardware Access

One of the main selling points of virtualization is machine
consolidation. So let’s assume for a second that you put
your database virtual machine and your web server virtual
machine on the same physical machine. Your database
needs fast disk access; your web server, fast network
access.

Xen supports the ability to allocate different physical devices
to different domains (multiple “driver domains”). However,
due to architectural limitations of most PC hardware, this
cannot be done securely. In effect, any domain that has
direct hardware access has to be considered “trusted”.

– p.14/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

The Problem with Direct Access

The reason why is that all IO is done in physical addresses.
Consider the following case:

domain A is mapped in 0-2 GB of physical memory

domain B is mapped in 2-4 GB of physical memory

domain A has direct access to a PCI NIC

domain A programs the NIC to DMA in the 2-4GB
physical memory range, overwriting domain B’s
memory. Ooops!

The solution - an IOMMU.

– p.15/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Xen

Main goal: using Calgary to provide direct access to
devices from multiple driver domains.

Almost there — dom0 running with Calgary enabled.

Working on getting another driver domain running with
Calgary enabled as well.

dom0 detects Calgary in the machine — notifies
hypervisor which initializes Calgary support.

New privileged hypercalls: iommu detected, create and
destroy IO space. IO spaces are identified by BDF or
parts of BDF.

New hypercalls: map and unmap translation entry in IO
space.

– p.16/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Roadmap

Integration with Xen’s grant tables and PCI frontend and
backend drivers.

Support for Intel and AMD’s upcoming IOMMUs.

Migration?

Fully virtualized OS’s with direct device access?

Performance...

How do we build better IOMMUs?

– p.17/19



c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Status and Availability

Linux code merged into mainline: 2.6.18-rc1 should
have it all.

Xen trees available on xenbits:
http://xenbits.xensource.com/ext/xen-iommu.hg

http://xenbits.xensource.com/ext/linux-iommu.hg

– p.18/19

http://xenbits.xensource.com/ext/xen-iommu.hg
http://xenbits.xensource.com/ext/linux-iommu.hg


c©IBM Corporation 2006 Haifux - Haifa Linux Club July 03, 2006

Questions?

– p.19/19


	Table of Contents
	Introducing IOMMUs
	Why do we need an IOMMU?
	The Main Advantage --- Isolation
	AMD GART
	AMD IOV Technology and Intel VT-d
	swiotlb
	Calgary TCEs
	Calgary TCE format
	Linux
	Linux continued
	dmesg in action
	Direct Hardware Access
	The Problem with Direct Access
	Xen
	Roadmap
	Status and Availability
	Questions?

