
Introduction to Linux Device Drivers
Recreating Life One Driver At a Time

Muli Ben-Yehuda

mulix at mulix.org

IBM Haifa Research Labs and Haifux - Haifa Linux Club

Linux Device Drivers, Technion, Jan 2005 – p.1/50

Why Write Linux Device Drivers?

For fun,

For profit (Linux is hot right now, especially embedded
Linux),

To scratch an itch.

Because you can!

OK, but why Linux drivers?

Because the source is available.

Because of the community’s cooperation and
involvement.

Have I mentioned it’s fun yet?

Linux Device Drivers, Technion, Jan 2005 – p.2/50

klife - Linux kernel game of life

klife is a Linux kernel Game of Life implementation. It is a
software device driver, developed specifically for this talk.

The game of life is played on a square grid, where
some of the cells are alive and the rest are dead.

Each generation, based on each cell’s neighbors, we
mark the cell as alive or dead.

With time, amazing patterns develop.

The only reason to implement the game of life inside
the kernel is for demonstration purposes.

Software device drivers are very common on Unix systems
and provide many services to the user. Think about
/dev/null, /dev/zero, /dev/random, /dev/kmem...

Linux Device Drivers, Technion, Jan 2005 – p.3/50

Anatomy of a Device Driver

A device driver has three sides: one side talks to the
rest of the kernel, one talks to the hardware, and one
talks to the user:

Hardware

Device Driver

Kernel

User

File
Device

Linux Device Drivers, Technion, Jan 2005 – p.4/50

Kernel Interface of a Device Driver

In order to talk to the kernel, the driver registers with
subsystems to respond to events. Such an event might
be the opening of a file, a page fault, the plugging in of
a new USB device, etc.

Kernel

Event List
x x

xx

....

....
Page Fault

HotplugInterrupt

File Open

Device Driver

Linux Device Drivers, Technion, Jan 2005 – p.5/50

User Interface of a Device driver

Since Linux follows the UNIX model, and in UNIX
everything is a file, users talk with device drivers
through device files.

Device files are a mechanism, supplied by the kernel,
precisely for this direct User-Driver interface.

klife is a character device, and thus the user talks to it
through a character device file.

The other common kind of device file is a block device
file. We will only discuss character device files today.

Linux Device Drivers, Technion, Jan 2005 – p.6/50

Anatomy of klife device driver

The user talks with klife through the /dev/klife device file.
When the user opens /dev/klife, the kernel calls
klife’s open routine
When the user closes /dev/klife, the kernel calls
klife’s release routine
When the user reads or writes from or to /dev/klife -
you get the idea. . .

klife talks to the kernel through
its initialization function
. . . and through register_chrdev
. . . and through hooking into the timer interrupt

We will elaborate on all of these later

Linux Device Drivers, Technion, Jan 2005 – p.7/50

Driver Initialization Code

s t a t i c i n t _ _ i n i t k l i f e _ m o d u l e _ i n i t (vo id)
{

i n t r e t ;

pr_debug (" k l i f e module i n i t c a l l e d \ n ") ;

i f ((r e t = reg i s te r_ch rdev (KLIFE_MAJOR_NUM , " k l i f e " , & k l i f e _ f o p s)) < 0)
p r i n t k (KERN_ERR " reg i s te r_ch rdev : %d \ n " , r e t) ;

r e t u r n r e t ;
}

Linux Device Drivers, Technion, Jan 2005 – p.8/50

Driver Initialization

One function (init) is called on the driver’s initialization.

One function (exit) is called when the driver is removed
from the system.

Question: what happens if the driver is compiled into
the kernel, rather than as a module?

The init function will register hooks that will get the
driver’s code called when the appropriate event
happens.

Question: what if the init function doesn’t register any
hooks?

There are various hooks that can be registered: file
operations, pci operations, USB operations, network
operations - it all depends on what kind of device this is.

