
Nadav Har’El× Abel Gordon× Alex Landau×

Muli Ben-Yehuda×,¤ Avishay Traegerx Razya Ladelskyx

× IBM Research – Haifa
¤ Technion and Hypervisor Consulting

Efficient and scaLable paraVirtual I/o System
(ELVIS)



2

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Why (not) software-based I/O interposition in virtual environments?

�Pros

– Software Defined Networking

– File based images

– Live Migration

– Fault Tolerance

– Security

– ….

�Cons

– Scalability Limitations

–Performance Degradation

–Scalability Limitations

–Performance Degradation



3

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

I/O Virtualization Models

☺

�

�

S
c
a

la
b

ili
ty

 a
n
d
 P

e
rf

o
rm

a
n
c
e

Flexibility
� � ☺

Bare-metal
I/O (no VM) SR-IOV +

ELI

Para-Virtual
I/O

SR-IOV

ELVIS

Emulated
I/O

Non-virtualizable

Unmodified GuestNon-interposable

Interposable



4

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

I/OI/O

GuestGuest

HypervisorHypervisor

�The guest posts I/O requests in ring-queue (shared with the 

hypervisor) and sends a request notification

�The hypervisor processes the requests and sends a reply 

notification

How Paravirtual I/O works today

I/O Request

Notification
I/O Reply

Notification

Ring
Queue

I/O DeviceI/O Device



5

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

How I/O notifications are sent/received

VCPU
Thread
(Core X)

guest

hypervisor

I/O
Thread
(Core Y)

hypervisor

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O 
Request

Complete I/O 
Request

PIO

Virtual Interrupt 
Injection

CPU context switch (exits and entries)
I/O processing
Guest execution

Forced Exit 
(via IPI)

�1 thread per virtual CPU (VCPU)

�1 thread per virtual I/O device



6

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Is this model scalable with the number of guests and I/O bandwidth ?

Core 1

VM1

Core N+1

I/O
VM1

Core N

…

Core 2

VM2

Exit
I/O

VM2

Exit

VM2

VM1
VM2

VM1

Exit

VM2
VM1

ExitExit

VMj

I/O
VMj

Exit

VMi

VM1

I/O
VM1

VM2

I/O
VM2

Exit

VCPU and I/O thread-based scheduling for all cores

E
x
e
c
u
ti
o
n
 T

im
e

Depends on the host thread scheduler but 

the scheduler has no information about the 

I/O activity of the virtual devices.…



7

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Facts and Trends

�Notifications cause exits (context switches) == overhead!

�Current trend is:

– Towards multi-core systems with an increasing numbers of 

cores per socket (4->6->8->16->32) and guests per host

– Faster networks with expectation of lower latency and 

higher bandwidth (1GbE->10GbE->40GbE->100GbE)

� I/O virtualization is a CPU intensive task, and may require 

more cycles than the available in a single core

We need a new “efficient” and “scalable”

Paravirtual I/O model!



8

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

I/O
Core

ELVIS: use fine-grained I/O scheduling and dedicate cores to 

improve scalability and efficiency

Core 1

VM1

I/O
Core

I/O
VM1

Core N

VMi
I/O

VM2
I/O

VMn

fine-grained I/O scheduling

Core 2

VM2

I/O
VM2
I/O
VMi

thread-based scheduling

E
x
e
c
u
ti
o
n
 T

im
e

VM2 VM1

VMj

VMi
I/O

Core
I/O

Core
Core 1

VM1

I/O
Core

I/O
VM1

Core N

VMi
I/O

VM2
I/O
VMj

…

Core 2

VM2

I/O
VM2
I/O
VMi

E
x
e
c
u
ti
o
n
 T

im
e

VM2 VM1

VMj

VMi

• Process queues based on the I/O activity
• Balance between throughput and latency
• No process/thread context switches for I/O
• Exitless communication (next slide)

1 thread per I/O 
core handles 

requests of many 
VMs



9

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

ELVIS: remove notifications overhead to further improve efficiency

VCPU
Thread
(Core X)

guest

hypervisor

(time)

I/O
Thread
(Core Y)

hypervisor

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest 

Process I/O 
Request

Complete I/O 
Request

ELVIS

VCPU
Thread
(Core X)

guest

hypervisor

(time)

I/O
Thread
(Core Y)

hypervisor

I/O notification
Guest-to-Host

I/O notification
Host-to-Guest

Process I/O 
Request

Complete I/O 
Request

Traditional
Paravirtual

I/O

Polling

Exitless virtual interrupt 
injection (via ELI)



10

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

�Single thread in a dedicated core monitors the activity of each 

queue (VMs I/O)

�Decide which queue should be processed and for how long

ELVIS: Fine-grained I/O scheduling in a nutshell

Min
data

Max
data

Q2 is 
stuck

Q2: latency sensitiveQ1: throughput intensive Q3: throughput intensive

Dedicated
I/O Core

Q2 is 
Stuck but not 
passed min

…

Check queues’
activity



11

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

ELVIS: Placement of threads, memory and interrupts

�Dedicate 1 I/O core per CPU socket

– Cores per socket continue to increase year by year

– More cores are required to virtualize more bandwidth at 
lower latencies (network links continue to be improved)

– NUMA awareness: shared LLC cache and memory 
controller, DDIO technology

�Deliver interrupts to the “corresponding” I/O core

– Interrupts are processed by I/O cores and do not disturb 

the running the guests

– Improve locality

– Multi-port and SR-IOV adapters can dedicate interrupts 

per port or virtual function



12

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Implementation and Experimental Setup

� Implementation

– Based on KVM Hypervisor (Linux Kernel 3.1 / QEMU 0.14)

