
Tapping into the Fountain of CPUS-
 On Operating System Support for 

Programmable Devices

Yaron Weinsberg¹, Danny Dolev¹, Tal Anker¹, 
Muli Ben-Yehuda² and Pete Wyckoff³

muli@il.ibm.com

¹ The Hebrew University Of Jerusalem (HUJI)
² IBM Haifa Research Lab
³ Ohio Supercomputer Center



• Today’s peripheral devices are very 
powerful
– Contain general purpose CPUs, memory, 

specialized hardware
– Programmable - more flexible than ASIC 

solutions

• Can we use them in order to execute parts 
of our OS and user-level applications? 
– Yes, but…
– There is no generic framework that enables 

this…

The Elevator Pitch



• Hydra is a generic “offloading 
framework”
– Provides a programming model and runtime 

support that enables one to develop Offload-
Aware (OA) Applications

– “Aware” of any available (programmable) 
computing resource

• Enables a developer to define the 
offloading aspects of the application 
during design time

The Elevator Pitch



“TivoPC”
You can now compile your kernel
 while watching the Superbowl…



TivoPC Information Flow

NIC

GPU

Disk Controller

net



Why should we deal with 
offloading when a typical host 

is full of CPUs ?



• Memory Bottlenecks
– reduce memory pressure and cache-misses 

(due to filtering done at the device)
• Timeliness guarantees
– GPOS ↔ Embedded OS (RTOS) 
– avoiding “OS noise” (interrupts, context 

switches, timers etc.)
• Reduced power consumption
– Pentium 4 2.8Ghz: 68Watt
– Intel XScale 600Mhz: 0.5Watt

Reasons for Offloading



• Security
– harder to attack

• Increased Throughput

Reasons for Offloading

TxRx

*The graphs appear in the paper: “TCP performance revisited”by Foong et. al. 
(ISPASS’03) and are used with the authors‘ permission.



• Motivation
• HYDRA Programming Model
• HYDRA Architecture
• Evaluation
• Future Work

Outline



• Not many applications DO take 
advantage of the available processing 
power…

• Using programmable devices has 
traditionally been very difficult:
– Requires experienced embedded 

engineers
– Requires customization of each 

particular design for each peripheral 
device

 HYDRA to the rescue…

The Current Gap



• Motivation
• HYDRA Programming Model
• HYDRA Architecture
• Evaluation
• Future Work

Outline



• Hydra defines “Offcodes” (Offloaded-Code)
– The minimal unit for offloading
– Exports a well defined interface (like COM 

objects)
– Given as open source or as compiled binaries
– Described by Offcode Description File (ODF)
• Exposes the offcode’s functionality (interfaces)
• Defined the offcode’s dependencies

HYDRA Programming Model



Offcode Libraries

Offcode Library
Networking

Math

Graphics

Security

Networking

BSD Socket
socket.odf

CRC32

crc32.odf

OA-App

im
port

import User Lib

mpeg
Decoder.odf



• Offcodes are interconnected via Channels
– Determines various communication 

properties between offcodes
(I) An Out-Of-Band Channel, OOB-channel, is 

attached to every OA-application and Offcode
• Not performance critical (uses memory copies)
• Used for initialization, control and events 

dissemination

Channels

A

B

C
OOB-channel

Specialized channel



(II) A specialized channel is created for 
performance critical communication

– Hydra provides several channel types:
–Unicast / Multicast
–Reliable / Unreliable
– Synchronized / Asynchronous
–Buffered / Zero-Copy R/W/Both

Channels



• OA-applications are designed by two 
orthogonal aspects:
1. Basic logic design: 

Design the application logic and define  
   the components to be offloaded

2. Offloading Layout design:
 Define the channels of communication 

between  offcodes and their location 
constraints

Design Methodology



1. Logical Design

Reads/Writes data from storage File

Displays the movie on screenDisplay

Decodes the MPEG streamDecoder

Process the media stream 
(either from network or storage)

Streamer

Provides the viewing area and 
user controls (play, pause, 
rewind and resume)

GUI

DescriptionDescriptionComponentComponent



2. Offloading Layout Design

NIC

GPU

Disk Controller

net

GUIGUI
  StreamerStreamer
FileFile

DecoderDecoder
DisplayDisplay

CPU



TivoPC – Layout Graph



Finally: Application Deployment

Layout GraphLogical Devices

Physical Devices
mapping

Offcode Generation

Offloading

Execution

mapping



• Motivation
• HYDRA Programming Model
• HYDRA Architecture
• Evaluation
• Future Work

Outline



HYDRA Architecture

• The runtime system implements the 
programming model

• Both the host OS and target devices  
must implement the runtime 
functionality



HYDRA Architecture



HYDRA Architecture
libhydra.so 

for OA-application 
developers

hydra.ko module
Hydra Kernel Level 
Runtime Support

Device’s Hydra 
Runtime 

Implementation



HYDRA Architecture

kernel and device 
resource management



HYDRA Architecture

Parsing and processing 
of the layout graph



HYDRA Architecture

Memory pinning services
Channel, Offcode Factory



HYDRA Architecture

Hydra Interface



HYDRA Architecture

Handles Channel 
Creation via device 
specific providers

Future support for 
Hydra’s distribution 

framework

Channel Provider on the 
local host



• Motivation
• HYDRA Programming Model
• HYDRA Architecture
• Evaluation
• Future Work

Outline



Evaluation – TiVo-PC

•The server streams 1KB packets, every 5 msec (200KB MPEG movie)The server streams 1KB packets, every 5 msec (200KB MPEG movie)



Evaluation - TiVo-PC 
Packets Jitter (at the video client)



Evaluation - TiVo-PC 
L2 Cache Miss Ratio (Server)



• Motivation
• HYDRA Programming Model
• HYDRA Architecture
• Evaluation
• Future Work

Outline



• OS Offloading
– File system (NFS, indexing, caching, buffer cache…)
– Device drivers offload

• Multi-core support
– CMPs, SMPs 

• Security
– RNGs, En/Decryption, tripwire, IDS/IPS, firewall

• I/O for virtualized systems, IOMMUs, pinning

Future Directions



Thanks!