Linux Device Drivers, Technion, Jan 2005 – p.9/50

Registering Chardev Hooks

s t r u c t f i l e _ o p e r a t i o n s k l i f e _ f o p s = {
. owner = THIS_MODULE,
. open = k l i f e_open ,
. re lease = k l i f e _ r e l e a s e ,
. read = k l i f e _ r e a d ,
. w r i t e = k l i f e _ w r i t e ,
.mmap = klife_mmap ,
. i o c t l = k l i f e _ i o c t l

} ;
. . .
i f ((r e t = reg i s te r_ch rdev (KLIFE_MAJOR_NUM , " k l i f e " , & k l i f e _ f o p s)) < 0)

p r i n t k (KERN_ERR " reg i s te r_ch rdev : %d \ n " , r e t) ;

Linux Device Drivers, Technion, Jan 2005 – p.10/50

User Space Access to the Driver

We saw that the driver registers a character device tied to a
given major number, but how does the user create such a
file?

mknod /dev/klife c 250 0

And how does the user open it?

if ((kfd = open("/dev/klife", O_RDWR)) < 0) {
perror("open /dev/klife");
exit(EXIT_FAILURE);

}

And then what?

Linux Device Drivers, Technion, Jan 2005 – p.11/50

File Operations

. . . and then you start talking to the device. klife uses the
following device file operations:

open for starting a game (allocating resources).

release for finishing a game (releasing resources).

write for initializing the game (setting the starting
positions on the grid).

read for generating and then reading the next state of
the game’s grid.

ioctl for querying the current generation number, and for
enabling or disabling hooking into the timer interrupt
(more on this later).

mmap for potentially faster but more complex direct
access to the game’s grid.

Linux Device Drivers, Technion, Jan 2005 – p.12/50

The open and release Routines

open and release are where you perform any setup not done

in initialization time and any cleanup not done in module un-

load time.

Linux Device Drivers, Technion, Jan 2005 – p.13/50

klife_open

klife’s open routine allocates the klife structure which holds
all of the state for this game (the grid, starting positions,
current generation, etc).
s t a t i c i n t k l i f e_open (s t r u c t inode ∗ inode , s t r u c t f i l e ∗ f i l p)
{

s t r u c t k l i f e ∗ k ;
i n t r e t ;

r e t = a l l o c _ k l i f e (&k) ;
i f (r e t)

r e t u r n r e t ;

f i l p−>pr i va te_da ta = k ;

r e t u r n 0 ;
}

Linux Device Drivers, Technion, Jan 2005 – p.14/50

klife_open - alloc_klife

s t a t i c i n t a l l o c _ k l i f e (s t r u c t k l i f e ∗∗ pk)
{

i n t r e t ;
s t r u c t k l i f e ∗ k ;

k = kmal loc (s i z e o f (∗ k) , GFP_KERNEL) ;
i f (! k)

r e t u r n −ENOMEM;

r e t = i n i t _ k l i f e (k) ;
i f (r e t) {

k f ree (k) ;
k = NULL ;

}

∗pk = k ;
r e t u r n r e t ;

}

Linux Device Drivers, Technion, Jan 2005 – p.15/50

klife_open - init_klife

s t a t i c i n t i n i t _ k l i f e (s t r u c t k l i f e ∗ k)
{

i n t r e t ;

memset (k , 0 , s i z e o f (∗ k)) ;

s p i n _ l o c k _ i n i t (&k−>lock) ;

r e t = −ENOMEM;
/ ∗ one page to be exported to userspace ∗ /
k−>g r i d = (vo id ∗) get_zeroed_page (GFP_KERNEL) ;
i f (! k−>g r i d)

goto done ;

k−>tmpgr id = kmal loc (s i z e o f (∗ k−>tmpgr id) , GFP_KERNEL) ;
i f (! k−>tmpgr id)

goto f r e e _ g r i d ;

