
The Price of Safety: Evaluating
IOMMU Performance

Preliminary Results

Muli Ben-Yehuda

muli@il.ibm.com

IBM Haifa Research Lab

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.1/14



Table of Contents

IOMMUs

Preliminary Performance Results

Optimizations and Trade-offs

Conclusions

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.2/14



IOMMUs

IOMMU - IO Memory Management Unit

Think MMU for IO devices - separate address spaces!

IOMMUs enable virtual machines direct hardware
access for PV and FV guests

... while protecting the rest of the system from
mis-behaving or malicious virtual machines

But at what cost?

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.3/14



Setting the Stage

Full results to appear at OLS ’07

Calgary (PCI-X) and Calgary (PCI-e) IOMMUs

Linux and Xen implementations

... with some corroborating evidence from the DART
IOMMU on PPC JS21 blades and the IBM Research
Hypervisor

Joint work with Jimi Xenidis, Michal Ostrowski, Karl
Rister, Alexis Bruemmer and Leendert Van Doorn

Utilizing IOMMUs for Virtualization in Linux and Xen, by
by M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis,
L. Van Doorn, A. Mallick, J. Nakajima, and E. Wahlig,
OLS ’06

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.4/14



On Comparisons

What are we comparing against?
not emulation
not virtual IO (frontend / backend drivers)

Direct hardware access without an IOMMU compared
with direct hardware access with an IOMMU on the IO
path

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.5/14



Lies, Damn Lies and Benchmarks

These are not official benchmarks in any way shape or
form!

netperf for network performance

ffsb (http://sourceforge.net/projects/ffsb/)
for block IO

Ran each set of tests on baremetal, in Xen dom0 and in
Xen domU

Two sets of runs, with and without an IOMMU

In both the dom0 and domU cases dom0 is the one
driving the IOMMU, to neutralize dom0 scheduling
oddities

