
c©IBM Corporation 2008 Microsoft Research, March 2008

Operating System and Hypervisor
Support for IOMMUs

Muli Ben-Yehuda

IBM Haifa Research Lab

muli@il.ibm.com

– p. 1/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Table of Contents

The “what” and “why” of IOMMUs.

How much does it cost?

What can we do about it?

Neat things with virtual machines.

– p. 2/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Virtual Machine I/O

Virtual machines use a variety of models for I/O.

The two prevalent models are:
Emulation.
Para-virtualized drivers.

I’m actually going to talk about the third: direct
hardware access.

I should probably mention that I’m focusing on the x86
space. . . elsewhere we do things differently. But not that
differently.

– p. 3/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Emulation and Para-virtualized Drivers

Emulation
Fully-virtualized guest OS — guest is not aware of
hypervisor.
VMware, Xen HVM and KVM.

Para-virtualized drivers
Special “hypervisor aware” drivers.
Guest (or at least its drivers) knows it is running on
top of a hypervisor.
VMware, Xen frontend and backend drivers and
KVM’s paravirt drivers.

– p. 4/36



c©IBM Corporation 2008 Microsoft Research, March 2008

The Drawbacks of Virtual I/O

Requires new drivers, no support for oddball devices.

Performance, performance, performance.

Figure 1: Xen PV drivers CPU utilization vs Linux

“Xen Network I/O Perf. Analysis”, Santos et al., XenSummit 2007.

– p. 5/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Direct Hardware Access

Give virtual machine direct access to a hardware
device.

Without any software intermediaries between the virtual
machine and the device.

Examples:
Self-virtualizing adapters (including Infiniband).
Legacy adapters.

– p. 6/36



c©IBM Corporation 2008 Microsoft Research, March 2008

The Problem with Direct Access

Untrusted domain controls a device, without any
supervision.

That’s where direct hardware access.

Device is DMA capable (all modern devices are).
Which means the domain can program the device to
overwrite any memory location.

. . . including where the hypervisor lives . . . game over.

– p. 7/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Safe Direct Hardware Access

IOMMU—think MMU for I/O devices—separate address
spaces, protection from malicious devices!

IOMMUs enable direct hardware access for
para-virtualized and fully-virtualized guests.

IOMMUs are useful on bare-metal, too—protect the
kernel from buggy drivers.

– p. 8/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Motivation and Assumptions

IOMMUs will be ubiquitous—Intel, AMD, and the
PCI-SIG are busy at work.

Virtual I/O has advantages and disadvantages.

As IOMMUs become ubiquitous, so will direct
access—where it makes sense.

We set out to learn how will IOMMUs affect I/O
performance, why, and what can we do about it?

– p. 9/36



c©IBM Corporation 2008 Microsoft Research, March 2008

IOMMU Design

There are many different ways to build IOMMUs, and all of
them affect performance:

IOMMU design, in particular cache size, associativity
and invalidation mechanisms.

IOMMU location, core vs. chip vs. device.

Hardware↔ software interfaces.

Pure software interfaces (e.g., between user-space and
kernel-space or between kernel-space and hypervisor).

– p. 10/36



c©IBM Corporation 2008 Microsoft Research, March 2008

The Calgary IOMMU

IBM (accidentally) has an IOMMU in System x servers,
based on the TCE (Translation Control Entry) family of
IOMMUs.

Calgary provides a unique I/O address space up to
4GB in size to all devices behind each PCI Host Bridge
(PHB).

– p. 11/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Calgary TCE format

ByteIO Page Number

IO Address

ControlReal Page Number AccessPN1

ControlReal Page Number AccessPN2

AccessPNn Control

ControlReal Page Number AccessPN0

TCE Table

Real Page Number Byte

Host Memory Address

Real Page Number

Calgary uses the DMA address as an index into its IOTLB.
If a translation is not found in the IOTLB, the address is
used as an index a system controlled translation table in
memory. If the address is not found there either, or doesn’t
have the right access permissions, the DMA is stopped!

– p. 12/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Calgary Exploitation

We exploited the Calgary IOMMU to give Xen virtual
machines safe direct hardware access.

The hardware has never been validated.

So first we did the bringup on bare-metal Linux.

Then, we did a Xen prototype.

In between, we made sure we get reasonable
performance. . .

. . . and supported new hardware (CalIOC2 — PCIe
version of Calgary).

I’m going to tell you how it performed. . . in a bit.

– p. 13/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Linux IOMMU Support

Linux has a standard API for dealing with DMA memory
which all well written drivers are already using, the
DMA-API.

First we cleaned up the x86-64 DMA-API
implementation to support more than nommu, swiotlb
and gart cleanly — the dma-ops patch.