Linux Device Drivers, Technion, Jan 2005 – p.16/50

klife_open - init_klife cont’

k−>timer_hook . func = k l i f e _ t i m e r _ i r q _ h a n d l e r ;
k−>timer_hook . data = k ;
r e t u r n 0 ;

f r e e _ g r i d :
free_page ((unsigned long) k−>g r i d) ;

done :
r e t u r n r e t ;

}

Linux Device Drivers, Technion, Jan 2005 – p.17/50

klife_release

klife’s release routine frees the resource allocated during
open time.
s t a t i c i n t k l i f e _ r e l e a s e (s t r u c t inode ∗ inode , s t r u c t f i l e ∗ f i l p)
{

s t r u c t k l i f e ∗ k = f i l p−>pr i va te_da ta ;
i f (k−>t imer)

k l i f e _ t i m e r _ u n r e g i s t e r (k) ;
i f (k−>mapped) {

/ ∗ undo s e t t i n g the g r i d page to be reserved ∗ /
ClearPageReserved (v i r t _ to_page (k−>g r i d)) ;

}
f r e e _ k l i f e (k) ;
r e t u r n 0 ;

}

Linux Device Drivers, Technion, Jan 2005 – p.18/50

Commentary on open and release

Beware of races if you have any global data . . . many a
driver author stumble on this point.

Note also that release can fail, but almost no one
checks errors from close(), so it’s better if it doesn’t . . .

Question: what happens if the userspace program
crashes while holding your device file open?

Linux Device Drivers, Technion, Jan 2005 – p.19/50

write

For klife, I “hijacked” write to mean “please initialize the
grid to these starting positions”.

There are no hard and fast rules to what write has to
mean, but it’s good to KISS (Keep It Simple, Silly...)

Linux Device Drivers, Technion, Jan 2005 – p.20/50

klife_write - 1

s t a t i c ss i ze_ t k l i f e _ w r i t e (s t r u c t f i l e ∗ f i l p , const char __user ∗ ubuf ,
s i z e _ t count , l o f f _ t ∗ f_pos)

{
s i z e _ t sz ;
char ∗ kbuf ;
s t r u c t k l i f e ∗ k = f i l p−>pr i va te_da ta ;
ss i ze_ t r e t ;

sz = count > PAGE_SIZE ? PAGE_SIZE : count ;

kbuf = kmal loc (sz , GFP_KERNEL) ;
i f (! kbuf)

r e t u r n −ENOMEM;

Not trusting users: checking the size of the user’s buffer

Linux Device Drivers, Technion, Jan 2005 – p.21/50

klife_write - 2

r e t = −EFAULT;
i f (copy_from_user (kbuf , ubuf , sz))

goto f ree_bu f ;

r e t = k l i f e _ a d d _ p o s i t i o n (k , kbuf , sz) ;
i f (r e t = = 0)

r e t = sz ;

f ree_bu f :
k f ree (kbuf) ;
r e t u r n r e t ;

}

Use copy_from_user in case the user is passing a bad

pointer.

Linux Device Drivers, Technion, Jan 2005 – p.22/50

Commentary on write

Note that even for such a simple function, care must be
exercised when dealing with untrusted users.

Users are always untrusted.

Always be prepared to handle errors!

Linux Device Drivers, Technion, Jan 2005 – p.23/50

read

For klife, read means “please calculate and give me the
next generation”.

The bulk of the work is done in two other routines:
klife_next_generation calculates the next generation
based on the current one, according to the rules of
the game of life.
klife_draw takes a grid and “draws” it as a single
string in a page of memory.