– With VHOST, in-kernel paravirtual I/O framework 

– Use ELI patches to enable exitless replies and to improve 
hardware-assisted non-interposable I/O (SR-IOV)

�Experimental Setup

– IBM System x3550 M4, dual socket 8 cores per socket Intel 
Xeon E2660 2.2GHz (SandyBridge)

– Dual port 10GbE Intel x520 SRIOV NIC

– 2 identical servers: one used to host the VMs and the other 
used to generate load on bare-metal



13

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Methodology 

�Repeated experiments using 1 to 14 UP VMs 

– 1x10GbE when running up-to 7 VMs 

– 2x10GbE when running more than 7 VMs

�Compared ELVIS against 3 other configurations

�No interposition

– Each VM runs on a dedicated core and has a SR-IOV VF 
assigned using ELI

– The closer ELVIS is to this configuration, the smaller the 
overhead is (used to evaluate ELVIS efficiency)



14

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Methodology (cont.)

�N=number of VMs (1 to 14)

�Used N+1 cores (N≤ 7) or N+2 cores (N>7)

– This is the resource overhead for I/O interposition

�ELVIS

– 1 dedicated core per VCPU (VM)

– 1 core (N<=7) or (N>7) 2 cores dedicated for I/O 

�Baseline

– N+1 cores (N ≤ 7) or N+2 cores (N>7) to run VCPU and I/O 
threads (no thread affinity)

�Baseline+Affinity

– Baseline but dedicate 1 core per VCPU and pin I/O threads 
to dedicated I/O cores



15

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Netperf – TCP Stream 64Bytes (throughput intensive)

1x10Gb port

ELVIS: 1 core dedicated for I/O and 1 

dedicated core per VM (N+1 total)

Baseline: N+1 cores (to handle I/O and to 

run the VMs)

No Interposition: N cores to run the VMs

Numbers of VMs

2x10Gb port

ELVIS: 2 cores dedicated for I/O and 1 

dedicated core per VM (N+2 total)

Baseline: N+2 cores (to handle I/O and to 

run the VMs)

No Interposition: N cores to run the VMs

•Scaled perfectly

•1 core managed to handle I/O 
for 7 VMs (cores)

•Maximum throughput

•Coalesced more interrupts 
than the SR-IOV device
(4K-11K vs. 30K ints/sec)



16

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Netperf – UDP Request Response (latency sensitive)

•Latency slightly increased with more VMs 

•Better than No Interposition in some cases because 
enabling SR-IOV in the NIC increases latency by 22% 
(ELVIS disables SR-IOV)



17

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Memcached - 90% get, 10% set, 32 concurrent requests per VM
1KB value size, 64B key size

•I/O core saturated after 3 VMs

•ELVIS was up to 30% slower than No interposition 
when the I/O core was not saturated, but was always 
30%-115% better than Baseline

I/O core 
saturated



18

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Improving I/O Virtualization - Related Work

�Paravirtual I/O

�Polling

�Spatial division of cores / core dedication

�Exitless Interrupts

We extended many of these ideas and integrated them with a 

fine-grained I/O scheduling to build a new Efficient and 
Scalable paravirtual I/O System (ELVIS) 



19

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Conclusions and Future Work

�Most data centers and cloud providers use paravirtual I/O
(required to enable many useful virtualization features)

�Current trend towards multi-core systems and towards faster 
networks makes paravirtual I/O inefficient and not scalable

�ELVIS presents a new efficient and scalable I/O virtualization 
system that removes paravirtual I/O deficiencies

�Future Work

– Improve fine-grained I/O scheduling to consider VM’s SLAs

– Dynamically allocate or release I/O cores based on the 
system load and guest’s workloads

– Core Specialization: I/O core <> VCPU cores 



20

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Questions ?



21

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Backup



22

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Mix of throughput intensive and latency sensitive VMs

•Throughput intensive: N VMs run Netperf TCP Stream 64Bytes (STREAM)
•Latency sensitive: 7-N VMs run Netperf UDP Request Response (RR)
•N = 1 to 6

•Managed to balance between throughput intensive 
and latency sensitive workloads

throughput degraded
to reduce latency



23

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

NUMA awareness

Netperf – TCP Stream 64Bytes

•Aligned: improves performance by 30%-40%
(I/O thread runs in the same socket )

•Unaligned: saturated after 5-6VMs
(I/O thread runs in a different socket)

I/O thread 
saturated



24

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Filebench – block I/O interposition based on host RAM disk
4x4KB random writes, 4x4KB random reads per VM

•Latency remains 
constant

•Throughput increases 
linearly

Numbers of VMs

Added 1 core



25

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

I/O becomes Exitless 

<80035KExits/s per VM (7 VMs)

<80056KExits/s 1 VM

Filebench

<80039KExits/s per VM (7 VMs)

<80060KExits/s per VM (7 VMs)

<80053KExits/s per VM (7 VMs)

<800146KExits/s 1 VM

Apache

NetPerf TCP stream

Memcached

<800109KExits/s 1 VM

<800142KExits/s 1 VM

ELVISBaseline

� Baseline: exits/VM 
decreased as the 

number of VMs 

increased 
(batching/coalescing 

effect)

� ELVIS: removed 

most of the exits!



26

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Fine-grained I/O scheduling and Exitless requests/replies

Netperf – TCP Stream 64Bytes

•Fine-grained I/O scheduling is required to improve scalability

•Exitless notifications are required to improve per VM 
performance

Achieved Line rate



27

Efficient and Scalable Paravirtual I/O System – USENIX ATC’13

Apache serving 4KB static pages

•Scaled perfectly while the remove machine was not saturated

•1 core managed to handle I/O for 7 VMs (cores)

•Maximum throughput

Numbers of VMs

Remote Machine 
Saturated