Then we did Calgary bringup on bare metal Linux.

And implemented the DMA-API for Calgary on the
server formerly known as “xSeries x366.”

Despite the hardware having never been validated, it
actually works.

We had to work around a few oddities creatively - cue
funny story about TCE shoot-downs.

– p. 14/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Linux IOMMU Support continued

Calgary support merged in 2.6.18-rc1, we’re the
maintainers.

CalIOC2 (PCIe version of Calgary) merged in 2.6.23.

This provides an isolation capable IOMMU on System x
servers - get your DMA handling wrong and the DMA
will be stopped by the IOMMU with an informative
message rather than corrupting memory!

Some open issues: direct userspace access (i.e., X),
graceful handling and recovery of driver errors, better
integration with swiotlb, NUMA support, etc, etc. . .

– p. 15/36



c©IBM Corporation 2008 Microsoft Research, March 2008

dmesg in action

PCI-DMA: Using Calgary IOMMU

Calgary: enabling translation on PHB 0

Calgary: errant DMAs will now be prevented on this bus.

Calgary: enabling translation on PHB 1

Calgary: errant DMAs will now be prevented on this bus.

Calgary: enabling translation on PHB 2

Calgary: errant DMAs will now be prevented on this bus.

– p. 16/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Xen IOMMU Support

Main goal: using Calgary to provide direct access to
devices from multiple domains.

Concentrating on PV-domains, not HVM.

dom0 detects Calgary in the machine — notifies
hypervisor which initializes Calgary support.

Hypervisor has a common IOMMU layer, to support
Intel VT-d and AMD’s IOMMU.

Now days Xen has support for VT-d and AMD IOMMU,
but only for HVM domains.

. . . and we’ve switched to working on VT-d, for KVM.

– p. 17/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Xen IOMMU Support continued

New privileged hypercalls: iommu detected, create and
destroy IO space. I/O spaces are identified by PCI BDF
(or parts of BDF).

Linux xen-iommu DMA-API implementation makes map
and unmap hypercalls: map and unmap translation
entry in I/O space.

– p. 18/36



c©IBM Corporation 2008 Microsoft Research, March 2008

The Straight-forward Implementation

Map Linux DMA API calls to TCE (translation control
entries—think MMU PTEs) map / unmap calls.

Straight-forward implementation.

With the best isolation properties! Only entries in active
use are mapped—minimizes window of exposure.

Unfortunately, map / unmap hypercalls are expensive.

. . . even on bare metal calling into the DMA API too
many times hurts.

Xen multicalls don’t help.

– p. 19/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Performance Results

Network (netperf) and disk I/O (ffsb) tests.

Two IOMMUs, Calgary and DART, on x86-64 and PPC,
respectively.

We only present the Calgary network results (but DART,
and disk IO, were comparable).

Always compare a given scenario:
With the IOMMU enabled.
With the IOMMU disabled.

Not comparing with virtual IO.

– p. 20/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Scenarios

Where is the netperf server running?

On a bare-metal kernel.

In Xen dom0:
dom0 driving the IOMMU.
How does the IOMMU perform for a “direct hardware
access” domain?

In Xen domU:
Still dom0 driving the IOMMU.
domU using virtual I/O (netfront or blkfront).
How does the IOMMU perform for “‘driver domains”?

– p. 21/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Bare-metal Network Throughput

On bare-metal throughput is barely affected.

– p. 22/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Bare-metal Network CPU Utilization

Bare-metal CPU utilization is as much as 15%-30% more!

– p. 23/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Direct Access Network Throughput

Msg size < 1024: throughput as much as 45% less.

Msg size >= 1024: throughput barely affected.
– p. 24/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Direct Access Network CPU Utilization

Direct access CPU utilization is up to 40%–60% more!

– p. 25/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Driver Domain Network Throughput

Msg size < 512: throughput as much as 15% less.

Msg size >= 512: throughput barely affected.
– p. 26/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Driver Domain Network CPU Utilization

Driver domain CPU utilization is up to 40% more!

– p. 27/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Network Results Summary

Setup Throughput CPU Utilization

Bare-metal line rate up to 30% more

Direct access (msg size < 1024) up to 45% less N/A

Direct access (msg size >= 1024) mostly the same up to 40%-60% more

Driver domain (msg size < 512) up to 15% less N/A

Driver domain (msg size >= 512) mostly the same up to 40% more

IOMMU is expensive (although not prohibitive). . .
What can we do about it?

– p. 28/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Pre-allocating the I/O Address Space

Map the entire guest address space in the IOMMU
address space such that the guest pseudo-physical
address that maps a given machine frame is equal to
the DMA address that maps that machine frame.