Linux Device Drivers, Technion, Jan 2005 – p.24/50

klife_read - 1

s t a t i c ss i ze_ t
k l i f e _ r e a d (s t r u c t f i l e ∗ f i l p , char ∗ ubuf , s i z e _ t count , l o f f _ t ∗ f_pos)
{

s t r u c t k l i f e ∗ k l i f e ;
char ∗ page ;
ss i ze_ t len ;
ss i ze_ t r e t ;
unsigned long f l a g s ;

k l i f e = f i l p−>pr i va te_da ta ;

/ ∗ spec ia l handl ing f o r mmap ∗ /
i f (k l i f e−>mapped)

r e t u r n kl i fe_read_mapped (f i l p , ubuf , count , f_pos) ;

i f (! (page = kmal loc (PAGE_SIZE , GFP_KERNEL)))
r e t u r n −ENOMEM;

Linux Device Drivers, Technion, Jan 2005 – p.25/50

klife_read - 2

sp in_ lock_ i rqsave (& k l i f e−>lock , f l a g s) ;
k l i f e _ n e x t _ g e n e r a t i o n (k l i f e) ;
len = k l i f e_d raw (k l i f e , page) ;
sp in_un lock_ i r q res to re (& k l i f e−>lock , f l a g s) ;
i f (len < 0) {

r e t = len ;
goto free_page ;

}
/ ∗ len can ’ t be negat ive ∗ /
len = min (count , (s i z e _ t) len) ;

Note that the lock is held for the shortest possible time.

We will see later what the lock protects us against.

Linux Device Drivers, Technion, Jan 2005 – p.26/50

klife_read - 3

i f (copy_to_user (ubuf , page , len)) {
r e t = −EFAULT;
goto free_page ;

}

∗ f_pos += len ;
r e t = len ;

free_page :
k f ree (page) ;
r e t u r n r e t ;

}

copy_to_user in case the user is passing us a bad page.

Linux Device Drivers, Technion, Jan 2005 – p.27/50

klife_read - 4

s t a t i c ss i ze_ t
kl i fe_read_mapped (s t r u c t f i l e ∗ f i l p , char ∗ ubuf , s i z e _ t count ,

l o f f _ t ∗ f_pos)
{

s t r u c t k l i f e ∗ k l i f e ;
unsigned long f l a g s ;

k l i f e = f i l p−>pr i va te_da ta ;

sp in_ lock_ i rqsave (& k l i f e−>lock , f l a g s) ;

k l i f e _ n e x t _ g e n e r a t i o n (k l i f e) ;

sp i n_un lock_ i r q res to re (& k l i f e−>lock , f l a g s) ;

r e t u r n 0 ;
}

Again, mind the short lock holding time.
Linux Device Drivers, Technion, Jan 2005 – p.28/50

Commentary on read

There’s plenty of room for optimization in this code
. . . can you see where?

Linux Device Drivers, Technion, Jan 2005 – p.29/50

ioctl

ioctl is a “special access” mechanism, for operations
that do not cleanly map anywhere else.

It is considered extremely bad taste to use ioctls in
Linux where not absolutely necessary.

New drivers should use either sysfs (a /proc -like virtual
file system) or a driver specific file system (you can
write a Linux file system in less than a 100 lines of
code).

In klife, we use ioctl to get the current generation
number, for demonstration purposes only . . .

Linux Device Drivers, Technion, Jan 2005 – p.30/50

klife_ioctl - 1

s t a t i c i n t k l i f e _ i o c t l (s t r u c t inode ∗ inode , s t r u c t f i l e ∗ f i l e ,
unsigned i n t cmd , unsigned long data)

{
s t r u c t k l i f e ∗ k l i f e = f i l e−>pr i va te_da ta ;
unsigned long gen ;
i n t enable ;
i n t r e t ;
unsigned long f l a g s ;
r e t = 0 ;
swi tch (cmd) {
case KLIFE_GET_GENERATION:

sp in_ lock_ i rqsave (& k l i f e−>lock , f l a g s) ;
gen = k l i f e−>gen ;
sp in_un lock_ i r q res to re (& k l i f e−>lock , f l a g s) ;
i f (copy_to_user ((vo id ∗) data , & gen , s i z e o f (gen))) {

r e t = −EFAULT;
goto done ;

}

Linux Device Drivers, Technion, Jan 2005 – p.31/50

klife_ioctl - 2

break ;
case KLIFE_SET_TIMER_MODE:

i f (copy_from_user (& enable , (vo id ∗) data , s i z e o f (enable))) {
r e t = −EFAULT;
goto done ;