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.6/14

http://sourceforge.net/projects/ffsb/


Prelim. Numbers - Network Baremetal

test off throughput off cpu on tput on cpu % tput diff % cpu diff

64 358.24 12.52/100 345.28 12.52/100 -3.62 0.00

128 632.40 12.61/100 599.77 12.52/100 -5.16 0.71

256 941.34 11.01/100 940.05 12.44/100 -0.14 -12.99

512 941.21 7.85/100 941.29 9.44/100 0.01 -20.25

1024 941.31 5.07/100 941.25 8.04/100 -0.01 -58.58

1460 941.18 6.16/100 941.15 6.84/100 -0.00 -11.04

1480 941.11 6.10/100 941.34 6.67/100 0.02 -9.34

2048 941.34 5.69/100 941.21 7.20/100 -0.01 -26.54

4096 941.17 5.15/100 941.30 6.62/100 0.01 -28.54

8192 941.34 5.10/100 941.20 6.28/100 -0.01 -23.14

16384 941.14 4.90/100 941.34 6.29/100 0.02 -28.37

32768 941.17 4.89/100 941.19 6.25/100 0.00 -27.81

65536 941.21 4.84/100 941.34 6.16/100 0.01 -27.27

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.7/14



Prelim. Numbers - Network dom0

test off throughput off cpu on tput on cpu % tput diff % cpu diff

64 178.23 100.61/800 151.86 105.05/800 -14.80 -4.41

128 282.69 101.54/800 235.07 104.42/800 -16.85 -2.84

256 456.53 100.59/800 353.54 104.33/800 -22.56 -3.72

512 899.39 96.58/800 506.72 104.15/800 -43.66 -7.84

1024 937.29 71.97/800 915.02 101.94/800 -2.38 -41.64

1460 940.13 63.53/800 918.41 95.49/800 -2.31 -50.31

1480 940.02 62.48/800 916.46 93.35/800 -2.51 -49.41

2048 940.11 57.41/800 939.15 86.71/800 -0.10 -51.04

4096 940.06 51.06/800 940.06 79.31/800 0.00 -55.33

8192 940.06 48.03/800 940.03 75.37/800 -0.00 -56.92

16384 940.11 46.20/800 940.05 73.34/800 -0.01 -58.74

32768 940.01 45.58/800 940.03 72.33/800 0.00 -58.69

65536 940.11 45.07/800 940.05 71.68/800 -0.01 -59.04

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.8/14



Prelim. Numbers - Network domU

test off throughput off cpu on tput on cpu % tput diff % cpu diff

64 181.59 47.21/800 154.83 54.19/800 -14.74 -14.79

128 309.91 63.59/800 262.81 74.57/800 -15.20 -17.27

256 483.26 82.09/800 438.64 94.09/800 -9.23 -14.62

512 937.48 59.88/800 935.60 84.31/800 -0.20 -40.80

1024 938.30 60.53/800 938.24 83.72/800 -0.01 -38.31

1460 940.00 58.25/800 939.99 81.60/800 -0.00 -40.09

1480 940.03 58.19/800 940.02 81.58/800 -0.00 -40.20

2048 940.01 58.31/800 939.94 81.72/800 -0.01 -40.15

4096 940.02 58.46/800 939.84 81.83/800 -0.02 -39.98

8192 940.04 58.61/800 939.95 81.77/800 -0.01 -39.52

16384 939.81 58.55/800 939.84 81.98/800 0.00 -40.02

32768 940.05 58.65/800 939.55 81.85/800 -0.05 -39.56

65536 940.00 58.58/800 938.74 81.71/800 -0.13 -39.48

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.9/14



The Straight-forward Implementation

Map Linux DMA API calls to TCE (translation control
entries - think MMU PTEs) map / unmap calls

Straight-forward implementation

With the best isolation properties! Only entries in active
use are mapped - minimizes window of exposure

Unfortunately, map / unmap hypercalls are expensive

... even on bare metal calling into the DMA API too
many times hurts

Xen multicalls don’t help

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.10/14



Pre-allocating the IO Address Space

Map the entire guest address space in the IOMMU
address space such that the guest pseudo-physical
address that maps a given machine frame is equal to
the DMA address that maps that machine frame

Start-up cost but minimal runtime overhead

Isolates the system from the guest

But provides no protection inside the guest (guest is
oblivious to the IOMMU)

Precludes (or requires hypervisor involvement for) page
flipping, ballooning and anything else that modifies
guest P->M translations

Size of IO address space may be limited - theoretical
4GB limit on Calgary

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.11/14



Allocate in Advance; Free When Done

Don’t use the streaming DMA API (map / unmap)

Use the persistent allocation DMA API (allocate / free)

Goes against standard Linux driver practice

... DMA-API is really designed for platforms with limited
number of DMA mappings

Alternative is to cache map / unmap calls in the
DMA-API itself and save the hypervisor crossing -
definitely beneficial for hypervisor scenario but not sure
about baremetal

Another alternative is to allocate and free in large
batches, rather than on a per-buffer basis - add
dma_map_multi and dma_unmap_multi and teach
drivers and subsystems to batch their DMA mappings

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.12/14



Misc. Optimizations

Deferred cache flushing due to architectural constraints

Never free! The mapping may exist until it gets reused,
but if the driver is well-behaved and the mapping does
not map anyone else’s page... who cares?

Grant table integration: when using PV drivers map and
unmap intelligently from the grant table ops rather than
from the DMA API. Only applicable for driver domains,
not for direct hardware access domains

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.13/14



Conclusions and Future Work

IOMMUs are useful and necessary

... but they have non-negligible costs at the moment -
up to 60% more CPU utilization

... which we know how to fix!

What about Intel VT-d and AMD IOMMU?

Once we get rid of the software inefficiencies, how do
we build better IOMMUs?
http://xenbits.xensource.com/ext/xen-iommu.hg

http://xenbits.xensource.com/ext/linux-iommu.hg

The Price of Safety: Evaluating IOMMU Performance, 2007 Spring Xen Summit – p.14/14

http://xenbits.xensource.com/ext/xen-iommu.hg
http://xenbits.xensource.com/ext/linux-iommu.hg

	Table of Contents
	IOMMUs
	Setting the Stage
	On Comparisons
	Lies, Damn Lies and Benchmarks
	Prelim. Numbers - Network Baremetal
	Prelim. Numbers - Network dom0
	Prelim. Numbers - Network domU
	The Straight-forward Implementation
	Pre-allocating the IO Address Space
	Allocate in Advance; Free When Done
	Misc. Optimizations
	Conclusions and Future Work