Start-up cost but minimal runtime overhead.

Isolates the system from the guest.

But provides no protection inside the guest (guest is
oblivious to the IOMMU).

Precludes (or requires hypervisor involvement for) page
flipping, ballooning and anything else that modifies
guest P->M translations.

Size of I/O address space may be limited - theoretical
4GB limit on Calgary.

– p. 29/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Allocate in Advance; Free When Done

Don’t use the streaming DMA API (map / unmap).

Use the persistent allocation DMA API (allocate / free).

Goes against standard Linux driver practice.

. . . DMA-API is really designed for platforms with limited
number of DMA mappings.

Alternative is to cache map / unmap calls in the
DMA-API itself and save the hypervisor crossing -
definitely beneficial for hypervisor scenario but not sure
about baremetal.

Another alternative is to allocate and free in large
batches, rather than on a per-buffer basis - add
dma_map_multi and dma_unmap_multi and teach
drivers and subsystems to batch their DMA mappings.

– p. 30/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Other Optimizations

Deferred TCE cache flush.

Xen multicalls.

Never free! The mapping may exist until it gets reused,
but if the driver is well-behaved and the mapping does
not map anyone else’s page. . . who cares?

Grant table integration: when using PV drivers map and
unmap intelligently from the grant table ops rather than
from the DMA API. Only applicable for driver domains,
not for direct hardware access domains.

– p. 31/36



c©IBM Corporation 2008 Microsoft Research, March 2008

IOMMU Conclusions and Future Work

IOMMUs are useful and necessary

. . . but they have non-negligible costs at the moment -
up to 60% more CPU utilization

. . . which we have lots of ideas on how to fix!

What about Intel VT-d and AMD IOMMU?

Once we get rid of the software inefficiencies, how do
we build better IOMMUs?

Memory pinning.

– p. 32/36



c©IBM Corporation 2008 Microsoft Research, March 2008

More Information and Source Code

Utilizing IOMMUs for Virtualization in Linux and Xen,
M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. Van
Doorn, A. Mallick, J. Nakajima, and E. Wahlig, OLS ’06.

The Price of Safety: Evaluating IOMMU Performance,
M. Ben-Yehuda, J. Xenidis, M. Ostrowski, K. Rister,
A. Bruemmer, L. Van Doorn, OLS ’07.

Your favorite kernel.org mirror.
http://xenbits.xensource.com/ext/xen-iommu.hg

http://xenbits.xensource.com/ext/linux-iommu.hg

– p. 33/36

http://xenbits.xensource.com/ext/xen-iommu.hg
http://xenbits.xensource.com/ext/linux-iommu.hg


c©IBM Corporation 2008 Microsoft Research, March 2008

Neat Things with Virtual Machines I

Vigilant—Out-of-band Detection of Failures in Virtual
Machines, D. Pelleg, M. Ben-Yehuda, R. Harper,
L. Spainhower, and T. Adeshiyan, ACM SIGOPS
Operating Systems Review, 42(1): 26-31 (2008)

– p. 34/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Neat Things with Virtual Machines II

Checkpointer

Storage

VM

Xen

Virtual Machine Time Travel Using Continuous Data
Protection and Checkpointing, P. Ta-Shma, G. Laden,
M. Ben-Yehuda, and M. Factor, ACM SIGOPS
Operating Systems Review, 42(1): 127-134 (2008)

– p. 35/36



c©IBM Corporation 2008 Microsoft Research, March 2008

Thank You for Listening!

Figure 2: http://xkcd.com/c138.html

– p. 36/36


	Table of Contents
	Virtual Machine I/O
	Emulation and Para-virtualized Drivers
	The Drawbacks of Virtual I/O
	Direct Hardware Access
	The Problem with Direct Access
	Safe Direct Hardware Access
	Motivation and Assumptions
	IOMMU Design
	The Calgary IOMMU
	Calgary TCE format
	Calgary Exploitation
	Linux IOMMU Support
	Linux IOMMU Support continued
	dmesg in action
	Xen IOMMU Support
	Xen IOMMU Support continued
	The Straight-forward Implementation
	Performance Results
	Scenarios
	Bare-metal Network Throughput
	Bare-metal Network CPU Utilization
	Direct Access Network Throughput
	Direct Access Network CPU Utilization
	Driver Domain Network Throughput
	Driver Domain Network CPU Utilization
	Network Results Summary
	Pre-allocating the I/O Address Space
	Allocate in Advance; Free When Done
	Other Optimizations
	IOMMU Conclusions and Future Work
	More Information and Source Code
	Neat Things with Virtual Machines I
	Neat Things with Virtual Machines II
	Thank You for Listening!