}
pr_debug (" user request to %s t imer mode \ n " ,

enable ? " enable " : " d i sab le ") ;
i f (k l i f e−>t imer && ! enable)

k l i f e _ t i m e r _ u n r e g i s t e r (k l i f e) ;
e lse i f (! k l i f e−>t imer && enable)

k l i f e _ t i m e r _ r e g i s t e r (k l i f e) ;
break ;

}
done :

r e t u r n r e t ;
}

Linux Device Drivers, Technion, Jan 2005 – p.32/50

memory mapping

The read-write mechanism, previously described,
involves an overhead of a system call and related
context switching and of memory copying.

mmap maps pages of a file into memory, thus enabling
programs to directly access the memory directly and
save the overhead, . . . but:

fast synchronization between kernel space and user
space is a pain (why do we need it?),
and Linux read and write are really quite fast.

mmap is implemented in klife for demonstration
purposes, with read() calls used for synchronization and
triggering a generation update.

Linux Device Drivers, Technion, Jan 2005 – p.33/50

klife_mmap

. . .
SetPageReserved (v i r t _ to_page (k l i f e−>g r i d)) ;
r e t = remap_pfn_range (vma , vma−>vm_star t ,

v i r t _ t o _ p h y s (k l i f e−>g r i d) > > PAGE_SHIFT ,
PAGE_SIZE , vma−>vm_page_prot) ;

pr_debug (" io_remap_page_range re turned %d \ n " , r e t) ;

i f (r e t = = 0)
k l i f e−>mapped = 1 ;

r e t u r n r e t ;
}

Linux Device Drivers, Technion, Jan 2005 – p.34/50

klife Interrupt Handler

What if we want a new generation on every raised
interrupt?

Since we don’t have a hardware device to raise
interrupts for us, let’s hook into the one hardware every
PC has - the clock - and steal its interrupt!

Linux Device Drivers, Technion, Jan 2005 – p.35/50

Usual Request For an Interrupt Handler

Usually, interrupts are requested using request_irq():
/ ∗ c la im our i r q ∗ /
r c = −ENODEV;
i f (r eques t_ i rq (card−>i r q , & t r i d e n t _ i n t e r r u p t ,

SA_SHIRQ , card_names [p c i _ i d−>dr i ve r_da ta] ,
card)) {

p r i n t k (KERN_ERR
" t r i d e n t : unable to a l l o c a t e i r q %d \ n " , card−>i r q) ;
goto out_proc_fs ;

}

Linux Device Drivers, Technion, Jan 2005 – p.36/50

klife Interrupt Handler

It is impossible to request the timer interrupt.

Instead, we will directly modify the kernel code to call
our interrupt handler, if it’s registered.

We can do this, because the code is open. . .

Linux Device Drivers, Technion, Jan 2005 – p.37/50

Aren’t Timers Good Enough For You?

“Does every driver which wishes to get periodic
notifications need to hook the timer interrupt?” - Nope.

Linux provides an excellent timer mechanism which can
be used for periodic notifications.

The reason for hooking into the timer interrupt in klife is
because we wish to be called from hard interrupt
context, also known as top half context . . .

. . . whereas timer functions are called in softirq bottom
half context.

Why insist on getting called from hard interrupt context?
So we can demonstrate deferring work.

Linux Device Drivers, Technion, Jan 2005 – p.38/50

The Timer Interrupt Hook Patch

The patch adds a hook which a driver can register for,
to be called directly from the timer interrupt handler. It
also creates two functions:

register_timer_interrupt
unregister_timer_interrupt

Linux Device Drivers, Technion, Jan 2005 – p.39/50

Hook Into The Timer Interrupt Routine 1

’+’ marks the lines added to the kernel.
+ s t r u c t t ime r_ in te r rup t_hook ∗ t ime r_ in te r rup t_hook ;
+
+ s t a t i c vo id ca l l_ t imer_hook (s t r u c t pt_regs ∗ regs)
+{
+ s t r u c t t ime r_ in te r rup t_hook ∗ hook = t ime r_ in te r rup t_hook ;
+
+ i f (hook && hook−>func)
+ hook−>func (hook−>data) ;
+}

@@ −851,6 +862,8 @@ void do_t imer (s t r u c t pt_regs ∗ regs)
update_process_times (user_mode (regs)) ;

end i f
update_times () ;

+
+ ca l l_ t imer_hook (regs) ;

}

Linux Device Drivers, Technion, Jan 2005 – p.40/50

Hook Into The Timer Interrupt Routine 2

+ i n t r e g i s t e r _ t i m e r _ i n t e r r u p t (s t r u c t t ime r_ in te r rup t_hook ∗ hook)
+{
+ p r i n t k (KERN_INFO " r e g i s t e r i n g a t imer i n t e r r u p t hook %p "
+ " (func %p, data %p) \ n " , hook , hook−>func ,
+ hook−>data) ;
+
+ xchg(& t imer_hook , hook) ;
+ r e t u r n 0 ;
+}
+
+void u n r e g i s t e r _ t i m e r _ i n t e r r u p t (s t r u c t t ime r_ in te r rup t_hook ∗ hook)
+{
+ p r i n t k (KERN_INFO " u n r e g i s t e r i n g a t imer i n t e r r u p t hook \ n ") ;
+
+ xchg(& t imer_hook , NULL) ;
+}

Linux Device Drivers, Technion, Jan 2005 – p.41/50

Commentary - The Timer Interrupt Hook

Note that the register and unregister calls use xchg(), to
ensure atomic replacement of the pointer to the
handler. Why use xchg() rather than a lock?

What context (hard interrupt, bottom half, process
context) will we be called in?

Which CPU’s timer interrupts would we be called in?

What happens on an SMP system?

Linux Device Drivers, Technion, Jan 2005 – p.42/50

Deferring Work

You were supposed to learn in class about bottom
halves, softirqs, tasklets and other such curse words.

The timer interrupt (and every other interrupt) has to
happen very quickly. Why?

The interrupt handler (top half, hard irq) usually just sets
a flag which says “there is work to be done”.

The work is then deferred to a bottom half context,
where it is done by an (old style) bottom half, softirq, or
tasklet.

For klife, we defer the work we wish to do (updating the
grid) to a bottom half context by scheduling a tasklet.

Linux Device Drivers, Technion, Jan 2005 – p.43/50

Preparing The Tasklet

DECLARE_TASKLET_DISABLED(k l i f e _ t a s k l e t , k l i f e _ t a s k l e t _ f u n c , 0) ;

s t a t i c vo id k l i f e _ t i m e r _ r e g i s t e r (s t r u c t k l i f e ∗ k l i f e)
{

unsigned long f l a g s ;
i n t r e t ;
sp in_ lock_ i rqsave (& k l i f e−>lock , f l a g s) ;
/ ∗ prime the t a s k l e t w i th the c o r r e c t data − ours ∗ /
t a s k l e t _ i n i t (& k l i f e _ t a s k l e t , k l i f e _ t a s k l e t _ f u n c ,

(unsigned long) k l i f e) ;
r e t = r e g i s t e r _ t i m e r _ i n t e r r u p t (& k l i f e−>timer_hook) ;
i f (! r e t)

k l i f e−>t imer = 1 ;
sp in_un lock_ i r q res to re (& k l i f e−>lock , f l a g s) ;
pr_debug (" r e g i s t e r _ t i m e r _ i n t e r r u p t re tu rned %d \ n " , r e t) ;

}

Linux Device Drivers, Technion, Jan 2005 – p.44/50

The klife Tasklet

Here’s what our klife tasklet does:

First, it derives the klife structure from the parameter it
gets.

Then, it locks it, to prevent concurrent access on
another CPU. What are we protecting against?

Then, it generates the new generation.
What must we never do here?
Hint: can tasklets block?

Last, it releases the lock.

Linux Device Drivers, Technion, Jan 2005 – p.45/50

Deferring Work - The klife Tasklet

s t a t i c vo id k l i f e _ t i m e r _ i r q _ h a n d l e r (vo id ∗ data)
{

s t r u c t k l i f e ∗ k l i f e = data ;

/ ∗ 2 t imes a second ∗ /
i f (k l i f e−>t ime r_ invoca t i on ++ % (HZ / 2) = = 0)

task le t_schedu le (& k l i f e _ t a s k l e t) ;
}

s t a t i c vo id k l i f e _ t a s k l e t _ f u n c (unsigned long data)
{

s t r u c t k l i f e ∗ k l i f e = (vo id ∗) data ;
sp in_ lock (& k l i f e−>lock) ;
k l i f e _ n e x t _ g e n e r a t i o n (k l i f e) ;
sp in_unlock (& k l i f e−>lock) ;

}

Linux Device Drivers, Technion, Jan 2005 – p.46/50

Adding klife To The Build System

Building the module in kernel 2.6 is a breeze. All that’s
required to add klife to the kernel’s build system are these
tiny patches:

In drivers/char/Kconfig:
+ con f i g GAME_OF_LIFE
+ t r i s t a t e " kerne l game of l i f e "
+ help
+ Kernel implementat ion o f the Game of L i f e .

in drivers/char/Makefile
+obj−$ (CONFIG_GAME_OF_LIFE) + = k l i f e . o

Linux Device Drivers, Technion, Jan 2005 – p.47/50

Summary

Writing Linux drivers is easy . . .

. . . and fun!

Most drivers do fairly simple things, which Linux
provides APIs for.

The real fun is when dealing with the hardware’s quirks.

It gets easier with practice . . .

. . . but it never gets boring.

Questions?

Linux Device Drivers, Technion, Jan 2005 – p.48/50

Where To Get Help

google

Community resources: web sites and mailing lists.

Distributed documentation (books, articles, magazines)

Use The Source, Luke!

Your fellow kernel hackers.

Linux Device Drivers, Technion, Jan 2005 – p.49/50

Bibliography

kernelnewbies - http://www.kernelnewbies.org

linux-kernel mailing list archives -
h t t p : / / marc . theaimsgroup . com/? l = l i n u x−kerne l&w=2

Understanding the Linux Kernel, by Bovet and Cesati

Linux Device Drivers, 3rd edition, by Rubini et. al.

Linux Kernel Development, 2nd edition, by Robert Love

/usr/src/linux-xxx/

Linux Device Drivers, Technion, Jan 2005 – p.50/50

	Why Write Linux Device Drivers?
	klife - Linux kernel game of life
	Anatomy of a Device Driver
	Kernel Interface of a Device Driver
	User Interface of a Device driver
	Anatomy of klife device driver
	Driver Initialization Code
	Driver Initialization
	Registering Chardev Hooks
	User Space Access to the Driver
	File Operations
	The open and release Routines
	klife_open
	klife_open - alloc_klife
	klife_open - init_klife
	klife_open - init_klife cont'
	klife_release
	Commentary on open and release
	write
	klife_write - 1
	klife_write - 2
	Commentary on write
	read
	klife_read - 1
	klife_read - 2
	klife_read - 3
	klife_read - 4
	Commentary on read
	ioctl
	klife_ioctl - 1
	klife_ioctl - 2
	memory mapping
	klife_mmap
	klife Interrupt Handler
	Usual Request For an Interrupt Handler
	klife Interrupt Handler
	Aren't Timers Good Enough For You?
	The Timer Interrupt Hook Patch
	Hook Into The Timer Interrupt Routine 1
	Hook Into The Timer Interrupt Routine 2
	Commentary - The Timer Interrupt Hook
	Deferring Work
	Preparing The Tasklet
	The klife Tasklet
	Deferring Work - The klife Tasklet
	Adding klife To The Build System
	Summary
	Where To Get Help
	Bibliography

